Overview of Interactive Neuroevolution
Interactive Neuroevolution

environments.
Risto Miikkulainen

Neuroevolution allows the discovery of behaviors for agents embedded in
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Solutions may be surprising and challenging for human designers.
objectives.

Human guidance may be helpful in discovering complex or aesthetic
It also leads to a

new genre of machine-learning games!

P
The NERO Machine Learning Game

» NERO is a pioneering machine learning game:

» Produced by UT's Digital Media Collaboratory 2003-06
> Professional producer, about 30 volunteer undergrads

NERO Gameplay

» Agents are controlled by neural networks evolved using NEAT.

» Human players act as trainers or coaches, designing learning challenges

NEURO EVOLVING ROBOTIC OPERATIVES

» The task for the player is to train the agents for battle

> Agents are placed in an enclosed environment with walls and obstacles
> Enemy agents can be static, mobile, or firing at the player’s agents.
> Player needs to design a curriculum of exercises

> Agents evolve in real time

> After training, agents placed in a battle against another team
» New genre: Learning is the game

> Challenging platform for reinforcement learning

> Real time, open ended, requires discovery
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NERO Player Actions NERO Neural Network Agent

» Each agent is controlled by an evolved neural network

> Inputs: egocentric sensors
» Qutputs: simple actions

» The player can place items in the field:
> Walls, flags, static enemies, rovers, turrets.
> Players can adjust sliders to define fitness objectives
» Approach/avoid enemies, cluster/disperse, hit targets, avoid fire...

» Curriculum can be designed dynamically, starting with simple tasks and LeftRight Forward/Back  Fire
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NERO Neural Network Agent

» Each agent is controlled by an evolved neural network
> Inputs: egocentric sensors
» Qutputs: simple actions

Left/Right Forward/Back Fire
O
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Real-Time NEAT (rtNEAT)

» A parallel, continuous version of NEAT.

> The entire population is evaluated together.
> Parents selected probabilistically weighted by fitness
» The worst-performing agent is replaced with an offspring every n ticks

» This allows ongoing evolution without pauses between generations, making
the process seamless for players.

» Long-term evolution is equivalent to generational NEAT.
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NERO Neural Network Agent

» Each agent is controlled by an evolved neural network
> Inputs: egocentric sensors
» Qutputs: simple actions

Left/Right ForwardBack Fire
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NERO Training Demo

Demo
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Approach Enemy

Switch to Avoid

Demo
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Avoid, first-person Maze Running



Battle Mode in NERO

» After evolution, teams are evaluated in battle mode.

» Teams compete in head-to-head matches in different environments.

» Agents use their evolved behaviors independently from the human player.
» Teams win when they eliminate the opponent or the clock runs out.

Unexpected and Effective Team Behaviors

» Evolution can discover unexpected but useful team behaviors as well:
» Avoidant teams retreat to form a strong firing squad.

» Subteams of agents evolve to coordinate attacks.

Aggressive vs. Avoidant Teams of three

Discovering Effective Behaviors
» Agents can learn to charge enemies, hide, use cover, and attack
strategically.

» Dynamic adjustments to fitness sliders allow agents to evolve toward
effective strategies.

» Surprising strategies can emerge, such as running backward to avoid fire
while keeping the weapon pointed to the enemy.

Circularity in Strategies

» Large-scale experiments show that no single strategy is dominant.
» 159-team OpenNERO tournament in the first ever MOOC (2011).

» No single dominant strategy: many ways to be successful.
» Circularity: Team A beats Team B, B beats C, but C beats A.

» Multiple strategies needed; makes the game interesting!
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But is it Fun?

»> NERO was a tech/science demo.
» NERO 2.0: Territory Mode was an actual game.

> Battle to conquer control points: interactive & more fun

> Player trains various specialists: defenders, chargers, snipers,...
» During battle, player is a high-level commander

» Dynamically deploys specialists

» Dynamically specifies targets

> Real time against other players

» Making a fun game is a different goal altogether.

