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Why Neuroevolution?

I Neural nets powerful in many statistical domains
I E.g. control, pattern recognition, prediction, decision making
I Where no good theory of the domain exists

I Good supervised training algorithms exist
I Learn a nonlinear function that matches the examples

I What if correct outputs are not known?

Sequential Decision Tasks
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I POMDP: Sequence of decisions creates a sequence of states
I No targets: Performance evaluated after several decisions
I Many important real-world domains:

I Robot/vehicle/traffic control
I Computer/manufacturing/process optimization
I Game playing

Forming Decision Strategies

Win!

I Traditionally designed by hand
I Too complex: Hard to anticipate all scenarios
I Too inflexible: Cannot adapt on-line

I Need to discover through exploration
I Based on sparse reinforcement
I Associate actions with outcomes

Standard Reinforcement Learning

Win!

Function
Approximator

Sensors

Value

Decision

I AHC, Q-learning, Temporal Differences
I Generate targets through prediction errors
I Learn when successive predictions differ

I Predictions represented as a value function
I Values of alternatives at each state

I Difficult with large/continuous state and action spaces
I Difficult with hidden states

Neuroevolution (NE) Reinforcement Learning

Neural NetSensors Decision

I NE = constructing neural networks with evolutionary algorithms
I Direct nonlinear mapping from sensors to actions
I Large/continuous states and actions easy

I Generalization in neural networks
I Hidden states disambiguated through memory

I Recurrency in neural networks95



How well does it work?

Poles Method Evals Succ.
One VAPS (500,000) 0%

SARSA 13,562 59%
Q-MLP 11,331

NE 127
Two NE 3,416

I Difficult RL benchmark: Non-Markov Pole Balancing
I NE 3 orders of magnitude faster than standard RL28

I NE can solve harder problems

Role of Neuroevolution
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I Powerful method for sequential decision tasks16,28,58,111

I Optimizing existing tasks
I Discovering novel solutions
I Making new applications possible

I Also may be useful in supervised tasks53,65

I Especially when network topology important
I A unique model of biological adaptation/development 60,75,106

Outline

I Basic neuroevolution techniques
I Advanced techniques

I E.g. combining learning and evolution; novelty search
I Extensions to applications
I Application examples

I Control, Robotics, Artificial Life, Games

Neuroevolution Decision Strategies

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Input variables describe the state observed through sensors
I Output variables describe actions
I Network between input and output:

I Nonlinear hidden nodes
I Weighted connections

I Execution:
I Numerical activation of input
I Performs a nonlinear mapping
I Memory in recurrent connections (POMDP!)

Conventional Neuroevolution (CNE) I

I Evolving connection weights in a population of networks 53,76,111,112

I Chromosomes are strings of connection weights (bits or real)
I E.g. 10010110101100101111001
I Usually fully connected, fixed topology
I Initially random

Conventional Neuroevolution II

I Parallel search for a solution network
I Each NN evaluated in the task
I Good NN reproduce through crossover, mutation
I Bad thrown away

I Natural mapping between genotype and phenotype
I GA and NN are a good match!



Problems with CNE

I Evolution converges the population (as usual with EAs)
I Diversity is lost; progress stagnates

I Competing conventions
I Different, incompatible encodings for the same solution

I Too many parameters to be optimized simultaneously
I Thousands of weight values at once

Advanced NE 1: Evolving Partial Networks I

I Evolving individual neurons to cooperate in networks1,57,65

I E.g. Enforced Sub-Populations (ESP23)
I Each (hidden) neuron in a separate subpopulation
I Fully connected; weights of each neuron evolved
I Populations learn compatible subtasks

Evolving Neurons with ESP
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I Evolution encourages diversity automatically
I Good networks require different kinds of neurons

I Evolution discourages competing conventions
I Neurons optimized for compatible roles

I Large search space divided into subtasks
I Optimize compatible neurons

Evolving Partial Networks II
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I Extend the idea to evolving connection weights

I E.g. Cooperative Synapse NeuroEvolution (CoSyNE28)
I Connection weights in separate subpopulations
I Networks formed by combining neurons with the same index
I Networks mutated and recombined; indices permutated

