Neuroevolution Tutorial

Risto Miikkulainen
The University of Texas at Austin and Cognizant Al Lab

With Sebastian Risi, David Ha, and Yujin Tang

& cognizant

+ Much of Al so far focuses on imitation
« l.e. gradient descent on labeled datasets
» Powerful in prediction: object recognition, diagnosis, forecasting, etc.

» Agentic Al focuses on behavior
» Gradients not available
» Needs to be discovered

* How can we create novel behaviors?

Evolution

1. Motlvatlon From Imitation to Creativity
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Neural Network

Behavior
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1. Motivation for Neuroevolution
2. Basics
1. Fundamentals of Evolution
2. Fundamentals of Neuroevolution
3. Advances
1. Taking Advantage of Indirect Encodings
2. Taking Advantage of Diversity
4. Evolving Intelligent Agents
1. Control
2. Strategy
3. Decision-making
4. Collective behavior
5. Synergies with other ML
1. Deep Learning
2. Reinforcement Learning
3. LLMs
6. Insights into Biology
7. Conclusion
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Reinforcement Learning is One Approach
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* Approximating gradient descent
* Explore around the current solution
* Improve it gradually

¢ Canclimb the nearest hill well



...but Creativity in RL is Limited Solution: Population-based Search

* Spaceistoo large :

* Multiple starts won’t help " 1 N r 1
¢ Space is too high-dimensional

« Little improvement from one step
* Space is deceptive

* Canonly find the nearest hill

A.k.a Evolutionary Computation

* Many individuals spread out, sharing information

* Not limited to differentiable domains: configurations, choices ok
Not limited to incremental improvement
» Large jumps possible, can be more creative

Scaling up through Evolution 2.1 Evolution Basics: Encoding, Evaluation, and Selection

Genetic e
Algorithm \
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Works in large scales Neural Nerark
* Structured search works in large spaces (e.g. 2"2"70; Hodj . . .

ru. o ) e r .m 18 sp (8 Holat & Shahrzad 2010) * A population of encodings (e.g. lists or trees)
 Multiple variables optimized at once (e.g. up to 1B; pebetal. 2017) ) o ] )
+ Multiple objectives and novelty get around deception (shahrzad and Hodjat 2020) * Decoded into individuals that are evaluated in the domain
Neuroevolution uses population-based search to optimize neural netwoks * Good individuals retained, bad thrown away

* Weights, topologies, designs



Creating Variation

Parent 1

Genetic\_ .-
Algorthen Parent 2

3

Crossover

Offspring | =——— = = = = = =

Offspring 2 = = = = = = = -

* New individuals generated from the parent encodings
* Crossover: combine building blocks from two parents

* Mutation: create new building blocks

Population-based Search

Population-based Search

Population-based Search
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Population-based Search Population-based Search
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Population-based Search 2.2 Basic Neuroevolution
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observation

Neural Network

» Evolving connection weights in a population of networks

L - » Chromosomes are strings of connection weights (bits or real)
- > > E.g. 10010110101100101111001

» Usually fully connected, fixed, initially random topology
» A natural mapping between genotype and phenotype
» GA and NN are a good match!

Child AB



Example: Learning to Walk

Demo

Why Is It a Good Idea?

Minimal Starting Networks

MR

Population of Diverse Topologies

" AR AR R

» NN search space is complex with nonlinear interactions
» Complexification keeps the search tractable

» Start simple, add more sophistication
» Incremental discovery of complex solutions

Advanced Neuroevolution

E.g. Neuroevolution of Augmenting Topologies (NEAT)
e Historical markings match up different structures
e Speciation

o Keeps incompatible networks apart
o Protects innovation

e Incremental growth from minimal structure, i.e. complexification

o Avoids searching in unnecessarily high-d space
o Makes finding high-d solutions possible
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Discovering Compact, Interpretable Structure

e E.g.indouble pole balancing
o Easywhen position, velocity of both poles and the cart are given
o Hard when only positions: need to figure out how they are moving
e Discovers recurrent structure
o Either representing velocities separately
o Orsimply the derivative of the difference of the poles!
e Bigimprovement from other approaches
o Standard value-function RL unsuccessful

