Neuroevolution Tutorial

Artificial Life Conference 2024

1. Motivation

From imitation to creativity
Exploration vs. refinement (Evo vs. RL)

Risto, Sebastian, Yujin

Outline

1.
2.

Motivation for Neuroevolution in Alife
Basics

1. Fundamentals of Evolution

2. Fundamentals of Neuroevolution
Advances

1. Taking advantage of indirect encodings

2. Taking advantage of diversity
Evolving behavior

1. Intelligent agents

2. Collective systems
Synergies with other fields

1. Neuroevolution and RL

2. Neuroevolution and GenAl

3. Neuroevolution and biology
Conclusion

» Much of Al focuses on imitation
« l.e. gradient descent on labeled datasets
» Powerful in prediction: object recognition, diagnosis, forecasting, etc.

« Alife focuses on behavior
» Gradients not available
» Needs to be discovered

* How can we create novel behaviors?



Reinforcement Learning is One Approach
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Solution: Evolutionary Al

Based on population-based search

* Many individuals spread out, sharing information

* Not limited to differentiable domains: configurations, choices ok
Not limited to incremental improvement
» Large jumps possible, can be more creative

* Approximating gradient descent

* Explore around the current solution

¢ Canclimb the nearest hill well

...but Creativity in RL is Limited

Scaling up Evolutionary Al

Works in large scales

* Spaceistoo large

* Multiple starts won’t help
¢ Space is too high-dimensional

« Little improvement from one step
* Space is deceptive

* Can only find the nearest hill

» Structured search works in large spaces (e.g. 2*2"70; Hodijat & Shahzad 2016)
* Multiple variables optimized at once (e.g. up to 1B; pebetal 2017)
* Multiple objectives and novelty get around deception (shanrzad and Hodjat 2020)

Neuroevolution uses population-based search to discover behavior

* A useful approach to Alife



2. Basics

2.1 Evolution Basics ®
- population, selection, variation, search

2.2 Neuroevolution Basics

- Evolving bipedal walker
- NEAT

Creating Variation
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* New individuals generated from the parent encodings
* Crossover: combine building blocks from two parents

* Mutation: create new building blocks

Parent 1

Parent 2

Crossover

Offspring 1

Offspring 2 = = = = = = = -

2.1 Evolution Basics: Encoding, Evaluation, and Selection
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* A population of encodings (e.g. lists or trees)
* Decoded into individuals that are evaluated in the domain

* Good individuals retained, bad thrown away

Population-based Search




Population-based Search Population-based Search
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Population-based Search
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Learning to Walk

https://blog.otoro.net/2017/11/12/evolving-stable-strategies/

2.2 Neuroevolution Basics

« Genomeis adirect encoding
« Genes represent a vector of weights
o NE (using GA, ES, etc.) optimizes the weights for the task

Neuroevolution of Augmenting Topologies (NEAT)

e Historical markings match up different structures
e Speciation

o Keeps incompatible networks apart
o Protects innovation

e Incremental growth from minimal structure, i.e. complexification

o Avoids searching in unnecessarily high-d space
o Makes finding high-d solutions possible

Method Evaluations
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Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary computation, 10(2), 99-127.



. ) Combining Learning and Evolution
3.1 Indirect encodings

LefyRight Forward/Back  Fire
Q 0 ~

1 Evolution + learning ©

- Genetic Regulatory Networks

- Learning from *prediction, *parents, *others in the population
- *Baldwin effect, *Lamarckian evolution, epigenetics

- *Rethinking innateness: evolving pattern generators

2 Generative Encodings

Encmy Radars ~_ On  Object Rangefiners ~ Enemy
Target LOF
Sensors

» Good learning algorithms exist for NN
» Why not use them as well?