I Sustains diversity, results in efficient search

Advanced NE 2: Evolutionary Strategies

I Evolving complete networks with ES (CMA-ES35)

I Small populations, no crossover

I Instead, intelligent mutations
I Adapt covariance matrix of mutation distribution
I Take into account correlations between weights

I Smaller space, less convergence, fewer conventions

Advanced NE 3: Evolving Topologies

I Optimizing connection weights and network topology3,16,21,113

I E.g. Neuroevolution of Augmenting Topologies (NEAT86,89)

I Based on Complexification

I Of networks:
I Mutations to add nodes and connections

I Of behavior:
I Elaborates on earlier behaviors



Why Complexification?

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

I Problem with NE: Search space is too large
I Complexification keeps the search tractable

I Start simple, add more sophistication
I Incremental construction of intelligent agents

Advanced NE 4: Indirect Encodings I

I Instructions for constructing the network evolved
I Instead of specifying each unit and connection3,16,52,83,113

I E.g. Cellular Encoding (CE30)
I Grammar tree describes construction

I Sequential and parallel cell division
I Changing thresholds, weights
I A “developmental” process that results in a network

Indirect Encodings II

I Encode the networks as spatial patterns
I E.g. Hypercube-based NEAT (HyperNEAT12)
I Evolve a neural network (CPPN)

to generate spatial patterns
I 2D CPPN: (x, y) input! grayscale output
I 4D CPPN: (x
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) input! w output
I Connectivity and weights can be evolved indirectly
I Works with very large networks (millions of connections)

Properties of Indirect Encodings I

I Smaller search space

I Avoids competing conventions

I Describes classes of networks
efficiently

I Modularity, reuse of structures
I Recurrency symbol in CE: XOR! parity
I Repetition with variation in CPPNs
I Useful for evolving morphology

Properties of Indirect Encodings II

I Not fully explored (yet)
I See e.g. GDS track at GECCO

I Promising current work
I More general L-systems;

developmental codings;
embryogeny90

I Scaling up spatial coding13,22

I Genetic Regulatory Networks71

I Evolution of symmetries103

How Do the NE Methods Compare?

Poles Method Evals
Two CE (840,000)

CNE 87,623
ESP 26,342

NEAT 6,929
CMA-ES 6,061
CoSyNE 3,416

Two poles, no velocities, damping fitness 28

I Advanced methods better than CNE
I Advanced methods still under development
I Indirect encodings future work



Further NE Techniques

I Incremental and multiobjective evolution25,78,98,112

I Utilizing population culture5,50,94

I Utilizing evaluation history47

I Evolving NN ensembles and modules36,46,64,72,108

I Evolving transfer functions and learning rules8,74,93

I Combining learning and evolution
I Evolving for novelty

Combining Learning and Evolution

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Good learning algorithms exist for NN
I Why not use them as well?

I Evolution provides structure and initial weights
I Fine tune the weights by learning

Lamarckian Evolution

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Lamarckian evolution is possible7,30

I Coding weight changes back to chromosome
I Difficult to make it work

I Diversity reduced; progress stagnates

Baldwin Effect
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Genotype

I Learning can guide Darwinian evolution as well4,30,32

I Makes fitness evaluations more accurate
I With learning, more likely to find the optimum if close
I Can select between good and bad individuals better

I Lamarckian not necessary

Where to Get Learning Targets?

Where to Get Learning Targets?

sensory input

predicted

proprioceptive
input

motor output sensory input

F

F

F

F

F

...And Uses Them to Train
Game−Playing Agents

...While Machine Learning System
Captures Example Decisions...

Foolish Human,
Prepare to Die!

0 50 100 150 200 250

0
20

40
60

80
10

0

Generation

A
ve

ra
ge

 S
co

re
 o

n 
T

es
t S

et

Human Plays Games...

• From a related task 53

– Useful internal representations

• Evolve the targets 56

– Useful training situations

• From Q-learning equations 98

– When evolving a value function

• Utilize Hebbian learning 19;76;91

– Correlations of activity

• From the population 44;83

– Social learning

• From humans 7

– E.g. expert players, drivers

29/65

...And Uses Them to Train
Game−Playing Agents

...While Machine Learning System
Captures Example Decisions...

