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Forming Decision Strategies

» Traditionally designed by hand
» Too complex: Hard to anticipate all scenarios
» Too inflexible: Cannot adapt on-line

» Need to discover through exploration
» Based on sparse reinforcement
» Associate actions with outcomes

Win!

Why Neuroevolution?

» Neural nets powerful in many statistical domains

» E.g. control, pattern recognition, prediction, decision making
» Where no good theory of the domain exists

» Good supervised training algorithms exist
» Learn a nonlinear function that matches the examples

» What if correct outputs are not known?

Standard Reinforcement Learning
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» AHC, Q-learning, Temporal Differences
» Generate targets through prediction errors
» Learn when successive predictions differ

» Predictions represented as a value function

» Values of alternatives at each state
» Difficult with large/continuous state and action spaces
» Difficult with hidden states

Sequential Decision Tasks
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» POMDP: Sequence of decisions creates a sequence of states
» No targets: Performance evaluated after several decisions
» Many important real-world domains:

> Robot/vehicle/traffic control

» Computer/manufacturing/process optimization

» Game playing

Neuroevolution (NE) Reinforcement Learning

‘ Sensors H Neural Net H Decision ‘

» NE = constructing neural networks with evolutionary algorithms
» Direct nonlinear mapping from sensors to actions
» Large/continuous states and actions easy
> Generalization in neural networks
» Hidden states disambiguated through memory
> Recurrency in neural networks %




How well does it work?
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» Difficult RL benchmark: Non-Markov Pole Balancing
» NE 3 orders of magnitude faster than standard RL28

>

NE can solve harder problems

Neuroevolution Decision Strategies
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Sensors

Input variables describe the state observed through sensors

Output variables describe actions
Network between input and output:
> Nonlinear hidden nodes
» Weighted connections
Execution:

» Numerical activation of input
> Performs a nonlinear mapping
> Memory in recurrent connections (POMDP!)

Role of Neuroevolution
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» Powerful method for sequential decision tasks '6:28:58.111
> Optimizing existing tasks
> Discovering novel solutions
» Making new applications possible

» Also may be useful in supervised tasks 5365
» Especially when network topology important
» A unique model of biological adaptation/development 60.75.106

Conventional Neuroevolution (CNE) |

» Evolving connection weights in a population of networks 5376:111,112
» Chromosomes are strings of connection weights (bits or real)

» E.g. 10010110101100101111001
» Usually fully connected, fixed topology
> Initially random
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Basic neuroevolution techniques
Advanced techniques
» E.g. combining learning and evolution; novelty search
Extensions to applications
Application examples
> Control, Robotics, Artificial Life, Games

Conventional Neuroevolution I
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Neural Nefwork

Parallel search for a solution network
> Each NN evaluated in the task
» Good NN reproduce through crossover, mutation
» Bad thrown away
Natural mapping between genotype and phenotype
» GA and NN are a good match!



Problems with CNE

» Evolution converges the population (as usual with EAs)

> Diversity is lost; progress stagnates
» Competing conventions

» Different, incompatible encodings for the same solution
» Too many parameters to be optimized simultaneously

» Thousands of weight values at once

Evolving Partial Networks I
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Neural Network

» Extend the idea to evolving connection weights
» E.g. Cooperative Synapse NeuroEvolution (CoSyNE28)
» Connection weights in separate subpopulations

» Networks formed by combining neurons with the same index

» Networks mutated and recombined; indices permutated

» Sustains diversity, results in efficient search

Advanced NE 1: Evolving Partial Networks |

> Evolving individual neurons to cooperate in networks 5765
» E.g. Enforced Sub-Populations (ESP23)

» Each (hidden) neuron in a separate subpopulation
» Fully connected; weights of each neuron evolved
» Populations learn compatible subtasks

Advanced NE 2: Evolutionary Strategies

> Evolving complete networks with ES (CMA-ES®)
» Small populations, no crossover
> Instead, intelligent mutations

» Adapt covariance matrix of mutation distribution
» Take into account correlations between weights

» Smaller space, less convergence, fewer conventions

Evolving Neurons with ESP

Generation 1 Generation 20

Generation 50 " Generation 100
» Evolution encourages diversity automatically
» Good networks require different kinds of neurons

» Evolution discourages competing conventions
» Neurons optimized for compatible roles
» Large search space divided into subtasks
» Optimize compatible neurons

Advanced NE 3: Evolving Topologies

» Optimizing connection weights and network topology 1621113
» E.g. Neuroevolution of Augmenting Topologies (NEAT 86:89)
» Based on Complexification
» Of networks:
> Mutations to add nodes and connections
» Of behavior:
> Elaborates on earlier behaviors



Why Complexification?