Method Evaluations ‘

CellrErcoang | saa000 |
3 T 1e388 -

NEAT 33,184 I

20 trials

Bias

o o
Pos Velooity  Z Velooty £ Velooty  Bias 14 b4 2
Cart Long Pole  Short Pole Gart LongPole  Short Pole.
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3. Advances
1. Taking Advantage of Indirect Encodings
2. Taking Advantage of Diversity

observation

Neural Network

3.1 Indirect Encoding: (B) Hypernetworks
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(Stanley et al. 2009)

» Encode the networks as spatial patterns
» E.g. Hypercube-based NEAT (HyperNEAT ) ;@ I )g
» Evolve a neural network (CPPN) §D )&
to generate spatial patterns !
> 2D CPPN: (x,y) input — grayscale output g@ ( )
» 4D CPPN: (x1, y1, X2, 12) input — w output A
» Connectivity and weights can be evolved indirectly
> Works with very large networks (millions of connections)

3.1 Indirect Encoding: (A) Development
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» Instructions for constructing the network evolved
> Instead of specifying each unit and connection

> E.g. Cellular Encoding (CE cruauswnitey19es)

» Grammar tree describes construction

> Sequential and parallel cell division
» Changing thresholds, weights
> A “developmental” process that results in a network

Why are Indirect Encodings a Good Idea?

» Describes structure efficiently

» Recurrency symbol in CE: XOR — parity
> Repetition with variation in CPPNs

» Useful for evolving topology

> E.g. large structured networks
> E.g. repetition of motifs




Future Opportunities

> Several possible directions

> More general L-systems;
developmental codings;
embryogeny

» Scaling up spatial coding

> Genetic Regulatory Networks

» Evolution of symmetries

> Theory starting to emerge

> Expressive Encodings
Simple GAs are universal
probability approximators

Novelty Search

Gen 12 Gcn 20 Gen 36 Gen49 Gen 74

images in the

=leloju]c

Run 1 Run 3 Run 7 Run 15 Run 17
(b) Attempts to evolve the skull image directly

of the skull image

» Evolutionary algorithms maximize a performance objective
» But sometimes hard to achieve it step-by-step

> Novelty search rewards candidates that are simply different
> Stepping stones for constructing complexity

3.2 Diversity: (A) Searching for Novelty

e WMOBH

» Motivated by humans as fitness functions

> E.g. picbreeder.com, endlessforms.com’ (Secretan etal. 2011; Clune et all 2011)

» CPPNs evolved; Human users select parents
> No specific goal

> Interesting solutions preferred
> Similar to biological evolution?

Novelty Search Demo 1

Method: BDMA-2a 11.0
Iteration: 9
w: 0.00000 55

0 2 4 8 10 12 14

6
(Meyerson & Miikkulainen 2017)
> lllustration of stepping stones'

» Nonzero fitness on “feet” only; stepwise increase
» Top and right “toes” are stepping stones to next “foot”
> Difficult for fitness based search; novelty can do it

» DEMO



Novelty Search Demo 2

Fitness Best

(Lehman and Stanley 2010)

Fitness-based evolution is rigid
> Requires gradual progress

Novelty-based evolution is more innovative, natural

> Allows building on stepping stones

Novelty Best

How to guide novelty search towards useful solutions?
> Quality Diversity methods

DEMO

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

Behavior 2

Behavior 1

MAP-Elites algorithm

Initialization

1.

2.