Foolish Human,
Prepare to Die!

0 50 100 150 200 250

0
20

40
60

80
10

0

Generation

A
ve

ra
ge

 S
co

re
 o

n 
T

es
t S

et

Human Plays Games...

I From a related task60

I Useful internal representations

I Evolve the targets63

I Useful training situations

I From Q-learning equations109

I When evolving a value function

I Utilize Hebbian learning18,87,101

I Correlations of activity

I From the population50,94

I Social learning

I From humans7

I E.g. expert players, drivers

Evolving Novelty

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

CPPN = Compositional 
Pattern  
Producing Network 

Mapping 
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An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

46 

CPPN Patterns (Also for brains?) 
From http://picbreeder.org 52,53 

(All are 100% evolved: no retouching) 

47 

CPPN-based Indirect Encoding:  
Hypercube-based NEAT (HyperNEAT)19,60 
• Main insight: 2-D connections isomorphic to 4-D points 

– Nodes situated in 2 spatial dimensions (x,y) 
– Connections expressed with 4 spatial dim. (x1,y1,x2,y2) 

• HyperNEAT extends 2-D CPPNs to 4-D 
– CPPN encodes 4-D patterns (i.e. inside a hypercube) 

• 4-D patterns can express the same regularities as 2d patterns 
• 4-D patterns interpreted as connectvitity patterns 

               CPPN                                      Output                                              CPPN                                          Output 

48 

I Motivated by humans as fitness functions
I E.g. picbreeder.com, endlessforms.com80

I CPPNs evolved; Human users select parents
I No specific goal

I Interesting solutions preferred
I Similar to biological evolution?



Novelty Search

New Insights into Fitness in NE 
• Some behaviors may prohibitive to 

evolve when made objectives 
– (Human intelligence is not a 

traditional objective in nature) 
• Recent research suggests that 

searching for behavioral novelty 
can discover behaviors that fail as 
objectives 
– Novelty search algorithm 35,36 
– Diversity objectives in 

multiobjective NE 44 
• Significant implications for 

research in NE 74 
 

Objective 
World 

Non-objective World 
 

57 

Novelty and Fitness Bipeds 36 

58 

Application Demos 

• Driving and collision warning 
• Video game applications 
• Music 
• Multiagent robot control 

 

59 

Driving and Collision Warning 34 

• Goal: evolve a collision warning system 
– Looking  over  the  driver’s  shoulder 
– Adapting to drivers and conditions 
– Collaboration with Toyota 

60 

I Reward maximally different solutions
I Can be a secondary, diversity objective59

I Or, even as the only objective39,41

I To be different, need to capture structure
I Problem solving as a side effect

I Potential for innovation

I Needs to be understood better

Novelty Search Demo

I Fitness-based evolution is rigid
I Requires gradual progress

I Novelty-based evolution is more innovative, natural
I Allows building on deceptive solutions

I (Demo available at eplex.cs.ucf.edu/noveltysearch)

Extending NE to Applications

I Control
I Robotics
I Artificial life
I Gaming

Issues:
I Facilitating robust transfer from simulation27,99

I Utilizing problem symmetry and hierarchy38,102,103

I Utilizing coevolution73,91

I Evolving multimodal behavior77,78,108

I Evolving teams of agents6,88,114

I Making evolution run in real-time88

Applications to Control

I Pole-balancing benchmark
I Originates from the 1960s
I Original 1-pole version too easy
I Several extensions: acrobat, jointed, 2-pole, particle chasing64

I Good surrogate for other control tasks
I Vehicles and other physical devices
I Process control104

Controlling a Finless Rocket

Task: Stabilize a finless version of the
Interorbital Systems RSX-2 sounding
rocket26

I Scientific measurements in the
upper atmosphere

I 4 liquid-fueled engines with
variable thrust

I Without fins will fly much higher
for same amount of fuel

Rocket Stability

roll

(a) Fins: stable

CG

CP

CG

CP

Thrust

Drag

(b) Finless: unstable

αα

β β

pitch
yaw

Side force

Lift



Active Rocket Guidance

I Used on large scale launch vehicles
(Saturn, Titan)

