6. Body-Brain Coevolution

- ▶ So far, weights and structure of neural networks are evolved for a task.
- Optimize the policy for a given physical structure.
- Evolutionary algorithms can optimize both body and brain.
- ▶ Physical body could be a substrate for open-ended evolution.

Joint Evolution of Policy and Structure

- ▶ The agent's environment, including body structure, is parameterized.
- ► Both the agent's policy (weights) and the body structure (parameters) evolved.
- ► Coevolution allows discovering optimal body design for the task.
- ▶ The policy is optimized for the body, making it believable.

Rewarding Difficult Design Choices

- Agents are rewarded for trying more difficult designs.
- ► Example: Carrying the same payload using smaller legs might be rewarded more
- Example: Balanced walk with longer legs may be rewarded more.
- Such designs can serve as stepping stones for better agents.

Optimizing Body for a Task

- ▶ The agent evolves a body structure better suited for specific tasks.
 - ► A longer and heavier rear leg helps maintain balance and get over obstacles and gaps.
- The policy coevolves with the body, resulting in natural behavior for the body.

Optimizing Under a Constraint

- ▶ What if evolved to optimize material use?
 - ► Smallest legs that still allow running fast.

Combining Constraints

- Lightest legs while getting over obstacles.
- ▶ Still longer rear leg, but as short as feasible.

Removing Design Constraints

- ▶ What happens if design constraints are removed?
- Extreme designs may evolve that utilize loopholes.
- Example: A very tall agent falls over and lands near the exit.
- ▶ Design constraints and performance goals need to be balanced.

7. Co-Evolving Agents and Static Environments

- ▶ In addition to the body, the environment can also change
- ► E.g. the track for the bipedal walker.
- ► Co-evolution of problems and solutions.
- Open-ended evolution may result.

POET Algorithm Overview

- POET (Paired Open-Ended Trailblazer) is designed for co-evolving agents and environments.
- ▶ It generates new environments and agents, optimizing their performance over time.
- ► Three key tasks in each iteration:
 - Environment generation.
 - Agent optimization.
 - Agent transfer between environments.

Environment Generation in Enhanced POET

- ightharpoonup Use a CPPN to generate y for each x.
- ► More varied and natural environments.

Environment Generation in POET

- ▶ Environments are generated by mutating parameters of existing ones.
- Parameters include stump height, gap width, stair height, number of stairs, and surface roughness.
- ▶ Only environments that provide suitable challenges and novelty are added.

Agent Optimization in POET

- Agents optimized through neuroevolution (ES).
- The goal is to maximize the agent's performance in traversing the environment.
- Agent optimization is independent, which facilitates parallel processing.

Agent Transfer in POET

- Agents are transferred between environments to foster adaptation.
- ▶ Successful strategies from one environment may help in another.
- ► Transfer helps agents escape local optima.
- Diversity important: Different agents may perform well in different environments.

POET vs. ES

▶ POET generates novel solutions that ES alone cannot achieve.

POET vs. Curricular Learning

- ► Curricular learning set up with gradually more challenging environments.
- ▶ POET finds solutions to much more complex environments.
 - ► Transfers from other environments form stepping stones.
 - ▶ POET utilizes stepping stones; curricular cannot.

POET Results

► Agents successfully navigate complex terrain.

POET Results

Agents successfully navigate complex terrain.

POET Performance

- ▶ Quantitatively, POET can solve harder problems.
- ► Enhanced POET can keep discovery going longer.

Coevolution of Agent and Dynamic Environments

- ▶ A quadruped chaser robot is coevolved with an escapee.
- ▶ As the chaser evolves to catch, the escapee evolves to evade.
- ▶ This continuous feedback loop enhances the capabilities of both agents.
- ► A competitive coevolution process.

Encouraging Behavioral Diversity

- ▶ Diverse strategies are encouraged through different d_{min} (i.e. catch) thresholds for escapee robots.
- Smaller thresholds encourage quick dodges, while larger ones promote broader evasive movements.
- ▶ This diversity allows for the development of robust chaser strategies.

Baseline Comparisons

- ► Three baseline methods emulate escapee movement:
 - ► Cone: chasing forward
 - Circular: chasing random moves
 - Zigzag: chasing a zigzagging escapee
- ▶ Evolve against each one and compare to coevolution.

Is Neuroevolution Open-ended?

- ▶ Ingredients for open-ended neuroevolution already exist.
 - Large populations, weak selection, and neutral mutations can be scaled up with computational power.
 - Extinction events, evolvable representations can promote evolvability.
 - Expressive encodings could enable continuous exploration of more complex
 - Coevolution of agents and environments (body, task, adversaries) presents new challenges for evolution to continue.

Coevolution Performance vs. Baseline

- Escapee moves with constant speed in a sine pattern (with varying amplitude and frequency).
- ► Coevolved agents catch it early (indicated by a dot).
- ▶ Baseline policies struggle to catch, and often the robot falls (x)

Complexity Can Be Created, but Is It Open-Ended?

- ▶ The process runs out of steam eventually.
 - E.g. not seeing major transitions.
- What is still missing?
 - E.g. do agents need to modify the environment with permanent artifacts?
- ▶ Why do even we care whether complexity is open-ended?

Ultimate Goal: General Intelligence

- ▶ Better understanding of biological evolution and the origins of intelligence.
- ► The ability to adapt indefinitely is a key feature of artificial general intelligence.
- ▶ We need open-ended neuroevolution to develop artificial systems at the same level.

