Open-ended Discovery of Complex Behavior
» Neuroevolution can find successful behavior for given tasks.

» Biologicy is open-ended: Operates continuously, without specific goals.
» Elements of open-endedness could lead more powerful neuroevolution:
Neutrality with weak selection

Enhanced exploration through extinction events

Evolvable representations

Expressive (not just indirect) encodings.

Major transitions in complexity

Co-evolution of body and brain

Co-evolution of brain and static environments.

Co-evolution of brain and dynamic environments.

Open-ended Neuroevolution
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1. Standard approach to computational evolution Biological Approach

» Biological evolution involves large populations and weak selection.
Many mutations are neutral and do not affect fitness.
Diversity stays in the population even when not immediately beneficial.
Biology has a lot of patience :-)
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» Evolutionary computation often uses strong selection for fast optimization.

» Small populations and engineered operations lead to quick convergence.
» This approach works for well-defined problems but may miss solutions.

» Engineers are highly impatient!
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Opportunity with Increased Computational Power

» Impatience because of limited computational power.

» With billionfold increases, new approaches are possible.
> Large populations, neutral mutations, deep time, large simulations.
> Develop foundation models for neuroevolution?

» Computational scaleup led to deep learning and GenAl; similar advances
possible for neuroevolution as well.
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Computational Experiments on Extinctions

» Extinction events can be studied in an abstract setting:

» Individuals encoded with a 2D location/niche and evolvability.
> Evolvability determines how likely the offspring is to occupy another niche
through mutation.

» Starting from the center, population evolves until all niches are filled.

» Further evolution only through drift; evolvability stagnates.

(a) Control - 2,000 Gens.

(b) Control - 15,000 Gens.

Lighter=more evolvable

2. Extinction Events in Biological Evolution

» Five large-scale extinction events have altered the course of evolution.

» Example: The Cretaceous-Paleogene event displaced dinosaurs with
mammals.

» Question: Are extinction events accidents or do they serve a role in
evolution?

» Extinctions may reset evolution, favoring higher evolvability and
complexity.

Evolvability Through Extinctions

» Extinction events remove most of the population, leaving a few individuals.
» The ones with higher evolvability fill more niches.
» Repeated extinction thus favors individuals with higher evolvability.

» Extinction events accelerate evolution!

Soon after extinction Later after extinction



Extinction in the Bipedal Walker Domain Extinction in the Bipedal Walker Domain

» Extinction events lead to faster rebounds.

» Extinction events can affect behavioral evolution as well. o o .
. » After each extinction, the population fills more niches than before.
> E.g. Bipedal walker: L . . . .
» Extinction accelerates evolution and increases novelty in solutions.
» Input: Whether each foot touches the ground.
» Qutput: motors on left and right knee and hip.
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Conclusion on Extinction Events 3. Evolvable Representations

» Extinction events have the potential to reset evolution and favor more

evolvable solutions. » Evolutionary algorithms often focus on creating and maintaining diversity

in genotypic and phenotypic space (quantity)
» Evolvability makes it possible to create larger changes faster (quality).

» The main idea is to adapt the genotype-phenotype mapping.
» Combining extinction events with large populations and weak selection » Indirect encodings are crucial to supporting evolvability.

could accelerate openended evolution in neuroevolution systems.

» Even at smaller scales, extinction events may be beneficial for long-term
innovation.

» Both of these approaches can lead to better high-fitness solutions.
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GRNs Can Support Evolvability Constructing neural networks from GRNs

> Genetic Regulatory Networks (GRNSs) are indirect encodings that evolve
over time.

» Each rule has a regulatory(antecedent) and transcription(product) region.
> Variables are regulatory factors (proteins) with tolerance (similarity)

» When existing products match antecedents within tolerance;

1. Products are generated as nodes.
2. Antecedent nodes are connected to product nodes.

» GRNs encode rules for building neural networks.
» Products in the GRN create nodes and connections between them.

» Evolvability emerges through continuous mutations in the rules.
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GRN — Neural Net Example Test Domain: Nothello

» Starting with G and no B, B is created (as a node)

> With input from G (not shown).
» With an inhibitory link B—B.

» B is close to C: H and D are created (as nodes)

> With connections from B.