Minimal Starting Networks
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Generations pass...

Population of Diverse Topologies
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» Problem with NE: Search space is too large

» Complexification keeps the search tractable
» Start simple, add more sophistication

» Incremental construction of intelligent agents

Properties of Indirect Encodings |

» Smaller search space
» Avoids competing conventions

» Describes classes of networks
efficiently

» Modularity, reuse of structures

> Useful for evolving morphology

> Recurrency symbol in CE: XOR — parity
> Repetition with variation in CPPNs

Advanced NE 4: Indirect Encodings |
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» Instructions for constructing the network evolved

> Instead of specifying each unit and connection16:52.83,113
» E.g. Cellular Encoding (CE®?)
» Grammar tree describes construction

» Sequential and parallel cell division

» Changing thresholds, weights

> A “developmental” process that results in a network

Properties of Indirect Encodings Il

» Not fully explored (yet)
> See e.g. GDS track at GECCO

» Promising current work

> More general L-systems;
developmental codings;
embryogeny %

» Scaling up spatial coding '3??

>~ Genetic Regulatory Networks”"

> Evolution of symmetries 10

Indirect Encodings Il
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» Encode the networks as spatial patterns

» E.g. Hypercube-based NEAT (HyperNEAT '2) ;D i

» Evolve a neural petwork (CPPN) '@
to generate spatial patterns L

» 2D CPPN: (x,y) input — grayscale output ()

4D CPPN: (x1, 1, X2, ) input — w output »—a.(k—a)_»—v

» Connectivity and weights can be evolved indirectly
» Works with very large networks (millions of connections)

How Do the NE Methods Compare?

Poles T Method Evals
Wo CE | (840,000;
CNE 87,
ESP 26,342
NEAT ,929
CMA-ES ,061
CoSyNE 3.416

Two poles, no velocities, damping fitness 28

» Advanced methods better than CNE
» Advanced methods still under development
» Indirect encodings future work



Further NE Techniques Combining Learning and Evolution Lamarckian Evolution
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» Incremental and multiobjective evolution?578.98,112
» Utilizing population culture550.94

> Utilizing evaluation history*”

» Evolving NN ensembles and modules 36:46:64.72,108

» Evolving transfer functions and learning rules®74:93 Enemy Radars - On  Object Rangefners STS,",;Y vomy Redars 00 " Objet Rangeners  Ency !
ensors Sensors
» Combining learning and evolution . ) . a0
» Evolving for novelty » Good learning algorithms exist for NN > Lamarckian evolution is possible’-
> Why not use them as well? > Coding weight changes back to chromosome
» Evolution provides structure and initial weights » Difficult to make it work
» Fine tune the weights by learning » Diversity reduced; progress stagnates
Baldwin Effect Where to Get Learning Targets? Evolving Novelty
motoroupu sbwety mput > From a related task®’

With I > Useful internal representations
ith lea

Fitness

» Evolve the targets®
> Useful training situations

Without learning

» From Q-learning equations '%°

Genotype
> Learning can guide Darwinian evolution as well 43032 e ~ When evolving a value funcfion
» Makes fitness evaluations more accurate IS —— > Utilize Hebbian learning 1&471¢"
> With learning, more likely to find the optimum if close 'TE]; » Correlations of activity + Motivated by h fitness functi
» Can select between good and bad individuals better =% > From the population®0:%4 otivated by humans as Hiness functions

» E.g. picbreeder.com, endlessforms.com®&®

» Lamarckian not necessary
» CPPNs evolved; Human users select parents

> Social learning

— ;
e s » From humans > No specific goal

» E.g. expert players, drivers > Interesting solutions preferred
» Similar to biological evolution?




