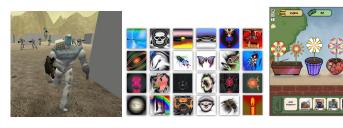
Interactive Neuroevolution

Risto Miikkulainen

October 14, 2024

Overview of Interactive Neuroevolution

- ▶ Neuroevolution allows the discovery of behaviors for agents embedded in environments.
- ▶ Solutions may be surprising and challenging for human designers.
- ▶ Human guidance may be helpful in discovering complex or aesthetic objectives.
- ▶ It also leads to a new genre of machine-learning games!



The NERO Machine Learning Game

- ▶ NERO is a pioneering machine learning game:
 - Produced by UT's Digital Media Collaboratory 2003-06
 - Professional producer, about 30 volunteer undergrads
- Agents are controlled by neural networks evolved using NEAT.
- ▶ Human players act as trainers or coaches, designing learning challenges.

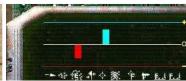
NERO Gameplay

- ▶ The task for the player is to train the agents for battle
 - Agents are placed in an enclosed environment with walls and obstacles.
 Enemy agents can be static, mobile, or firing at the player's agents.
 Player needs to design a curriculum of exercises

 - Agents evolve in real time
- ► After training, agents placed in a battle against another team
- ► New genre: Learning *is* the game
 - ► Challenging platform for reinforcement learning
 - ► Real time, open ended, requires discovery

NERO Player Actions

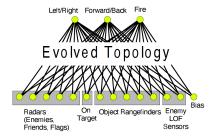
- ▶ The player can place items in the field:
 - ▶ Walls, flags, static enemies, rovers, turrets.
- ▶ Players can adjust sliders to define fitness objectives
 - Approach/avoid enemies, cluster/disperse, hit targets, avoid fire...
- Curriculum can be designed dynamically, starting with simple tasks and increasing complexity.



4 D > 4 B > 4 E > 4 E > 5 9 Q C

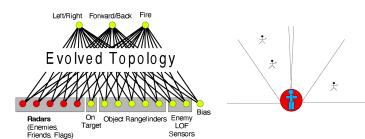
NERO Neural Network Agent

- ► Each agent is controlled by an evolved neural network
 - ► Inputs: egocentric sensors
 - Outputs: simple actions



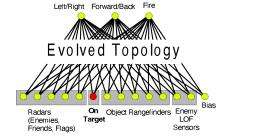
NERO Neural Network Agent

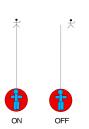
- ► Each agent is controlled by an evolved neural network
 - ► Inputs: egocentric sensors
 - Outputs: simple actions



NERO Neural Network Agent

- ► Each agent is controlled by an evolved neural network
 - ► Inputs: egocentric sensors
 - Outputs: simple actions



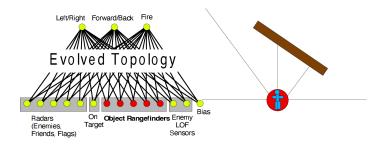


NERO Neural Network Agent

► Each agent is controlled by an evolved neural network

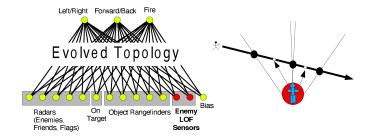
► Inputs: egocentric sensors

Outputs: simple actions



NERO Neural Network Agent

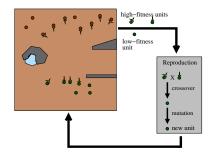
- Each agent is controlled by an evolved neural network
 - Inputs: egocentric sensorsOutputs: simple actions



Real-Time NEAT (rtNEAT)

- A parallel, continuous version of NEAT.

 - The entire population is evaluated together.
 Parents selected probabilistically weighted by fitness.
 - \triangleright The worst-performing agent is replaced with an offspring every n ticks
- ▶ This allows ongoing evolution without pauses between generations, making the process seamless for players.
- ▶ Long-term evolution is equivalent to generational NEAT.