» Evolution provides structure and initial weights
» Fine tune the weights by learning

Lamarckian Evolution Baldwin Effect

LefvRight Forward/Back  Fire
/ \ With learning

Without learning

Fitness

Genotype

» Learning can guide Darwinian evolution as well %3234
> Makes fithess evaluations more accurate

» With learning, more likely to find the optimum if close

» Can select between good and bad individuals better
» Lamarckian not necessary

» Lamarckian evolution is possible 832

» Coding weight changes back to chromosome
» Difficult to make it work

> Diversity reduced; progress stagnates



Synergy of Evolution and Learning
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(b) Final competitive learning weight vectors

If learning is available, evolution will use it

Deep synergy: Prenatal learning through internally generated patterns
* Evolve a starting point, learning mechanism, and pattern generation
* Rethinking innateness (Elman et al. 1996)

E.g. Handwritten character recognition through Hebbian competitive learning
* l.e. 10 neurons respond through scalar product with input
+ From arandom starting point, does not learn well: e.g. 7,8,9 confused

3.2. Generative Encodings

Desirable properties:
» Regularity
» Scalable
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Symmetry Repetition Repetition
with variation

Synergy of Evolution and Learning
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(d) Examples produced by an evolved pattern generator
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(e) Weight vectors after prenatal training with evolved patterns
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(f) Final weight vectors after additional competitive learning

Evolve prenatal pattern generators (Valsalam et al. 2007)

¢ Location, axes of Gaussians

Only a few units learn, but they establish a useful bias

* 7,8,9will be separated in learning with the actual digits
Could serve a maintenance function as well (Miikkulainen et al. 2005)
* Compensates for catastrophic forgetting

Compositional Pattern Producing
Networks (CPPNs; Stanley 2007)

An artificial indirect encoding designed to abstract how embryos are
encoded through DNA

output pattern

(applied at

each poi
X value,
y> CPPN[, Xy

Evolved




CPPN-Generated Patterns

www.picbreeder.org

EF@H

From 2D Images to 3D Virtual Creatures

(b) Direct
(a) Indirect encoding encoding

N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative en- coding. ACM SIGEVOlution, 7(1):11-23, 2014.

Encoding Brains Through CPPNs: .
HyperNEAT HyperNEAT-encoded Quadruped Locomotion

(Stanley et al. 2009)

' N
CPPN is queried once ANN

for every connection

when the ANN is created y Outpilt

1.0
Connection Weight
9 0.0] 43
/ CPPN \ Input
x1 y1l x2 y2
y’ 00 10
J J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the performance of indirect encoding across the continuum of regularity. IEEE Transactions on Evolutionary Computation, 15(3):346-367, 2011
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3.2 Diversity

3.2.1 Novelty search

3.2.2 Quality Diversity methods

Novelty Search

Gen 12 Gcn 20 Gen 36 Gen49 Gen 74

images in the evoluti

of the skull image

=leloju]c

Run 1 Run 3 Run 7 Run 15 Run 17
(b) Attempts to evolve the skull image directly

» Evolutionary algorithms maximize a performance objective

» But sometimes hard to achieve it step-by-step

> Novelty search rewards candidates that are simply different37:88

> Stepping stones for constructing complexity

3.2.1 Evolving for Novelty

e WMOBH

» Motivated by humans as fitness functions
> E.g. picbreeder.com, endlessforms.com8®

» CPPNs evolved; Human users select parents
> No specific goal

> Interesting solutions preferred
> Similar to biological evolution?

Novelty Search Demo 1

Method: BDMA-2a 11.0
Iteration: 9
w: 0.00000 55

» lllustration of stepping stones *%%0

» Nonzero fitness on “feet” only; stepwise increase
» Top and right “toes” are stepping stones to next “foot”
> Difficult for fitness based search; novelty can do it

» DEMO



Novelty Search Demo 2

Fitness Best

Novelty Best

> Fitness-based evolution is rigid
> Requires gradual progress

» Novelty-based evolution is more innovative, natural37-88
> Allows building on stepping stones
» How to guide novelty search towards useful solutions?

> Quality Diversity methods 767
» DEMO

Multi-dimensional Archive of Phenotypic Elites' (MAP-Elites)

Behavior 2

Behavior 1

MAP-Elites? algorithm

Initialization
1. Divide the behavior space into
cells (= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fitness
the solution becomes an elite
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tes,” In: arXiv preprint:1504.04909

3.2.2.Quality-Diversity

Goal: Find a set of different high-quality solutions for a given problem
Ex: Find fast walking gaits for a legged robot for every direction

Popular QD Method: Multi-dimensional Archive of Phenotypic Elites’
(MAP-Elites)