> H is close to G: connection from H to B.

» D is close to C: connection from D to itself.

» D is close to C: connection from D to H (not shown).
» D creates K, the output node

> With a connection from D.

> GRN-based neuroevolution was tested in Nothello (simplified Othello):
> Still: Take turns to place pieces (black/white)
> Still: Sandwiched pieces are flipped.
» But: Smaller diamond-shaped board.
> But: Player with the fewest pieces wins.

» Simpler, faster, but still challenging.
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Performance in the Nothello Domain

» Neural networks evolved as heuristic evaluators.

» Coevolution process: Each network evaluated against others in the
population.

» The GRN-based indirect encoding evolved better strategies faster than
evolution of feature weights and NEAT.
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Network Motifs with High Evolvability

» The GRN-based approach discovers a wider variety of network motifs.

» Recurrent motifs are common in GRN networks, supporting robust
evolvability.

» This leads to more complex behaviors and open-ended discovery.
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Performance Arising from Evolvability

In coevolution, the fitness function changes continuously.
High evolvability is thus a major advantage in coevolution.

Evolvability is measured as the average fitness of mutated offspring.
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The GRN-based encoding results in more robust mutations compared to
NEAT.
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Conclusion on Evolvable Representations

» Evolvable representations support long-term evolution and adaptation to
changing environments.

» Indirect encodings like GRNs enable evolvability through soft, continuous
mutations.

» Evolvability is especially useful in coevolution where the fitness function
changes continuously.

» Evolvability is thus essential for open-ended discovery of increasingly
complex solutions.
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4. Expressive Encodings Overview Example of Miracle Jumps: GP

» Expressive encodings allow for large jumps in the search space.
» Genetic programming (GP) can create miracle jumps through conditionals

» In particular, small changes in the genotype can result in large changes in -
or specific segments.

the phenotype (miracle jumps).

. . . . . . > -
» Standard evolutionary algorithms with direct encodings cannot easily make E.g. two GP parent phenotypes are all-Os.

such jumps. > But there's a 25% chance that their crossover is all-1s.

» Expressive encodings are highly evolvable and open-ended.

. . Parent 1 Parent 2 Child (25% chance)
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Example of Miracle Jumps: NE Power of Expressive Encodings

Neuroevolution (NE) can also produce miracle jumps. ] ] ]
» In a standard crossover, offspring phenotype is somewhere in between the

E.g. neural networks evolved to produce a bit string. parent phenotypes

The two parents differ only in the weights of the second layer.

With uniform crossover, 25% chance of jumping from all-Os to all-1s.

vVvyYVvyVvyy

Direct encoding cannot achieve such jumps as effectively.
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Power of Expressive Encodings

» With Expressive Encodings, the offspring phenotypes can be anywhere in
the space.

» Even with a simple crossover, recombination samples from an arbitrary
distribution of child phenotypes.
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5. Major Transitions

» Open-ended discovery may require major transitions in complexity.
» Biological evolution progressed through several transitions, e.g.:

» From self-replicating molecules to chromosomes.
> From single cells to multicellular organisms.
> Formation of eusocial societies and language.

» Each transition results in more complex individuals and cooperative roles.
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Power of Expressive Encodings

» Expressive encodings outperform direct encodings theoretically and
experimentally (Deterministic Flipping, Random Flipping, Large Block
Assembly).

> Even with flat landscape, break through eventually.

» Much of the genetic structure is shared, similar to biological systems.

» A good idea to use GP or NN as a representation; best chance for
open-ended evolution!
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Challenges in Establishing Major Transitions

» Not fully understood in biology.
» Key questions:
» How do individuals specialize and lose the ability to reproduce
independently?
> Are there multiple levels of selection or just one?
» Computational studies can help, but simulating major transitions in
behavior is challenging.
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Mechanisms for Major Transitions

» Ingredients for major transitions exist in computational experiments:

> Evolving cooperative structures (e.g., Hierarchical ESP).
» Agents communicating and coordinating to achieve shared goals.
Also (to be discussed next):
> Coevolution of body and brain.
> Emergence of new challenges through competitive processes (environment,
adversaries).

» However, actual transitions have not been discovered in computation yet.
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