Incorporating Human Knowledge into NERO

» NERO already utilizes shaping through human insight.
» Human knowledge can also be incorporated through:
> Rule-based advice.
> Behavioral examples.

» These approaches can improve neuroevolution beyond trial and error.

Challenge: Utilizing Human Knowledge

> Given a problem, NE discovers a solution by exploring

> Sometimes highly original solutions
P> Requires lots of exploration

» Game designers may want to have more control
> Seeding with initial behaviors

» Players may want to interact with learning
> Specifying desired behaviors during evolution

Rule-Based Advice

» Humans can observe obvious behaviors that agents struggle to learn.
> For instance how to go around a wall.

» Advice simplifies early training and allows evolution to focus on complex
behaviors.

"If there is a wall in front, go around!



Example Advice

Advice Grammar
P "If a wall is in front, move forward and turn right”
{ if wall_ahead > 0.1 then { output move_forward 1.0 turn 0.5 } }
"If a wall is at 45° left, move forward and turn right slightly”
{ if wall_45deg_left > 0.5 then { output move_forward 1.0 turn 0.1 } }

{ if CONDS then RULE [ else RULE | } |
RULE
» Encoded in a simple grammar & translated into knowledge-based neural networks (KBANN)

— { when CONDS repeat RULE until CONDS [then RULE | } |
{ output VARSTR }
CONDS — TERM | CONDS and TERM
» Added to the champions of the top 5 species TERM — false | true | variable { < | < | > | > } value
VARSTR —

variable strength | VARSTR variable strength

RULE1 RULE2
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RULE1 I
‘%::::“fi///"’//
o]
g
@gation) T
FANAN ConDs %? (e.g. repeat node)
if-then repeat output
"If there is a wall in front, go around!
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Adding Advice to a NEAT Network Demo: Rule-Based Advice in NERO
» KBANN network is added to NEAT networks; treated as a complexification
> Continues to evolve > Advice helps agents get around the wall right away.
> If it is useful, it stays
> Otherwise it is discarded or converted to something else Demo
» Confidence values control how rigid or flexible the advice is.
» Can be given online as advice, or early as initial behavior
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Advice in Continual Evolution Seeding the Population

» KBANN-+NEAT can also be used to seed an initial population
» Evolution eventually integrates the advice into the network for future tasks. » E.g. approaching a roving enemy

» Quickly adapts when task requirements change (e.g. switching directions). : \é\{c'l:h k’_‘°W|I‘5dge'tapg"°ac"_ right_ away
erwise, learn to do sO In amins

» Does not delay adaptation to new situations
> E.g. Approaching an enemy that is shooting

> Advice accelerates learning but does not constrain long-term evolution.
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Training by Examples Human Subject Study: Evaluating Interaction Methods
» Some behaviors hard to formulate in rules, but can be demonstrated by
humans
» E.g. take control of a NERO agent, demonstrate behavior
> Measure distance from the recorded path » Study evaluated different approaches: advice, examples, and shaping.
> Incorporate into the fitness function » Each method plays a unique role depending on the complexity and nature
» Or train with backpropagation of the task.

> Advice: Best for tasks with general rules (e.g., catching a moving target).

> Examples: Effective for specific, concrete behaviors (e.g., navigating a wall).

» Shaping: Ideal for tasks that can be broken into simpler steps (e.g.,
traversing waypoints).

» Injecting human knowledge as examples
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Active Human-Guided Neuroevolution
» The system could request advice, examples, or shaping when needed.
» The system identifies areas where human input would be most beneficial.

» This approach allows human knowledge and machine exploration to work
together effectively.
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NERO Conclusion

» NERO is a pioneering machine-learning game
> " A video game created by eggheads”.
> A neuroevolution experiment can be an interesting game.
» A roadmap for combining human and machine creativity.
> As in RHEA, but interactive.
» Difficult to transfer to game industry.

> Engineers, game designers love it; management doesn't.
» They have a winning formula already.
> Lack of control on the outcome is scary.

> But times are changing...