Idea: Evolve an archive of different high-quality solutions (= elites)

tes,” In: arXiv preprint:
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MAP-Elites? algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;,; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fitness
the solution becomes an elite

H> w2



Multi-dimensional Archive of Phenotypic Elites' (MAP-Elites)
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MAP-Elites? algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop

1. Pick two elites from the Archive
2. Apply crossover and mutation

3. Evaluate new solution

4. If new behavior or better fitness

the solution becomes an elite
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A Hands-on Exercise

4.1 Evolving Intelligent Agents

1. Control ®
1. * Rocket, arm, satellite: Nonlinear, robust, innovative
2. *Multilegged walking: symmetry

* Led by by Yujin Tang (remotely) 3. *Flappyball: C+S, extrapolation
* https://colab.research.google.com/... ®
e Three parts: 2. Strategy

«  Neuroevolution for Control 1. *Soccer: fractured
* Evolutionary Model Merging 2. *PacMan: multibehavior
* QD for Model Merging 3. *Maze: deception

4.1.1.3 Coping with Unseen Situations Solution: Modeling Context Explicitly

Ablations

RN

I Actions Actions
Controller Controller Controller
Feedforward Feedforward Feedforward
Network Network Network

Skill module

Feedforward
Network

Context module Skill module Context module
LSTM cell Feedforward LSTM cell
Network
Observations Observations Observations

* Need to generalize immediately to unseen situations Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S)

* The main challenge for evolved controllers: Extrapolation

* Games, robotics, process control, healthcare, finance

@TEXAS (Li etal 2018; Tutum et al. 2021) @TEXAS



FlappyBall Domain

Pipes= 0, Hits= 0, Out= 0

Extension of Flappy Bird: FlapFwd, Drag

Illustration of Extrapolation

FB Performance; CS-S; Lighter is better; variation across pairs of parameters

Inputs: 6 numerical state values e ‘ 7 . 7 e ) - Training tasks distributed
* Vertical position, distance to next pipe 14 a7 1 o on the white cross
» Horizontal and vertical velocity 212 ML [ 2 /
. . §10 N 25 " £1.0 . -
* Height of the upper and lower pipe 5 s : 8, © %0 B Testing tasks distributed
Outputs: select FlapUp, FlapFwd, glide 06 .3 Y L. outside the cross:
o : : : o : Require interpolation and
Objectives: B ; 2wt ) B e significant extrapolation
» Safety: Don’t hit pipes, ceiling, ground 8 16 16 "
* Performance: Fly fast 7 o 7
.. 6 ® 12 *q2 ®
Task Variation: N - %10 5 %o
* Strength of Gravity, Drag, FlapUp, FlapFwd 2, [ s YO0 N
3 = 06 - 06 -6
G TEXAS : Sl R oo » Y TEXAS
R 025 0.50 0.75 1.00 1.25 1.50 1.75 025 0.50 0.75 1.00 1.25 1.50 1.75 2 8 T
Gravity Gravity Forward
Demo
Example Behaviors in FlappyBall Modulation by Context
® Extrapolated conditions: F=-7.0, G=0.58, Fwd=8.75, D=0.58 — Context-PC1 [ext - nom] — Context-PC1 [ext - nom] — SKiILPC1 [ext - nom]
20 === Context-PC2 [ext - nom) 20 -==- Context-PC2 [ext - nom] 20 === SKill-PC2 [ext - nom]
—— Skill-PC1 [ext - nom]
Pipes= 0, Hits= 0, Out= 0 15 === Skill-PC2 [ext - nom] 15
10 10
05 = 05
0.0 hrmssses < e
-05 L
-1.0
1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300
¢ Output of Context and Skill modules mapped to 2D with PCA
* Difference in an extrapolated task and the nominal task plotted
» Differences are smaller in CS than in C-only and S-only
oy — — il * Decision network needs to deal with less variance
Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S) « Easier to generalize N
pi 1 Pipes=15 Pipes =16 * CSevolves to make new tasks look more familiar
ipes = - - . . . .
Hits =0 Hits =6 hits =5 @ TEXAS * Allows coping robustly in novel situations @TEXAS

