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1. Motivation
From imitation to creativity
Exploration vs. refinement (Evo vs. RL)

• Much of AI focuses on imitation
• I.e. gradient descent on labeled datasets
• Powerful in prediction: object recognition, diagnosis, forecasting, etc.

• Alife focuses on behavior
• Gradients not available
• Needs to be discovered

• How can we create novel behaviors?

1. Neuroevolution in Alife: From Imitation to Creativity



• Approximating gradient descent
• Explore around the current solution
• Improve it gradually
• Can climb the nearest hill well

Reinforcement Learning is One Approach …but Creativity in RL is Limited

• Space is too large
• Multiple starts won’t help

• Space is too high-dimensional
• Little improvement from one step

• Space is deceptive
• Can only find the nearest hill

Solution: Evolutionary AI

Based on population-based search 
• Many individuals spread out, sharing information
• Not limited to differentiable domains: configurations, choices ok

Not limited to incremental improvement
• Large jumps possible, can be more creative

• Structured search works in large spaces (e.g. 2^2^70; Hodjat & Shahzad 2016)
• Multiple variables optimized at once (e.g. up to 1B; Deb et al. 2017)
• Multiple objectives and novelty get around deception (Shahrzad and Hodjat 2020)

Neuroevolution uses population-based search to discover behavior
• A useful approach to Alife

Scaling up Evolutionary AI

Works in large scales



2. Basics
2.1 Evolution Basics ®
    - population, selection, variation, search

2.2 Neuroevolution Basics
   - Evolving bipedal walker 
   - NEAT 
 

2.1 Evolution Basics: Encoding, Evaluation, and Selection

• A population of encodings (e.g. lists or trees)
• Decoded into individuals that are evaluated in the domain
• Good individuals retained, bad thrown away

Creating Variation

• New individuals generated from the parent encodings

• Crossover: combine building blocks from two parents

• Mutation: create new building blocks

Parent 1

Offspring 2

Offspring 1

Crossover

Parent 2

Population-based Search
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Population-based Search
2.2 Neuroevolution Basics 

● Genome is a direct encoding
● Genes represent a vector of weights
● NE (using GA, ES, etc.) optimizes the weights for the task
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? ??
??

? ??
??

? ??
??

Learning to Walk

https://blog.otoro.net/2017/11/12/evolving-stable-strategies/

Demo

Neuroevolution of Augmenting Topologies (NEAT)
● Historical markings match up different structures
● Speciation

○ Keeps incompatible networks apart
○ Protects innovation

● Incremental growth from minimal structure, i.e. complexification
○ Avoids searching in unnecessarily high-d space
○ Makes finding high-d solutions possible

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary computation, 10(2), 99-127.



3.1 Indirect encodings
1 Evolution + learning ®
-    Genetic Regulatory Networks
- Learning from *prediction, *parents, *others in the population
- *Baldwin effect, *Lamarckian evolution, epigenetics
- *Rethinking innateness: evolving pattern generators

2 Generative Encodings
         



Synergy of Evolution and Learning

If learning is available, evolution will use it
Deep synergy: Prenatal learning through internally generated patterns
• Evolve a starting point, learning mechanism, and pattern generation
• Rethinking innateness (Elman et al. 1996)

E.g. Handwritten character recognition through Hebbian competitive learning
• I.e. 10 neurons respond through scalar product with input
• From a random starting point, does not learn well: e.g. 7,8,9 confused

Synergy of Evolution and Learning

Evolve prenatal pattern generators (Valsalam et al. 2007)

• Location, axes of Gaussians
Only a few units learn, but they establish a useful bias
• 7,8,9 will be separated in learning with the actual digits
Could serve a maintenance function as well (Miikkulainen et al. 2005)
• Compensates for catastrophic forgetting

3.2. Generative Encodings

Symmetry Repetition Repetition
with variation

Desirable properties:
• Regularity
• Scalable

An artificial indirect encoding designed to abstract how embryos are 
encoded through DNA

Evolved



CPPN-Generated Patterns
www.picbreeder.org

From 2D Images to 3D Virtual Creatures

N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative en- coding. ACM SIGEVOlution, 7(1):11–23, 2014. 

HyperNEAT-encoded Quadruped Locomotion

J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the performance of indirect encoding across the continuum of regularity. IEEE Transactions on Evolutionary Computation, 15(3):346–367, 2011 



3.2 Diversity
3.2.1 Novelty search 

3.2.2 Quality Diversity methods 

3.2.1 Evolving for Novelty

Novelty Search Novelty Search Demo 1



Novelty Search Demo 2 3.2.2.Quality-Diversity

¹Mouret, J.-B. and J. Clune (2015). “Illuminating search spaces by mapping elites,” In: arXiv preprint:1504.04909

Goal: Find a set of different high-quality solutions for a given problem
Ex: Find fast walking gaits for a legged robot for every direction 

Popular QD Method: Multi-dimensional Archive of Phenotypic Elites1 
(MAP-Elites)

Idea: Evolve an archive of different high-quality solutions (= elites)