I Typically based on classical linear
feedback control

I High level of domain knowledge required
I Expensive, heavy

Simulation Environment: JSBSim

I General rocket simulator
I Models complex interaction between

airframe, propulsion, aerodynamics,
and atmosphere

I Used by IOS in testing their rocket designs
I Accurate geometric model of the RSX-2

Rocket Guidance Network
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Finless Rocket Control Demo

Evolved active stabilization No active stabilization

(Demo available at nn.cs.utexas.edu)



Applications to Robotics

3

1

2

I Controlling a robot arm56

I Compensates for an inop motor
I Robot walking34,82,102

I Various physical platforms
I Mobile robots11,17,61,85

I Transfers from simulation to physical robots
I Evolution possible on physical robots

Multilegged Walking

I Navigate rugged terrain better than wheeled robots
I Controller design is more challenging

I Leg coordination, robustness, stability, fault-tolerance, ...
I Hand-design is generally difficult and brittle
I Large design space often makes evolution ineffective

ENSO: Symmetry Evolution Approach

x2

y2

y4

x4

Module 3

Module 1

Module 2

Module 4
x1

y1

y3

x3

1 2

3 4

I Symmetry evolution approach100,102,103

I A neural network controls each leg
I Connections between controllers evolved

through symmetry breaking
I Connections within individual controllers evolved

through neuroevolution

Versatile, Robust Gaits

Different gaits Obstacle field

I Different gaits on flat ground
I Pronk, pace, bound, trot
I Changes gait to get over obstacles

I (DEMO available at nn.cs.utexas.edu)

Innovative, Effective Solutions

Evolved Handcoded

I Asymmetric gait on inclines
I One leg pushes up, others forward
I Hard to design by hand

I (DEMO available at nn.cs.utexas.edu)

Transfer to a Physical Robot I

Simulated Real

I Built at Hod Lipson’s lab (Cornell U.)
I Standard motors, battery, controller board
I Custom 3D-printed legs, attachments
I Simulation modified to match

I General, robust transfer99

I Noise to actuators during simulation
I Generalizes to different surfaces, motor speeds

I (DEMO available at nn.cs.utexas.edu)



Transfer to a Physical Robot II

Evolved Handcoded

I Evolved a solution for three-legged walking!
I (DEMO available at nn.cs.utexas.edu)

Applications to Artificial Life

I Gaining insight into neural structure
I E.g. evolving a command neuron2,37,75

I Understanding animal behaviors
I Signaling, herding, hunting...62,67,69,70,97,106,107,114

Body-Brain Coevolution

Body

Brain

I Evolved Virtual Creatures42,43,44,84

I Body: Blocks, muscles, joints, sensors (Lessin et al. Alife’14 )
I Brain: A neural network (with general nodes)
I Evolved together in a physical simulation

I Syllabus, Encapsulation, Pandemodium

Syllabus

I Constructed by hand; body and brain evolved together

Encapsulation

I Once evolved, a trigger node is added

Pandemonium

I Conflicting behaviors: Highest trigger wins



Evolving Fight-or-Flight Behavior

I Step-by-step construction of complex behavior
I Primitives and three levels of complexity
I DEMO (available at nn.cs.utexas.edu)

Turn to Light

I First level of complexity
I Selecting between alternative primitives

Move to light

I First level of complexity (Sims 1994)
I Selecting between alternative primitives

Strike

I Alternative behavior primitive

Attack

I Second level of complexity (beyond Sims and others)

Turn from Light

I Alternative first-level behavior



Retreat

I Alternative second-level behavior

Fight or Flight

I Third level of complexity

Insight: Body/Brain Coevolution

I Evolving body and brain together poses strong constraints
I Behavior appears believable
I Worked well also in BotPrize (Turing test for game bots)

I What about constraints from the environment?

