Open-ended Neuroevolution

Risto Miikkulainen

October 23, 2024

1. Standard approach to computational evolution

- ▶ Evolutionary computation often uses strong selection for fast optimization.
- Small populations and engineered operations lead to quick convergence.
- ▶ This approach works for well-defined problems but may miss solutions.
- Engineers are highly impatient!

Open-ended Discovery of Complex Behavior

- ▶ Neuroevolution can find successful behavior for given tasks.
- ▶ Biologicy is open-ended: Operates continuously, without specific goals.
- ▶ Elements of open-endedness could lead more powerful neuroevolution:
 - 1. Neutrality with weak selection
 - 2. Enhanced exploration through extinction events
 - 3. Evolvable representations
 - 4. Expressive (not just indirect) encodings.
 - 5. Major transitions in complexity
 - 6. Co-evolution of body and brain
 - 7. Co-evolution of brain and static environments.
 - 8. Co-evolution of brain and dynamic environments.

Biological Approach

- ▶ Biological evolution involves large populations and weak selection.
- Many mutations are neutral and do not affect fitness.
- Diversity stays in the population even when not immediately beneficial.
- Biology has a lot of patience :-)

Opportunity with Increased Computational Power

- ▶ Impatience because of limited computational power.
- ▶ With billionfold increases, new approaches are possible.
 - Large populations, neutral mutations, deep time, large simulations.
 - Develop foundation models for neuroevolution?
- Computational scaleup led to deep learning and GenAI; similar advances possible for neuroevolution as well.

2. Extinction Events in Biological Evolution

- ▶ Five large-scale extinction events have altered the course of evolution.
- Example: The Cretaceous-Paleogene event displaced dinosaurs with mammals.
- Question: Are extinction events accidents or do they serve a role in evolution?
- Extinctions may reset evolution, favoring higher evolvability and complexity.

Computational Experiments on Extinctions

- Extinction events can be studied in an abstract setting:
 - ► Individuals encoded with a 2D location/niche and evolvability.
 - Evolvability determines how likely the offspring is to occupy another niche through mutation.
- ▶ Starting from the center, population evolves until all niches are filled.
- Further evolution only through drift; evolvability stagnates.

(a) Control - 2,000 Gens.

(b) Control - 15,000 Gens.

Lighter=more evolvable

Evolvability Through Extinctions

- Extinction events remove most of the population, leaving a few individuals.
- The ones with higher evolvability fill more niches.
- Repeated extinction thus favors individuals with higher evolvability.
- Extinction events accelerate evolution!

Soon after extinction

Later after extinction

Extinction in the Bipedal Walker Domain

- Extinction events can affect behavioral evolution as well.
- E.g. Bipedal walker:
- Input: Whether each foot touches the ground.
- Output: motors on left and right knee and hip.
- ► Nice: Where does it end up?

Conclusion on Extinction Events

- Extinction events have the potential to reset evolution and favor more evolvable solutions.
- ▶ Even at smaller scales, extinction events may be beneficial for long-term
- ► Combining extinction events with large populations and weak selection could accelerate openended evolution in neuroevolution systems.

Extinction in the Bipedal Walker Domain

- Extinction events lead to faster rebounds.
- After each extinction, the population fills more niches than before.
- Extinction accelerates evolution and increases novelty in solutions.

3. Evolvable Representations

- Evolutionary algorithms often focus on creating and maintaining diversity in genotypic and phenotypic space (quantity)
- Evolvability makes it possible to create larger changes faster (quality).
 - ► The main idea is to adapt the genotype-phenotype mapping.
 - Indirect encodings are crucial to supporting evolvability.
- ▶ Both of these approaches can lead to better high-fitness solutions.

GRNs Can Support Evolvability

- Genetic Regulatory Networks (GRNs) are indirect encodings that evolve over time.
- ► GRNs encode rules for building neural networks.
- ▶ Products in the GRN create nodes and connections between them.
- Evolvability emerges through continuous mutations in the rules.

Constructing neural networks from GRNs

- ► Each rule has a regulatory(antecedent) and transcription(product) region.
- ► Variables are regulatory factors (proteins) with tolerance (similarity)
- ▶ When existing products match antecedents within tolerance;
 - 1. Products are generated as nodes.
 - 2. Antecedent nodes are connected to product nodes.