Multi-dimensional Archive of Phenotypic Elites1 (MAP-Elites)

¹Mouret, J.-B. and J. Clune (2015). “Illuminating search spaces by mapping elites,” In: arXiv preprint:1504.04909

MAP-Elites1 algorithm

Initialization
1. Divide the behavior space into 

cells (= the Archive)
2. Initialize with random solutions 

until ninit elites are found
Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation
3. Evaluate new solution
4. If new behavior or better fitness

the solution becomes an eliteBehavior 1
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A Hands-on Exercise

• Led by by Yujin Tang (remotely)
• https://colab.research.google.com/...
• Three parts:

• Neuroevolution for Control
• Evolutionary Model Merging
• QD for Model Merging

1. Control ®
1. * Rocket, arm, satellite: Nonlinear, robust, innovative
2. * Multilegged walking: symmetry
3. * Flappyball: C+S, extrapolation

2. Strategy ®
1. * Soccer: fractured
2. * PacMan: multibehavior
3. * Maze: deception

4.1 Evolving Intelligent Agents

4.1.1.3 Coping with Unseen Situations

• The main challenge for evolved controllers: Extrapolation
• Need to generalize immediately to unseen situations

• Games, robotics, process control, healthcare, finance

Solution: Modeling Context Explicitly
Ablations

Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S)

(Li et al 2018; Tutum et al. 2021)



FlappyBall Domain
• Extension of Flappy Bird: FlapFwd, Drag

• Inputs: 6 numerical state values
• Vertical position, distance to next pipe
• Horizontal and vertical velocity
• Height of the upper and lower pipe

• Outputs: select FlapUp, FlapFwd, glide

• Objectives:
• Safety: Don’t hit pipes, ceiling, ground 
• Performance: Fly fast

• Task Variation:
• Strength of Gravity, Drag, FlapUp, FlapFwd

Demo

Illustration of Extrapolation

• Training tasks distributed 
on the white cross

• Testing tasks distributed 
outside the cross: 
Require interpolation and 
significant extrapolation

FB Performance; CS-S; Lighter is better; variation across pairs of parameters

Example Behaviors in FlappyBall
•  Extrapolated conditions: F=-7.0, G=0.58, Fwd=8.75, D=0.58

Context-only Network (C)

Pipes = 15
Hits    = 6

Skill-only Network (S)

Pipes = 16
Hits    = 5

Context+Skill Network (CS)

Pipes = 21
Hits    = 0

DEMO

Modulation by Context

• Output of Context and Skill modules mapped to 2D with PCA
• Difference in an extrapolated task and the nominal task plotted
• Differences are smaller in CS than in C-only and S-only

• Decision network needs to deal with less variance
• Easier to generalize
• CS evolves to make new tasks look more familiar

• Allows coping robustly in novel situations



4.1.2.2



Cognitive tasks: Communication, Memory, Learning
• E.g. in Maze Navigation: turn left or right for reward

Need to discover multiple behaviors together: 
• E.g. communication: what, when, send, receive, interpret
• Each one alone is not an advantage

4.1.2.3 Search for Complex Behavior is Deceptive

(Lehman et al. 2014) 

Possible with Novelty Search
• Each element is a stepping stone
• Fitness decreases as each is discovered
• Retained as local maxima and combined later

Abstraction of biological niching? Or weak selection and deep time?

Utilize Novelty Search Stepping Stones

1. Cooperative coevolution
2. Competive coevolution
3. Evolving neural cellular automata 
4.   Growing NNs with neural developmental programs 

4.2 Collective Neuroevolution
4.2.2.2



DEMO

Evolutionary Arms Race

50-75: Single predator catches the prey 75-100: Prey evades by circling

Predators and prey populations develop increasingly sophisticated behaviors (Rawal et al. 2010)
• Each improvement provides a challenge to the other population

Evolutionary Arms Race

100-150: Two predators cooperate 150-180: Prey baits and escapes

Evolutionary Arms Race

180-200: All predators cooperate



Evolutionary Arms Race

200-250: Predators herd two prey 250-300: Prey evade by scattering

4.2.3 Evolving Neural Cellular Automata 

• Neural Cellular Automata (Chua et al. 1988)
• Differentiable NCA (Mordvintsev et al. 2020)

Demo

Regenerating Soft Robots through Neural Cellular Automata
Horibe, Walker, Risi; EuroGP 2021

Demo

4.2.4 Growing NNs with neural developmental programs
Najarro, Sudhakaran and Risi, ALIFE 2023



77

Self-Assembling ANNs through Neural Developmental Programs

Step 0: We start with an initial graph seed

!"#"$%$&&!: [7,4,2,3, . . ]

!"#"$%$&&!: [5,4,9,3, . . ]

!"#"$%$&&!: [2,1,2,3, . . ]

78

Self-Assembling ANNs through Neural Developmental Programs

Step 1: Update node states via message passing

79

Self-Assembling ANNs through Neural Developmental Programs

Step 2: A neural network decides which nodes will grow

80

Self-Assembling ANNs through Neural Developmental Programs

Step 3: If network weighted: another NN determines edge weights



81

Self-Assembling ANNs through Neural Developmental Programs

Seeding
Information
aggregation Growth Synaptic strength 

prediction

82

Self-Assembling ANNs through Neural Developmental Programs

Optimising the NDP to solve a task:

Demo

5.1 Neuroevolution and RL 
Reinforcement Learning (RL)

● Advantages:
○ Handles sequential decision-making and dynamic environments.
○ Effective in domains with unknown or complex models

● Drawbacks:
○ Requires significant data and computational resources.
○ Training can be unstable and sensitive to hyperparameters.
○ Struggles with high-dimensional state and action spaces.