Novelty Search

» Reward maximally different solutions

> Can be a secondary, diversity objective®
> Or, even as the only objective3%41

» To be different, need to capture structure
> Problem solving as a side effect
» Potential for innovation

> Needs to be understood better

Applications to Control

Novelty Search Demo

» Pole-balancing benchmark

> Originates from the 1960s

> Original 1-pole version too easy

> Several extensions: acrobat, jointed, 2-pole, particle chasing®*
» Good surrogate for other control tasks

» Vehicles and other physical devices
> Process control %4

Fitness Best

Novelty Best

» Fitness-based evolution is rigid
» Requires gradual progress

> Novelty-based evolution is more innovative, natural
» Allows building on deceptive solutions

> (Demo available at eplex.cs.ucf.edu/noveltysearch)

Controlling a Finless Rocket

Extending NE to Applications

Task: Stabilize a finless version of the
Interorbital Systems RSX-2 sounding
rocket?®
» Scientific measurements in the
upper atmosphere
> 4 liquid-fueled engines with
variable thrust
» Without fins will fly much higher
for same amount of fuel

» Control

> Robotics

» Artificial life
» Gaming

Issues:
» Facilitating robust transfer from simulation27-9°
» Utilizing problem symmetry and hierarchy 38102103
» Utilizing coevolution?391
> Evolving multimodal behavior77-78:108
» Evolving teams of agents®88.114
» Making evolution run in real-time88

Rocket Stability

7 /

(a) Fins: stable (b) Finless: unstable




Active Rocket Guidance Simulation Environment: JSBSim Rocket Guidance Network

yaw Q)
rolt ()
» Used on large scale launch vehicles » General rocket simulator pitch rate
(Saturn, Titan) » Models complex interaction between saw e (IR \ ot s
» Typically based on classical linear airframe, propulsion, aerodynamics, rollre (5 "
feedback control and atmosphere a()

» High level of domain knowledge required
» Expensive, heavy

» Used by I0S in testing their rocket designs B =
> Accurate geometric model of the RSX-2 irotte2 (3 ; 1 E

altitude

volecity
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Applications to Robotics

» Controlling a robot arm®
» Compensates for an inop motor
» Robot walking 3482102
» Various physical platforms
» Mobile robots '':17:61.85
> Transfers from simulation to physical robots
> Evolution possible on physical robots

Versatile, Robust Gaits

Different gaits Obstacle field

» Different gaits on flat ground

» Pronk, pace, bound, trot

» Changes gait to get over obstacles
> (DEMO available at nn.cs.utexas.edu)

Multilegged Walking

» Navigate rugged terrain better than wheeled robots
» Controller design is more challenging
» Leg coordination, robustness, stability, fault-tolerance, ...

» Hand-design is generally difficult and brittle
» Large design space often makes evolution ineffective

Innovative, Effective Solutions

&1 i | "”

Evolved Handcoded

» Asymmetric gait on inclines
» One leg pushes up, others forward
» Hard to design by hand

» (DEMO available at nn.cs.utexas.edu)

ENSO: Symmetry Evolution Approach

» Symmetry evolution approach 100,102,103
» A neural network controls each leg
» Connections between controllers evolved
through symmetry breaking
> Connections within individual controllers evolved
through neuroevolution

Transfer to a Physical Robot |

Simulated Real
> Built at Hod Lipson’s lab (Cornell U.)

» Standard motors, battery, controller board
» Custom 3D-printed legs, attachments
> Simulation modified to match

» General, robust transfer®

> Noise to actuators during simulation
» Generalizes to different surfaces, motor speeds
» (DEMO available at nn.cs.utexas.edu)




Transfer to a Physical Robot Il

Evolved Handcoded

> Evolved a solution for three-legged walking!

» (DEMO available at nn.cs.utexas.edu)

Syllabus

Applications to Artificial Life

» Constructed by hand; body and brain evolved together

» Gaining insight into neural structure
» E.g. evolving a command neuron?377%
» Understanding animal behaviors
> Signaling, herding, hunting..,6267.69.7097.106.107,114

Encapsulation

Body-Brain Coevolution

Body

> Evolved Virtual Creatures #243:44.84

» Body: Blocks, muscles, joints, sensors (Lessin et al. Alife'14 )
» Brain: A neural network (with general nodes)
» Evolved together in a physical simulation

» Syllabus, Encapsulation, Pandemodium

Pandemonium

» Once evolved, a trigger node is added

» Conflicting behaviors: Highest trigger wins



Evolving Fight-or-Flight Behavior Turn to Light Move to light

— T > First level of complexity > First level of complexity (Sims 1994)
» Selecting between alternative primitives » Selecting between alternative primitives
» Step-by-step construction of complex behavior
» Primitives and three levels of complexity
» DEMO (available at nn.cs.utexas.edu)
Strike Attack Turn from Light