DEMO



4122 Ghallenge 1: Evolving Multimodal Behavior MM-NEAT: Modular Multiobjective Approach

» Agents perform many different tasks (@) Single-module Network (b) Multitask Network (c) Preference Neuron Network
» E.g. eat pills, avoid ghosts, eat . .
powerpills, eat ghosts » Evolution discovers modules and when to use them
» Sometimes clearly separate in time > Vs. human-designed division with multitasking
» Sometimes multiple tasks at once » Multiple modules with preference neurons 8586
» How can we evolve them into a single > Modules implement different behaviors
network? > Preference neurons used to choose among them

> Module-mutation adds new modules
» Evolved towards multiple objectives

> Correspond to dimensions of game play
» E.g. pills and ghosts in Ms. Pac-Man

Human-Designed Task Division Evolution-Discovered Task Division

» One module used 95% of the time

» Eat pills, avoid ghosts, chase ghosts
> Different behaviors with a common base

» A second module 5% of the time

> Luring ghosts near a power pill
» Escaping from tight spaces

» A different multimodal perspective
» Not as obvious, but more powerful
» DEMO

» Multitask approach
» One module for threat ghosts
» Another module for edible ghosts
> Works ok, but...
» DEMO




4.1.2.3 Search for Complex Behavior is Deceptive

AX BX,BY,AY
-"“"6ﬁtput o
Signal Adaptation
(a) Communication (b) Memory (c) Learning

(Lehman et al. 2014)

Cognitive tasks: Communication, Memory, Learning
* E.g.in Maze Navigation: turn left or right for reward

Need to discover multiple behaviors together:

* E.g. communication: what, when, send, receive, interpret
* Each one alone is not an advantage

4.2 Collective Neuroevolution

Cooperative coevolution
Competive coevolution
Evolving neural cellular automata

A WN =

Growing NNs with neural developmental programs

Utilize Novelty Search Stepping Stones

AX BX,BY,AY

Signal

(a) Communication (b) Memory

Possible with Novelty Search

* Each elementis a stepping stone

 Fitness decreases as each is discovered

* Retained as local maxima and combined later

20000 1 el
15000 LJ
10000 T

5000

Objective Fitness Score

A

\\ﬁ

0 10 20 30 40 50 60 70 80

Adaptation

L ing
(¢) Learning (d) Solution lineage

Abstraction of biological niching? Or weak selection and deep time?

4.2.2.2 Coevolution of Behavior

Natural predators and prey

Formalization of behavior

» Complex cooperation observed in pursuit and evasion

> Motivated by biology, esp. hyenas vs. zebras (ay Holekamp, MSu)

> Largely innate, possible

to see behaviors and their evolution

» Such behaviors evolve together, in coevolutionary environment

» Simultaneous competitive and cooperative coevolution 7375



Experimental Setup

Evolutionary Arms Race

v

Toroidal grid world [ R AR A R €l e

Predators, prey move with same speed in 4 directions
No direct communication between team members
» Communication still possible through stigmergy

» Does a coevolutionary arms race result?
DEMO

v

50-75: Single predator catches the prey 75-100: Prey evades by circling

v

Predators and prey populations develop increasingly sophisticated behaviors (Rawal et al. 2010)
* Eachimprovement provides a challenge to the other population

Evolutionary Arms Race Evolutionary Arms Race

100-150: Two predators cooperate 150-180: Prey baits and escapes 180-200: All predators cooperate



Evolutionary Arms Race

200-250: Predators herd two prey 250-300: Prey evade by scattering

Regenerating Soft Robots through Neural Cellular Automata
Horibe, Walker, Risi; EuroGP 2021

Demo

4.2.3 Evolving Neural Cellular Automata

..:3.3:

Demo

-

» Neural Cellular Automata (Chua et al. 1988)
 Differentiable NCA (Mordvintsev et al. 2020)

4.2.4 Growing NNs with neural developmental programs

Najarro, Sudhakaran and Risi, ALIFE 2023

&
T mags

: Graph at developmental step ¢ Graph state K updated via local

information aggregation

Graph growth Edge weights updated



Self-Assembling ANNs through Neural Developmental Programs

Step 0: We start with an initial graph seed

Statecell;: [7,4,2,3,..]

Statecell;:[2,1,2,3,..

Statecell;: [5,4,9,3,..]