Neuroevolution

● Advantages:
○ More robust to local minima with population-based search.
○ Broader solution space exploration compared to RL.
○ Produces diverse policies.

● Drawbacks:
○ Generally slower than RL for real-time learning and adaptation.



• Salimans et al. ”Evolution Strategies as a Scalable Alternative to Reinforcement
Learning”, 2017.

• Such et al. ”Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative 
for Training Deep Neural Networks for Reinforcement Learning”, 2018.

NE vs RL

Demo

5.1.2. Meta-Learning through Hebbian Plasticity in 
Random Networks

Start network with random weights instead and only evolve local 
Hebbian learning rules è can weights learn to self-organize?

© Mahapattanakul

Najarro & Risi, NeurIPS 2020

• Video quadruped

Demo

Demo



Resilience to Damage 5.2 Neuroevolution and Generative AI 
● Large Language Models have shown impressive performance across many 

domains
● Can be benefit from Neuroevolution methods in different ways

Evolutionary Model Merge (Sakana.ai, 2024) EvoPrompting (Chen et al. 2023)

1. Constrained evolution of behavior ®
1. * EVC: Body/Brain
2. * Botprize: resource limitations

2. Understanding evolutionary breakthroughs ®
1. * Lions+hyenas: Evolution of intelligence
2. * Mating/hunting: Origin of communication

3. Evolution of language ®
1. * Signaling: common code (Werner), learning (Li), predicates (Cangelosi) 
2. * Language: Maybe cognition instead? Societies, roles, symbols

5.3 Neuroevolution Insights into Biology
5.3.2.1 Emergence of Intelligence

Evolved Virtual Creatures
• Neuroevolution of intelligent behavior
• Useful e.g. for video games
Can such experiments lead to insights in biology?

Collaboration with Kay Holekamp’s lab (MSU)
• Studying hyenas in Masai Mara since 1982



Example: Evolution of 
Intelligent Coordinated 
Behavior

Stealing a kill from lions
• Succeeds in an otherwise 

impossible task (sometimes)
• More sophisticated than other 

hyena behaviors
• Highly rewarding compared to 

normal hunting
• Largely genetically determined
• A breakthrough in evolution of 

intelligence?

DEMO

Simulation Setup

Lion at a kill, with an interaction circle around it
Ten hyenas chosen and placed randomly in the field
If 4 or more hyenas enter the circle simultaneously, they get the kill
• Otherwise they die
Does mobbing behavior evolve?
• What are the stepping stones for it?

69

Initial Behaviors

Risk evasion is common
• Never reach the circle; Medium fitness
Risk taking is common
• Charge the circle; Frequent low fitness
• Occasional high fitness by accident

DEMO

Early Behaviors

Risk taking grows
• As long as it is successful often enough
Risk evasion also persists
Evasion at the circle starts to emerge
Is mostly detrimental, but an important stepping stone

DEMO



Later Behaviors

Mobbing emerges
• Not just coincidence of risk takers
• Hyenas wait until there’s enough of them
Risk-evaders evolve into latecomers
Simple risk-taking and risk-evasion still exist

DEMO

These Behaviors Persist in Prolonged Evolution

Risk taking and risk evasion never go away completely
• They serve a role in maintaining the mobbing behavior
• If mobbing starts to get lost, it can be reintroduced

Insight into Real-life Behaviors

These behaviors are observed in real-life hyenas as well

A computational explanation of why they are there:
• Stepping stones in discovery
• Safeguards in maintaining

38

5.3.2 Challenge: Evolution of Language

Signaling is possible to evolve in ecological simulations
Structured language is much harder
Perhaps language evolved not from signaling, but cognition
• Complex social structure, with modifiable roles
• Language structure can reuse the same conceptual structures
Enough compute, complex simulations to study now?



6. Conclusion: Constructing Alife Systems

• Believable, complex behavior in embedded 
environments
• Open-ended “arms race”

• Similar to self-play e.g. in AlphaGo Zero
• Complexity beyond human ability to design it

• If we can build open-ended environments, we should be 
able to build more complex solutions
• Co-evolve environments and behaviors?

(e.g. POET,   EUREQA   )
• Evolution of memory, learning, language

• Challenge: Establish major transitions

80

72

100

57

Need a Deeper Dive? Check out the Neuroevolution Book!

• Forthcoming in 2025
• Broad overview, current directions
• Demos
• Software platform: Exercises, projects
• https://neuroevolutionbook.com