TURN TO [FORWARD)|

[ RIGHT | LEFT
STRIEE |

MOVETO |

STRIKE TURN TO [TURN FROM]

T mcuTJ

» Alternative behavior primitive » Second level of complexity (beyond Sims and others) » Alternative first-level behavior



Retreat
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» Alternative second-level behavior
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Coevolution of Behavior

Prodator Prodator

e

Natural predators and prey Formalization of behavior

» Complex cooperation observed in pursuit and evasion

» Motivated by biology, esp. hyenas vs. zebras (kay Holekamp, Msu)
> Largely innate, possible to see behaviors and their evolution

» Such behaviors evolve together, in coevolutionary environment
> Simultaneous competitive and cooperative coevolution®7:7°

Fight or Flight
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» Third level of complexity

Experimental Setup

» Toroidal grid world
» Predators, prey move with same speed in 4 directions
» No direct communication between team members
» Communication still possible through stigmergy
» Does a coevolutionary arms race result?
» DEMO (available at nn.cs.utexas.edu)

Insight: Body/Brain Coevolution
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» Evolving body and brain together poses strong constraints
» Behavior appears believable
» Worked well also in BotPrize (Turing test for game bots)

» What about constraints from the environment?

Predator-Prey Arms Race |

50-75: Single predator catches prey 75-100: Prey evades by circling

100-150: Two predators cooperate 150-180: Prey baits and escapes



Predator-Prey Arms Race Il

180-200: All predators cooperate 200-250: Predators herd two prey

Complex behaviors don’t evolve in a vacuum
> Result from coevolutionary arms race
» Embedded in a changing environment

250-300: Prey evade by scattering

Applications to Games
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» Good research platform5!

> Controlled domains, clear performance, safe

» Economically important; training games possible
» Board games: beyond limits of search

» Evaluation functions in checkers, chess®19:20

> Filtering information in go, othello 5492

> Opponent modeling in poker*®

Open Questions

> Role of communication

> Stigmergy vs. direct communication in hunting "4
> Quorum sensing in e.g. confronting lions
> Origins of communication® (Rawal et al. Alife’14)

> Role of rankings
» Efficient selection when evaluation is costly?
> Role of individual vs. team rewards

» Can lead to general computational insights

Discovering Novel Strategies in Othello

» Players take turns placing pieces

» Each move must flank opponent’s piece
» Surrounded pieces are flipped

> Player with most pieces wins

Bigger Questions

» Gaining insight into cognitive architectures

» Executive, perception, emotion, memory %
(Rajagopalan et al. Alife’14)

» Emergence of language, learning, social structures
» May require overcoming deception

> Through speciation, niching in nature
> Through novelty search in computation?4?

Strategies in Othello

> Positional
» Number of pieces and their positions
» Typical novice strategy
> Mobility
> Number of available moves: force a bad move
> Much more powerful, but counterintuitive
» Discovered in 1970’s in Japan



Evolving Against a Random Player Evolving Against an a-g Program Example game
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» Black’s available moves b2, g2, and g7 each will surrender
a corner
» The network wins by forcing a bad move

Move Number

» Network sees the board, suggests moves by ranking%°

» Networks maximize piece counts throughout the game » lago’s positional strategy destroyed networks at first

» Evolution turned low piece count into an advantage

» A positional strategy emerges » Mobility strategy emerged!
» Achieved 97% winning percentage » Achieved 70% winning percentage
Discovering Novel Strategies Video Games Video Games |l

S L

» Economically and socially important

Neuroevolution discover: I novel . -
o lcorered e stateay novel o us » GOFAI does not work well » Can be used to build “mods” to existing games
S
volution works by tinkering > Embedded, real-time, noisy, multiagent, changing > Adapting characters, assistants, tools
> So does neuroevolution > Adaptation a major component » Can also be used to build new games

> Initial disadvantage turns into novel advantage " _ 3
» Possibly research catalyst for Cl > New genre: Machine Learning game

> Like board games were for GOFAI in the 1980s



Challenge 1: Evolving Multimodal Behavior

» Agents perform many different tasks
» E.g. eat pills, avoid ghosts, eat
powerpills, eat ghosts
> Sometimes clearly separate in time
» Sometimes multiple tasks at once
» How can we evolve them into a single
network?

