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Open-ended Discovery of Complex Behavior
I Neuroevolution can find successful behavior for given tasks.
I Biologicy is open-ended: Operates continuously, without specific goals.
I Elements of open-endedness could lead more powerful neuroevolution:

1. Neutrality with weak selection
2. Enhanced exploration through extinction events
3. Evolvable representations
4. Expressive (not just indirect) encodings.
5. Major transitions in complexity
6. Co-evolution of body and brain
7. Co-evolution of brain and static environments.
8. Co-evolution of brain and dynamic environments.

1. Standard approach to computational evolution

I Evolutionary computation often uses strong selection for fast optimization.

I Small populations and engineered operations lead to quick convergence.

I This approach works for well-defined problems but may miss solutions.

I Engineers are highly impatient!

Biological Approach
I Biological evolution involves large populations and weak selection.
I Many mutations are neutral and do not a↵ect fitness.
I Diversity stays in the population even when not immediately beneficial.
I Biology has a lot of patience :-)



Opportunity with Increased Computational Power

I Impatience because of limited computational power.
I With billionfold increases, new approaches are possible.

I Large populations, neutral mutations, deep time, large simulations.
I Develop foundation models for neuroevolution?

I Computational scaleup led to deep learning and GenAI; similar advances
possible for neuroevolution as well.

2. Extinction Events in Biological Evolution

I Five large-scale extinction events have altered the course of evolution.

I Example: The Cretaceous-Paleogene event displaced dinosaurs with
mammals.

I Question: Are extinction events accidents or do they serve a role in
evolution?

I Extinctions may reset evolution, favoring higher evolvability and
complexity.

Computational Experiments on Extinctions

I Extinction events can be studied in an abstract setting:
I Individuals encoded with a 2D location/niche and evolvability.
I Evolvability determines how likely the o↵spring is to occupy another niche

through mutation.

I Starting from the center, population evolves until all niches are filled.

I Further evolution only through drift; evolvability stagnates.

Lighter=more evolvable

Evolvability Through Extinctions

I Extinction events remove most of the population, leaving a few individuals.

I The ones with higher evolvability fill more niches.

I Repeated extinction thus favors individuals with higher evolvability.

I Extinction events accelerate evolution!

Soon after extinction Later after extinction



Extinction in the Bipedal Walker Domain

I Extinction events can a↵ect behavioral evolution as well.

I E.g. Bipedal walker:

I Input: Whether each foot touches the ground.

I Output: motors on left and right knee and hip.

I Nice: Where does it end up?

Extinction in the Bipedal Walker Domain

I Extinction events lead to faster rebounds.

I After each extinction, the population fills more niches than before.

I Extinction accelerates evolution and increases novelty in solutions.

Conclusion on Extinction Events

I Extinction events have the potential to reset evolution and favor more
evolvable solutions.

I Even at smaller scales, extinction events may be beneficial for long-term
innovation.

I Combining extinction events with large populations and weak selection
could accelerate openended evolution in neuroevolution systems.

3. Evolvable Representations

I Evolutionary algorithms often focus on creating and maintaining diversity
in genotypic and phenotypic space (quantity)

I Evolvability makes it possible to create larger changes faster (quality).
I The main idea is to adapt the genotype-phenotype mapping.
I Indirect encodings are crucial to supporting evolvability.

I Both of these approaches can lead to better high-fitness solutions.



GRNs Can Support Evolvability

I Genetic Regulatory Networks (GRNs) are indirect encodings that evolve
over time.

I GRNs encode rules for building neural networks.

I Products in the GRN create nodes and connections between them.

I Evolvability emerges through continuous mutations in the rules.

Constructing neural networks from GRNs

I Each rule has a regulatory(antecedent) and transcription(product) region.

I Variables are regulatory factors (proteins) with tolerance (similarity)
I When existing products match antecedents within tolerance;

1. Products are generated as nodes.
2. Antecedent nodes are connected to product nodes.

GRN ! Neural Net Example

I Starting with G and no B, B is created (as a node)
I With input from G (not shown).
I With an inhibitory link B!B.