Coevolution of Behavior

Natural predators and prey Formalization of behavior

I Complex cooperation observed in pursuit and evasion
I Motivated by biology, esp. hyenas vs. zebras (Kay Holekamp, MSU)

I Largely innate, possible to see behaviors and their evolution

I Such behaviors evolve together, in coevolutionary environment
I Simultaneous competitive and cooperative coevolution67,70

Experimental Setup

I Toroidal grid world
I Predators, prey move with same speed in 4 directions
I No direct communication between team members

I Communication still possible through stigmergy
I Does a coevolutionary arms race result?
I DEMO (available at nn.cs.utexas.edu)

Predator-Prey Arms Race I

50-75: Single predator catches prey

100-150: Two predators cooperate

75-100: Prey evades by circling

150-180: Prey baits and escapes



Predator-Prey Arms Race II

180-200: All predators cooperate

250-300: Prey evade by scattering

200-250: Predators herd two prey

Complex behaviors don’t evolve in a vacuum
I Result from coevolutionary arms race
I Embedded in a changing environment

Open Questions

I Role of communication
I Stigmergy vs. direct communication in hunting114

I Quorum sensing in e.g. confronting lions
I Origins of communication68 (Rawal et al. Alife’14)

I Role of rankings
I Efficient selection when evaluation is costly?

I Role of individual vs. team rewards

I Can lead to general computational insights

Bigger Questions

I Gaining insight into cognitive architectures
I Executive, perception, emotion, memory66

(Rajagopalan et al. Alife’14)

I Emergence of language, learning, social structures

I May require overcoming deception
I Through speciation, niching in nature
I Through novelty search in computation?40

Applications to Games
a b

1
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4

5
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7

8

c d e f g h

I Good research platform51

I Controlled domains, clear performance, safe
I Economically important; training games possible

I Board games: beyond limits of search
I Evaluation functions in checkers, chess9,19,20

I Filtering information in go, othello54,92

I Opponent modeling in poker48

Discovering Novel Strategies in Othello

(a) (b) (c)

I Players take turns placing pieces
I Each move must flank opponent’s piece
I Surrounded pieces are flipped
I Player with most pieces wins

Strategies in Othello

(a) (b) (c)

I Positional
I Number of pieces and their positions
I Typical novice strategy

I Mobility
I Number of available moves: force a bad move
I Much more powerful, but counterintuitive
I Discovered in 1970’s in Japan



Evolving Against a Random Player

0 10 20 30 40 50 60

Move Number

0
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20

30

40

50

Network Random

I Network sees the board, suggests moves by ranking55

I Networks maximize piece counts throughout the game
I A positional strategy emerges
I Achieved 97% winning percentage

Evolving Against an ↵-� Program
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Network Searcher

I Iago’s positional strategy destroyed networks at first
I Evolution turned low piece count into an advantage
I Mobility strategy emerged!
I Achieved 70% winning percentage

Example game
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(a) (b)

I Black’s positions strong, but mobility weak
I White (the network) moves to f2
I Black’s available moves b2, g2, and g7 each will surrender

a corner
I The network wins by forcing a bad move

Discovering Novel Strategies
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I Neuroevolution discovered a strategy novel to us
I “Evolution works by tinkering”

I So does neuroevolution
I Initial disadvantage turns into novel advantage

Video Games

I Economically and socially important
I GOFAI does not work well

I Embedded, real-time, noisy, multiagent, changing
I Adaptation a major component

I Possibly research catalyst for CI
I Like board games were for GOFAI in the 1980s

Video Games II

I Can be used to build “mods” to existing games
I Adapting characters, assistants, tools

I Can also be used to build new games
I New genre: Machine Learning game



Challenge 1: Evolving Multimodal Behavior

I Agents perform many different tasks
I E.g. eat pills, avoid ghosts, eat

powerpills, eat ghosts
I Sometimes clearly separate in time
I Sometimes multiple tasks at once

I How can we evolve them into a single
network?