Self-Assembling ANNs through Neural Developmental Programs

Step 2: A neural network decides which nodes will grow

B

Growth MLP

Self-Assembling ANNs through Neural Developmental Programs

Step 1: Update node states via message passing

Graph at developmental step £ Graph state § updated via local
information aggregation

Self-Assembling ANNs through Neural Developmental Programs

Step 3: If network weighted: another NN determines edge weights

- PO, Q



Self-Assembling ANNs through Neural Developmental Programs Self-Assembling ANNs through Neural Developmental Programs

Information i
_ : Synaptic strength
Seeding aggregation Growth prediction

Optimising the NDP to solve a task:
- Gn Growth MLP Weight predicion [
» ML O Evolve NDP Let NDP grow a Evaluate the grown Reward
‘ A:A:> ::> ::> weights network for n steps network on a task performance
St = St4n O O

Graph at developmental step £ Graph state 8 updated via local Graph growth Edge weights updated
information aggregation
Your favourite Black-Box optimiser

New developmental cycle

5.1 Neuroevolution and RL

Reinforcement Learning (RL)

Growth cycle: 0, Graph si:

e Advantages:
o Handles se%uential decision-making and dynamic environments.
o Effective in domains with unknown or complex models
¢ Drawbacks:
o Requires significant data and computational resources.
° Traininlg can be unstable and sensitive to hyperparameters.
o  Struggles with high-dimensional state and action spaces.

Neuroevolution

e Advantages:
o Morerobust to local minima with population-based search.
o Broader solution space exploration compared to RL.
o Produces diverse policies.
o Drawbacks:
o Generally slower than RL for real-time learning and adaptation.

Demo



NE vs RL

» Salimans et al. "Evolution Strategies as a Scalable Alternative to Reinforcement
Learning”, 2017.

» Such et al. "Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
for Training Deep Neural Networks for Reinforcement Learning”, 2018.

DON ES  A3C RS GA GA
Frames 200M 1B 1B 1B 1B 6B
Time ~7-104 ~1h  ~4d ~lhordh ~lhordh ~ 6hor24h
ForwardPasses  450M  250M  250M 250M 250M 1.5B
Backward Passes  400M 0 250M 0 0 0
Operations 125BU  250MU  IBU  250MU  250MU 15BU
amidar 978 12 264 143 263 377
assault 4280 1674 5475 649 714 814
asterix 4359 1440 22,140 1,197 1,850 2255
asteroids 1365 1562 4475 1307 1,661 2,700
atlantis 279987 1267410 911091 26371 76273 129,167
enduro 729 95 82 36 60 80
frostbite 797 370 191 1,164 4536 6,220
gravitar 473 805 304 431 476 764
Kangaroo 7259 11200 9 1,099 379 11,254
seaquest 5,861 1390 2355 503 798 850
skiing J13.062  -15443 10911 7619 16502 15,541 " -
venture 163 760 23 488 969 1,422 ’
zaxxon 5,363 6380 24,622 2,538 6,180 7,864 M Sion

Demo

Hebbian Network il Network’s dynamical weights Static Network
— -

B e B

-

=

e

FC layer 3

Seen during training

Demo

5.1.2. Meta-Learning through Hebbian Plasticity in
Random Networks

Start network with random weights instead and only evolve local
Hebbian learning rules = can weights learn to self-organize?

SYNAPSE
Pre-synaptic
("send?ng'f)*’ cell
Post -synaptic. © Mahapattanakul

["mce)ving") cell

Aw;j = Ny + (Aw0i05 + By0; + Cyo; + D)

Najarro & Risi, NeurlPS 2020

Network’s dynamical weights

el TR R LT W I

0008

FC layer 1 FC layer 3

Demo



Resilience to Damage

Hebbian network's weights Hebbian network's weights

10 timesteps later

—>

B3

[

i P
FC layer 2 E

FC layer 3

200 AB 400 600

B e -
FC layer 1 FC layer 3 Episode timestep

A B

5.3 Neuroevolution Insights into Biology

1. Constrained evolution of behavior ®
1. *EVC: Body/Brain
2. * Botprize: resource limitations

2. Understanding evolutionary breakthroughs @
1. * Lions+hyenas: Evolution of intelligence
2. *Mating/hunting: Origin of communication

3. Evolution of language ®

1. *Signaling: common code (Werner), learning (Li), predicates (Cangelosi)
2. *Language: Maybe cognition instead? Societies, roles, symbols

800

1000

s ‘ H i
i1 :
R g foa A ) i
n2@ 2@ 2@ /] 2@

i Collection of Models.