$\mathsf{GRN} \to \mathsf{Neural}\ \mathsf{Net}\ \mathsf{Example}$

- ► Starting with G and no B, B is created (as a node)
 - ▶ With input from G (not shown).
 - ▶ With an inhibitory link $B \rightarrow B$.
- ▶ B is close to C: H and D are created (as nodes)
 - With connections from B.
 - ▶ H is close to G: connection from H to B.
 - D is close to C: connection from D to itself.
 - D is close to C: connection from D to H (not shown).
- D creates K, the output node
 - With a connection from D.

Test Domain: Nothello

- ► GRN-based neuroevolution was tested in Nothello (simplified Othello):
 - ► Still: Take turns to place pieces (black/white)
 - Still: Sandwiched pieces are flipped.
 - But: Smaller diamond-shaped board.
 - But: Player with the fewest pieces wins.
- ► Simpler, faster, but still challenging.

Performance in the Nothello Domain

- Neural networks evolved as heuristic evaluators.
- Coevolution process: Each network evaluated against others in the population.
- ▶ The GRN-based indirect encoding evolved better strategies faster than evolution of feature weights and NEAT.

Network Motifs with High Evolvability

- ► The GRN-based approach discovers a wider variety of network motifs.
- Recurrent motifs are common in GRN networks, supporting robust evolvability.
- ▶ This leads to more complex behaviors and open-ended discovery.

Performance Arising from Evolvability

- ▶ In coevolution, the fitness function changes continuously.
- ▶ High evolvability is thus a major advantage in coevolution.
- Evolvability is measured as the average fitness of mutated offspring.
- The GRN-based encoding results in more robust mutations compared to NEAT.

Conclusion on Evolvable Representations

- Evolvable representations support long-term evolution and adaptation to changing environments.
- Indirect encodings like GRNs enable evolvability through soft, continuous mutations.
- Evolvability is especially useful in coevolution where the fitness function changes continuously.
- Evolvability is thus essential for open-ended discovery of increasingly complex solutions.

4. Expressive Encodings Overview

- Expressive encodings allow for large jumps in the search space.
- ▶ In particular, small changes in the genotype can result in large changes in the phenotype (miracle jumps).
- Standard evolutionary algorithms with direct encodings cannot easily make such jumps.
- Expressive encodings are highly evolvable and open-ended.

Example of Miracle Jumps: NE

- ▶ Neuroevolution (NE) can also produce miracle jumps.
- E.g. neural networks evolved to produce a bit string.
- ▶ The two parents differ only in the weights of the second layer.
- ▶ With uniform crossover, 25% chance of jumping from all-0s to all-1s.
- Direct encoding cannot achieve such jumps as effectively.

Example of Miracle Jumps: GP

- Genetic programming (GP) can create miracle jumps through conditionals or specific segments.
- ► E.g. two GP parent phenotypes are all-0s.
- ▶ But there's a 25% chance that their crossover is all-1s.

Power of Expressive Encodings

▶ In a standard crossover, offspring phenotype is somewhere in between the parent phenotypes.

Power of Expressive Encodings

- With Expressive Encodings, the offspring phenotypes can be anywhere in the space.
- Even with a simple crossover, recombination samples from an arbitrary distribution of child phenotypes.

Power of Expressive Encodings

- Expressive encodings outperform direct encodings theoretically and experimentally (Deterministic Flipping, Random Flipping, Large Block Assembly).
 - Even with flat landscape, break through eventually.
- ▶ Much of the genetic structure is shared, similar to biological systems.
- A good idea to use GP or NN as a representation; best chance for open-ended evolution!

5. Major Transitions

- Open-ended discovery may require major transitions in complexity.
- ▶ Biological evolution progressed through several transitions, e.g.:
 - From self-replicating molecules to chromosomes.
 - From single cells to multicellular organisms.
 - Formation of eusocial societies and language.
- ▶ Each transition results in more complex individuals and cooperative roles.

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

Challenges in Establishing Major Transitions

- Not fully understood in biology.
- Key questions:
 - How do individuals specialize and lose the ability to reproduce independently?
 - ► Are there multiple levels of selection or just one?
- ► Computational studies can help, but simulating major transitions in behavior is challenging.

EVOLUTIONARY SUBSTRATE

Mechanisms for Major Transitions

- ▶ Ingredients for major transitions exist in computational experiments:

 - Evolving cooperative structures (e.g., Hierarchical ESP).
 Agents communicating and coordinating to achieve shared goals.

Also (to be discussed next):

- Coevolution of body and brain.

 Emergence of new challenges through competitive processes (environment,
- ▶ However, actual transitions have not been discovered in computation yet.