I B is close to C: H and D are created (as nodes)
I With connections from B.
I H is close to G: connection from H to B.
I D is close to C: connection from D to itself.
I D is close to C: connection from D to H (not shown).

I D creates K, the output node
I With a connection from D.

Test Domain: Nothello

I GRN-based neuroevolution was tested in Nothello (simplified Othello):
I Still: Take turns to place pieces (black/white)
I Still: Sandwiched pieces are flipped.
I But: Smaller diamond-shaped board.
I But: Player with the fewest pieces wins.

I Simpler, faster, but still challenging.



Performance in the Nothello Domain

I Neural networks evolved as heuristic evaluators.

I Coevolution process: Each network evaluated against others in the
population.

I The GRN-based indirect encoding evolved better strategies faster than
evolution of feature weights and NEAT.

Performance Arising from Evolvability

I In coevolution, the fitness function changes continuously.

I High evolvability is thus a major advantage in coevolution.

I Evolvability is measured as the average fitness of mutated o↵spring.

I The GRN-based encoding results in more robust mutations compared to
NEAT.

Network Motifs with High Evolvability

I The GRN-based approach discovers a wider variety of network motifs.

I Recurrent motifs are common in GRN networks, supporting robust
evolvability.

I This leads to more complex behaviors and open-ended discovery.

Conclusion on Evolvable Representations

I Evolvable representations support long-term evolution and adaptation to
changing environments.

I Indirect encodings like GRNs enable evolvability through soft, continuous
mutations.

I Evolvability is especially useful in coevolution where the fitness function
changes continuously.

I Evolvability is thus essential for open-ended discovery of increasingly
complex solutions.



4. Expressive Encodings Overview

I Expressive encodings allow for large jumps in the search space.

I In particular, small changes in the genotype can result in large changes in
the phenotype (miracle jumps).

I Standard evolutionary algorithms with direct encodings cannot easily make
such jumps.

I Expressive encodings are highly evolvable and open-ended.

Example of Miracle Jumps: GP

I Genetic programming (GP) can create miracle jumps through conditionals
or specific segments.

I E.g. two GP parent phenotypes are all-0s.

I But there’s a 25% chance that their crossover is all-1s.

Example of Miracle Jumps: NE

I Neuroevolution (NE) can also produce miracle jumps.

I E.g. neural networks evolved to produce a bit string.

I The two parents di↵er only in the weights of the second layer.

I With uniform crossover, 25% chance of jumping from all-0s to all-1s.

I Direct encoding cannot achieve such jumps as e↵ectively.

(Zero bias and sigmoid activation function: 0!0.5)

Power of Expressive Encodings

I In a standard crossover, o↵spring phenotype is somewhere in between the
parent phenotypes.



Power of Expressive Encodings

I With Expressive Encodings, the o↵spring phenotypes can be anywhere in
the space.

I Even with a simple crossover, recombination samples from an arbitrary
distribution of child phenotypes.

Power of Expressive Encodings

I Expressive encodings outperform direct encodings theoretically and
experimentally (Deterministic Flipping, Random Flipping, Large Block
Assembly).
I Even with flat landscape, break through eventually.

I Much of the genetic structure is shared, similar to biological systems.

I A good idea to use GP or NN as a representation; best chance for
open-ended evolution!

5. Major Transitions

I Open-ended discovery may require major transitions in complexity.
I Biological evolution progressed through several transitions, e.g.:

I From self-replicating molecules to chromosomes.
I From single cells to multicellular organisms.
I Formation of eusocial societies and language.

I Each transition results in more complex individuals and cooperative roles.

Challenges in Establishing Major Transitions
I Not fully understood in biology.
I Key questions:

I How do individuals specialize and lose the ability to reproduce
independently?

I Are there multiple levels of selection or just one?

I Computational studies can help, but simulating major transitions in
behavior is challenging.



Mechanisms for Major Transitions

I Ingredients for major transitions exist in computational experiments:
I Evolving cooperative structures (e.g., Hierarchical ESP).
I Agents communicating and coordinating to achieve shared goals.

Also (to be discussed next):
I Coevolution of body and brain.
I Emergence of new challenges through competitive processes (environment,

adversaries).

I However, actual transitions have not been discovered in computation yet.