5.2 Neuroevolution and Generative Al

o Large Language Models have shown impressive performance across many
domains
e Can be benefit from Neuroevolution methods in different ways

Q1: Mishika bor
Q2: Cynthia eat

Accuracy: 018 Accuracy: 031 Accuracy: 052 Accuracy: 036 Accuracy: 056

Our Merged Models |

EvoPrompting (Chen et al. 2023)

Evolutionary Model Merge (Sakana.ai, 2024)

5.3.2.1 Emergence of Intelligence

¥t M|

Evolved Virtual Creatures
* Neuroevolution of intelligent behavior
¢ Usefule.g. forvideo games

Can such experiments lead to insights in biology?

Collaboration with Kay Holekamp’s lab (MSU)
* Studying hyenas in Masai Mara since 1982



Example: Evolution of
Intelligent Coordinated
Behavior

Stealing a kill from lions

¢ Succeeds in an otherwise
impossible task (sometimes)

* More sophisticated than other
hyena behaviors

* Highly rewarding compared to
normal hunting

* Largely genetically determined

* Abreakthrough in evolution of
intelligence?

DEMO

Initial Behaviors

Behaviors

100
mmm Mobber
B Risk-taker

80 mmm Risk-evader

60

40

20

0

Risk evasion is common

* Neverreach the circle; Medium fithess
Risk taking is common

* Charge the circle; Frequent low fitness
* Occasional high fitness by accident

DEMO

Screencast-O-Matic.com

Simulation Setup

Early Behaviors

100

Hyena

Hyena - Hyeaa
. )

Lion at a kill, with an interaction circle around it *

Ten hyenas chosen and placed randomly in the field

If 4 or more hyenas enter the circle simultaneously, they get the kill
* Otherwise they die

Does mobbing behavior evolve?

* What are the stepping stones for it?

Behaviors

mmm Mobber
W Risk-taker

80 mmm Risk-evader

60
40

20

0
Risk taking grows

* Aslongasitis successful often enough
Risk evasion also persists

Evasion at the circle starts to emerge

Is mostly detrimental, but an important stepping stone

DEMO



Later Behaviors These Behaviors Persist in Prolonged Evolution

Behaviors
100
s Mobber
I Risk-taker
80 W Risk-evader

60

Awrage score
w

40

20

0 100 200 300 400 500 600 700 800 900 1000

0
Mobbing emerges

* Notjust co!nC|d<.ence of’rlsktakers Risk taking and risk evasion never go away completely
*  Hyenas wait until there’s enough of them * They serve arole in maintaining the mobbing behavior
Risk-evaders evolve into latecomers «  If mobbing starts to get lost, it can be reintroduced
Simple risk-taking and risk-evasion still exist

Number of generations

DEMO

Insight into Real-life Behaviors

Signaling is possible to evolve in ecological simulations
Structured language is much harder

Perhaps language evolved not from signaling, but cognition

* Complex social structure, with modifiable roles

* Language structure can reuse the same conceptual structures
Enough compute, complex simulations to study now?

These behaviors are observed in real-life hyenas as well

A computational explanation of why they are there:
* Stepping stones in discovery
* Safeguards in maintaining



6. Conclusion: Constructing Alife Systems Need a Deeper Dive? Check out the Neuroevolution Book!

Neuroevolution: Automating

. L Creativity in Al Model Design
* Believable, complex behavior in embedded RE B e e e

environments
* Open-ended “arms race

Forthcoming in 2025 by MIT Press.

y 72

* Forthcomingin 2025

¢ Broad overview, current directions

* Demos

* Software platform: Exercises, projects
* https://neuroevolutionbook.com

¢ Similar to self-play e.g. in AlphaGo Zero
* Complexity beyond human ability to design it

¢ If we can build open-ended environments, we should be
able to build more complex solutions
* Co-evolve environments and behaviors?
(e.g. POET, 'EUREQA ) ®
* Evolution of memory, learning, language

e Challenge: Establish major transitions ¥