NERO Training Demo

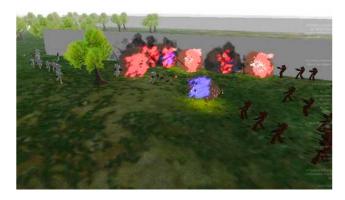
Avoid, first-person

Switch to Avoid

Maze Running

Battle Mode in NERO

- ► After evolution, teams are evaluated in battle mode.
- ► Teams compete in head-to-head matches in different environments.
- Agents use their evolved behaviors independently from the human player.
- ▶ Teams win when they eliminate the opponent or the clock runs out.



Discovering Effective Behaviors

- Agents can learn to charge enemies, hide, use cover, and attack strategically.
- Dynamic adjustments to fitness sliders allow agents to evolve toward effective strategies.
- Surprising strategies can emerge, such as running backward to avoid fire while keeping the weapon pointed to the enemy.

Unexpected and Effective Team Behaviors

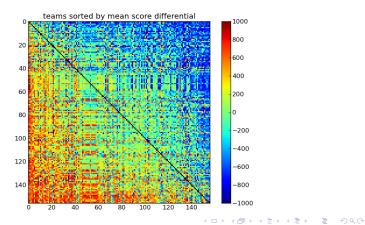
- ▶ Evolution can discover unexpected but useful team behaviors as well:
- Avoidant teams retreat to form a strong firing squad.
- Subteams of agents evolve to coordinate attacks.

Demo

Teams of three

Circularity in Strategies

- ▶ Large-scale experiments show that no single strategy is dominant.
 - ▶ 159-team OpenNERO tournament in the first ever MOOC (2011).
- ▶ No single dominant strategy: many ways to be successful.
- ▶ Circularity: Team A beats Team B, B beats C, but C beats A.
- ▶ Multiple strategies needed; makes the game interesting!



But is it Fun?

- ► NERO was a tech/science demo.
- ▶ NERO 2.0: Territory Mode was an actual game.
 - ▶ Battle to conquer control points: interactive & more fun
 - Player trains various specialists: defenders, chargers, snipers,...
- During battle, player is a high-level commander
 - Dynamically deploys specialists
 - Dynamically specifies targets
 - ► Real time against other players
- Making a fun game is a different goal altogether.

Incorporating Human Knowledge into NERO

- ▶ NERO already utilizes shaping through human insight.
- ▶ Human knowledge can also be incorporated through:
 - Rule-based advice.
 - ► Behavioral examples.
- ▶ These approaches can improve neuroevolution beyond trial and error.

Challenge: Utilizing Human Knowledge

- ▶ Given a problem, NE discovers a solution by exploring
 - Sometimes highly original solutions
 - ► Requires lots of exploration
- ► Game designers may want to have more control
 - Seeding with initial behaviors
- ▶ Players may want to interact with learning
 - Specifying desired behaviors during evolution

Rule-Based Advice

- ▶ Humans can observe obvious behaviors that agents struggle to learn.
 - For instance how to go around a wall.
- Advice simplifies early training and allows evolution to focus on complex behaviors.

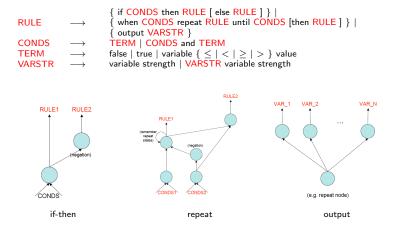
"If there is a wall in front, go around!

Example Advice

- \blacktriangleright "If a wall is in front, move forward and turn right" $\{$ if wall_ahead >0.1 then $\{$ output move_forward 1.0 turn 0.5 $\}$ $\}$
 - "If a wall is at 45° left, move forward and turn right slightly" { if wall_45deg_left >0.5 then { output move_forward 1.0 turn 0.1 } }
- ▶ Encoded in a simple grammar & translated into knowledge-based neural networks (KBANN)
- Added to the champions of the top 5 species

"If there is a wall in front, go around!