MM-NEAT: Modular Multiobjective Approach

I Evolution discovers modules and when to use them
I Vs. human-designed division with multitasking

I Multiple modules with preference neurons79

I Modules implement different behaviors
I Preference neurons used to choose among them
I Module-mutation adds new modules

I Evolved towards multiple objectives
I Correspond to dimensions of game play
I E.g. pills and ghosts in Ms. Pac-Man

I Cf. (Li et al. Alife’14) 45

Human-Designed Task Division

I Multitask approach
I One module for threat ghosts
I Another module for edible ghosts
I Works ok, but...
I (DEMO available at nn.cs.utexas.edu)

Evolution-Discovered Task Division

I One module used 95% of the time
I Eat pills, avoid ghosts, chase ghosts
I Different behaviors with a common base

I A second module 5% of the time
I Luring ghosts near a power pill
I Escaping from tight spaces

I A different multimodal perspective
I Not as obvious, but more powerful
I (DEMO available at nn.cs.utexas.edu)

Challenge 2: Evolving Humanlike Behavior

I Botprize competition, 2007-2012
I Turing Test for game bots ($10,000 prize)

I Three players in Unreal Tournament 2004:
I Human confederate: tries to win
I Software bot: pretends to be human
I Human judge: tries to tell them apart!

Evolving an Unreal Bot

I Evolve effective fighting behavior
I Human-like with resource limitations (speed, accuracy...)

I Also scripts & learning from humans (unstuck, wandering...)

I 2007-2011: bots 25-30% vs. humans 35-80% human

I 6/2012 best bot better than 50% of the humans

I 9/2012...?



Success!!!

I In 2012, two teams reach the 50% mark!
I Fascinating challenges remain:

I Judges can still differentiate in seconds
I Judges lay cognitive, high-level traps
I Team competition: collaboration as well

I (DEMO available at nn.cs.utexas.edu)

A New Genre: Machine Learning Games

I E.g. NERO
I Goal: to show that machine learning games are viable
I Professionally produced by Digital Media Collaboratory, UTAustin
I Developed mostly by volunteer undergraduates

NERO Gameplay

Scenario 1: 1 enemy turret Scenario 2: 2 enemy turrets Scenario 17: mobile turrets &
obstacles

... ...

Battle

I Teams of agents trained to battle each other
I Player trains agents through excercises
I Agents evolve in real time
I Agents and player collaborate in battle

I New genre: Learning is the game31,88

I Challenging platform for reinforcement learning
I Real time, open ended, requires discovery

I Try it out:
I Available for download at http://nerogame.org
I Open source research platform version at
opennero.googlecode.com

Real-time NEAT

Reproduction

X

mutation

crossover

high−fitness units

low−fitness

new unit

unit

.

I A parallel, continuous version of NEAT88

I Individuals created and replaced every n ticks
I Parents selected probabilistically, weighted by fitness
I Long-term evolution equivalent to generational NEAT

NERO Player Actions

I Player can place items on the field
e.g. static enemies, turrets, walls, rovers, flags

I Sliders specify relative importance of goals
e.g. approach/avoid enemy, cluster/disperse, hit target, avoid fire...

I Networks evolved to control the agents

NERO Training Demo

Approach Enemy

Avoid, first-person

Switch to Avoid

Maze Running
(DEMO available at nn.cs.utexas.edu)



NERO Battle Demo

Aggressive vs. Avoidant Teams of three

(DEMO available at nn.cs.utexas.edu)

Numerous Other Applications

I Creating art, music, dance...10,15,33,81

I Theorem proving14

I Time-series prediction49

I Computer system optimization24

I Manufacturing optimization29

I Process control optimization104,105

I Measuring top quark mass110

I Etc.

Evaluation of Applications

I Neuroevolution strengths
I Can work very fast, even in real-time
I Potential for arms race, discovery
I Effective in continuous, non-Markov domains

I Requires many evaluations
I Requires an interactive domain for feedback
I Best when parallel evaluations possible
I Works with a simulator & transfer to domain

Conclusion

I NE is a powerful technology for sequential decision tasks
I Evolutionary computation and neural nets are a good match
I Lends itself to many extensions
I Powerful in applications

I Easy to adapt to applications
I Control, robotics, optimization
I Artificial life, biology
I Gaming: entertainment, training

I Lots of future work opportunities
I Theory needs to be developed
I Indirect encodings
I Learning and evolution
I Knowledge, interaction, novelty
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