Evolution-Discovered Task Division

» One module used 95% of the time

> Eat pills, avoid ghosts, chase ghosts
~ Different behaviors with a common base

» A second module 5% of the time
> Luring ghosts near a power pill
> Escaping from tight spaces

» A different multimodal perspective

» Not as obvious, but more powerful

> (DEMO available at nn.cs.utexas.edu)

MM-NEAT: Modular Multiobjective Approach

() Single-module Network (b) Multitask Network (c) Preference Neuron Network

» Evolution discovers modules and when to use them
> Vs. human-designed division with multitasking
» Multiple modules with preference neurons™
> Modules implement different behaviors
> Preference neurons used to choose among them
> Module-mutation adds new modules
» Evolved towards multiple objectives
» Correspond to dimensions of game play
> E.g. pills and ghosts in Ms. Pac-Man

» Cf. (Lietal. Alife'14)%5

Challenge 2: Evolving Humanlike Behavior

» Botprize competition, 2007-2012
> Turing Test for game bots ($10,000 prize)
» Three players in Unreal Tournament 2004:
> Human confederate: tries to win
> Software bot: pretends to be human
> Human judge: tries to tell them apart!

Human-Designed Task Division

» Multitask approach
> One module for threat ghosts
> Another module for edible ghosts
» Works ok, but...
» (DEMO available at nn.cs.utexas.edu)

Evolving an Unreal Bot

>

>

>

>

Evolve effective fighting behavior

» Human-like with resource limitations (speed, accuracy...)
Also scripts & learning from humans (unstuck, wandering...)
2007-2011: bots 25-30% vs. humans 35-80% human
6/2012 best bot better than 50% of the humans
9/2012...7



Success!!!

» In 2012, two teams reach the 50% mark!
» Fascinating challenges remain:

> Judges can still differentiate in seconds

» Judges lay cognitive, high-level traps

» Team competition: collaboration as well
> (DEMO available at nn.cs.utexas.edu)

Real-time NEAT

A New Genre: Machine Learning Games NERO Gameplay

Vi e s

low-fitness
unit

» A parallel, continuous version of NEAT 88

» Individuals created and replaced every n ticks
» Parents selected probabilistically, weighted by fithess
» Long-term evolution equivalent to generational NEAT

» Teams of agents trained to battle each other

> Player trains agents through excercises
» Agents evolve in real time
NEURO EVOLVING ROBOTIC OPERATIVES » Agents and player collaborate in battle

» New genre: Learning is the game3':88

» E.g. NERO > Challenging platform for reinforcement learning
. . . » Real time, open ended, requires discovery
» Goal: to show that machine learning games are viable .
» Professionally produced by Digital Media Collaboratory, UTAustin > Tryitout:
> Developed mostly by volunteer undergraduates > Available for download at http://nerogame.org

> Open source research platform version at
opennero.googlecode.com

NERO Player Actions NERO Training Demo

]

» Player can place items on the field
e.g. static enemies, turrets, walls, rovers, flags

» Sliders specify relative importance of goals
e.g. approach/avoid enemy, cluster/disperse, hit target, avoid fire...

» Networks evolved to control the agents

Avoid, first-person Maze Running
(DEMO available at nn.cs.utexas.edu)



NERO Battle Demo

Aggressive vs. Avoidant

Teams of three

(DEMO available at nn.cs.utexas.edu)

Conclusion

» NE is a powerful technology for sequential decision tasks

> Evolutionary computation and neural nets are a good match
» Lends itself to many extensions
> Powerful in applications

» Easy to adapt to applications

» Control, robotics, optimization

> Artificial life, biology

» Gaming: entertainment, training
> Lots of future work opportunities

» Theory needs to be developed
» Indirect encodings

» Learning and evolution

> Knowledge, interaction, novelty

Numerous Other Applications

>

>

>

>

>

Creating art, music, dance... 10:15:33.81
Theorem proving'4

Time-series prediction®

Computer system optimization2*
Manufacturing optimization2®
Process control optimization 194105
Measuring top quark mass '1°

Etc.
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Evaluation of Applications
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» Neuroevolution strengths

» Can work very fast, even in real-time

» Potential for arms race, discovery

» Effective in continuous, non-Markov domains
» Requires many evaluations

> Requires an interactive domain for feedback

» Best when parallel evaluations possible

> Works with a simulator & transfer to domain
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