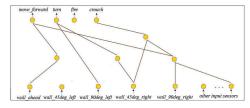
Advice Grammar



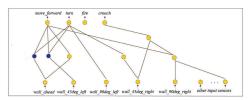
Adding Advice to a NEAT Network

- ▶ KBANN network is added to NEAT networks; treated as a complexification
- ► Continues to evolve
 - If it is useful, it stays
 - ▶ Otherwise it is discarded or converted to something else
- ► Confidence values control how rigid or flexible the advice is.
- ▶ Can be given online as advice, or early as initial behavior.

Advice subnet

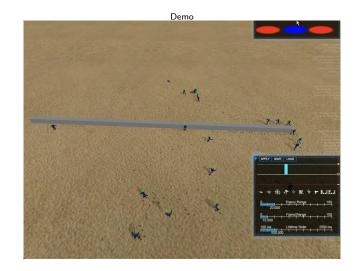


Existing NEAT network



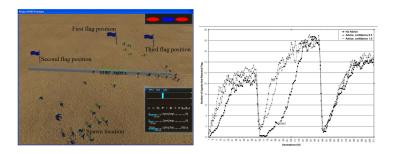
Demo: Rule-Based Advice in NERO

Advice helps agents get around the wall right away.



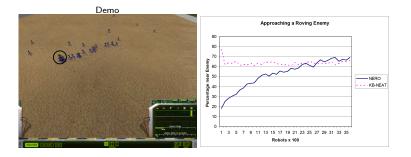
Advice in Continual Evolution

- ▶ Evolution eventually integrates the advice into the network for future tasks.
- Quickly adapts when task requirements change (e.g. switching directions).
- Advice accelerates learning but does not constrain long-term evolution.



Seeding the Population

- ► KBANN+NEAT can also be used to seed an initial population
- E.g. approaching a roving enemy
 - ► With knowledge, approach right away
 - ► Otherwise, learn to do so in 3mins
- ▶ Does not delay adaptation to new situations
 - E.g. Approaching an enemy that is shooting

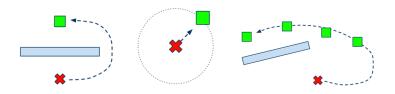


Training by Examples

- Some behaviors hard to formulate in rules, but can be demonstrated by humans
- ▶ E.g. take control of a NERO agent, demonstrate behavior
- ► Measure distance from the recorded path
 - Incorporate into the fitness function
 - Or train with backpropagation
- Injecting human knowledge as examples

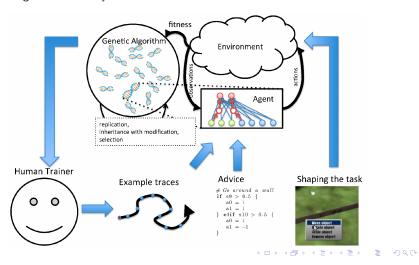
Human Subject Study: Evaluating Interaction Methods

- Study evaluated different approaches: advice, examples, and shaping.
- Each method plays a unique role depending on the complexity and nature of the task.
 - Advice: Best for tasks with general rules (e.g., catching a moving target).
 - Examples: Effective for specific, concrete behaviors (e.g., navigating a wall).
 - Shaping: Ideal for tasks that can be broken into simpler steps (e.g., traversing waypoints).



Active Human-Guided Neuroevolution

- ▶ The system could request advice, examples, or shaping when needed.
- ▶ The system identifies areas where human input would be most beneficial.
- This approach allows human knowledge and machine exploration to work together effectively.



NERO Conclusion

- ▶ NERO is a pioneering machine-learning game
 - "A video game created by eggheads".
 - A neuroevolution experiment can be an interesting game.
- A roadmap for combining human and machine creativity.
 - As in RHEA, but interactive.
- Difficult to transfer to game industry.
 - ► Engineers, game designers love it; management doesn't.
 - ► They have a winning formula already.
 - Lack of control on the outcome is scary.
- ▶ But times are changing...