Divide the behavior space into
cells (= the Archive)

Initialize with random solutions
until n;; elites are found

Main loop

1

2.
3.
4

Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution

If new behavior or better fitness
the solution becomes an elite

(B) Combining Quality with Diversity

1

Behavior 2
Fitness

Behavior 1
(Mouret and Clune 2015)

Goal: Find a set of different high-quality solutions for a given problem
Ex: Find fast walking gaits for a legged robot for every direction

Popular QD Method: Multi-dimensional Archive of Phenotypic Elites’

(MAP-Elites)

Idea: Evolve an archive of different high-quality solutions (= elites)

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

Behavior 2

Behavior 1

MAP-Elites algorithm

1 Initialization

1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
3 until n,,; elites are found

E Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation

%1 H 0 3. Evaluate new solution

4. If new behavior or better fitness

the solution becomes an elite



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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Behavior 2
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Behavior 1

Fitness

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found

Main loop
Pick two elites from the Archive

1

2. Apply crossover and mutation

3. Evaluate new solution

4. If new behavior or better fitness
the solution becomes an elite

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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,

e

H

Behavior 1

Fitness

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation
3. Evaluate new solution
4. If new behavior or better fitness
the solution becomes an elite

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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Behavior 2

Sull RSN

Behavior 1

Fitness

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fitness
the solution becomes an elite
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Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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Behavior 1

Fitness

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation
3. Evaluate new solution
4. If new behavior or better fitness
the solution becomes an elite



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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MAP-Elites algorithm

Initialization

1. Divide the behavior space into cells

(= the Archive)

2. Initialize with random solutions
until n;; elites are found

Main loop

1. Pick two elites from the Archive

2. Apply crossover and mutation

3. Evaluate new solution

4. If new behavior or better fitness
the solution becomes an elite
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Initialization

1. Divide the behavior space into cells

(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fitness
the solution becomes an elite
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Initialization

1. Divide the behavior space into cells

(= the Archive)

2. Initialize with random solutions
until n;; elites are found

Main loop

1. Pick two elites from the Archive

2. Apply crossover and mutation

3. Evaluate new solution

4. If new behavior or better fitness
the solution becomes an elite
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Initialization

1. Divide the behavior space into cells

(= the Archive)

2. Initialize with random solutions
until n;; elites are found

Main loop

1. Pick two elites from the Archive

2. Apply crossover and mutation

3. Evaluate new solution

4. If new behavior or better fitness
the solution becomes an elite



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation
3. Evaluate new solution
4. If new behavior or better fitness
the solution becomes an elite

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation
3. Evaluate new solution
4. If new behavior or better fitness
the solution becomes an elite

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

Behavior 2

Behavior 1

Fitness

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation
3. Evaluate new solution
4. If new behavior or better fitness
the solution becomes an elite

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

Behavior 2

Behavior 1

Fitness

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions
until n;; elites are found
Main loop
1. Pick two elites from the Archive
2. Apply crossover and mutation
3. Evaluate new solution
4. If new behavior or better fitness
the solution becomes an elite

Hands-on Exercise!
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4. Evolving Intelligent Agents
1. Control
2. Strategy
3. Decision-making %
4. Collective behavior I

observation

Neural Network

Solution: Modeling Context Explicitly

Ablations

RN

Actions

Controller
Feedforward

Controller
Feedforward
Network

Controller
Feedforward
Network

Network

[

Context module Skill module Context module Skill module
LSTM cell Feedforward LSTM cell Feedforward
Network Network
Observations Observations Observations
Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S)
(Lietal2018; Tutum et al. 2021) @TEXAS

4.1 Evolving Controllers

Stambot 2017

o 3.

Be

(Lietal. 2018)

(Tutum et al. 2021)

* The main challenge for evolved controllers: Extrapolation

* Need to generalize immediately to unseen situations

* Games, robotics, process control, healthcare, finance

FlappyBall Domain

Pipes= 0, Hits= 0, Out= 0

©TEXAS

Extension of Flappy Bird: FlapFwd, Drag

Inputs: 6 numerical state values
* Vertical position, distance to next pipe
¢ Horizontal and vertical velocity
* Height of the upper and lower pipe
Outputs: select FlapUp, FlapFwd, glide

Objectives:

» Safety: Don’t hit pipes, ceiling, ground

* Performance: Fly fast
Task Variation:

» Strength of Gravity, Drag, FlapUp, FlapFwd
Extrapolation:

* Evaluated with 4x range in all combinations

GTEXAS



Example Behaviors in FlappyBall

® Extrapolated conditions: F=-7.0, G=0.58, Fwd=8.75, D=0.58

Modulation by Context

—— Context-PC1 [ext - nom] — Context-PC1 [ext - nom} —— SKill-PC1 [ext - nom]
~=-- Context-PC2 [ext - nom] 20 -~ Context-PC2 [ext - nom] 20 === SKill-PC2 [ext - nom]

~— Skill-PC1 [ext - nom]
Pipes= 0, Hits= 0, Out= 0 15 ~== Skill-PC2 [ext - nom]

1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300

¢ Output of Context and Skill modules mapped to 2D with PCA
* Difference in an extrapolated task and the nominal task plotted
» Differences are smaller in CS than in C-only and S-only

Far Fea

L o T | o e + Decision network needs to deal with less variance
Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S) » Easierto generalize
Pi 21 Pipes=15 Pipes =16 * CSevolves to make new tasks look more familiar
ipes = = = . . X . =
Hits =0 Hits =6 its =5 @ TEXAS » Allows coping robustly in novel situations @ TEXAS
DEMO

. . . MM-NEAT: Modular Multiobjective Approach
4.2 Evolving Behavioral Strategies

Strategy: different behaviors at different times

Ms. Pac-Man:

» Agents perform many different tasks (a) Single-module Network (b) Multitask Network (©) Preference Neuron Network
» E.g. eat pills, avoid ghosts, eat . .
powerpills, eat ghosts » Evolution discovers modules and when to use them
» Sometimes clearly separate in time > Vs. human-designed division with multitasking
> Sometimes multiple tasks at once » Multiple modules with preference neurons
» How can we evolve them into a single > Modules implement different behaviors
network? > Preference neurons used to choose among them

> Module-mutation adds new modules
» Evolved towards multiple objectives

> Correspond to dimensions of game play
— » E.g. pills and ghosts in Ms. Pac-Man
(Schrum and Miikkulainen 2015)




Human-Designed Task Division Evolution-Discovered Task Division

» One module used 95% of the time

» Eat pills, avoid ghosts, chase ghosts
» Different behaviors with a common base

» A second module 5% of the time
> Luring ghosts near a power pill
» Escaping from tight spaces

» A different multimodal perspective

» Multitask approach
» One module for threat ghosts
» Another module for edible ghosts
> Works ok, but...

» DEMO » Not as obvious, but more powerful
» DEMO
4.3 Optimizing Decision-Making Surrogate Optimization Approach

Outcomes

Predict

Organizations have lots of data gomet (Francz;e:;?.zzzO) Aetions

¢ Can build predictive models of patients, customers, students...

Such models do not specify how to make decisions Use a predictive model as a surrogate for the world

«  Optimal decisions not known Train model with historical data: Context+Actions - Outcomes

* Phenomenological model (based on data)

* Nota simulation from first principles

Search for a good decision strategy (i.e. policy): Context > Actions
¢ Usethe model to evaluate strategies

* Evolve a neural network to represent the strategy

Need to search for decision strategies
* Buttesting strategy candidates in the real world is costly



New Cases

Optimizing Interventions in COVID-19

400¢ o
ot Outcomes

o

300k
2006

100k

o
Apr2020 12020 oct2020 Jan2021 Apr2021 2021

[P Forgan Context Prescribe Actions
Based on two models:

1. A predictive model

*  Given a history of cases and nonpharma interventions (NPIs)
. Predict number of cases daily

2. A prescriptive model

*  Given ahistory of cases and NPIs

*  Prescribe NPIs daily to minimize cases and restrictions

Predict

Apr2020 112020 oatz020 Jan 2021 Apr2021 u2021

(Miikkulainen et al. IEEE TEC 2021) Not just what will happen, but what we should do about it

Leveraging Human Expertise with Al

Evolution from Distiled Prescriptors
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(Meyerson et al. 2024)

XPRIZE competition resulted in 169 human expert strategies
* Many useful, diverse ideas

Can be used as an initial population for search

* Improve further; better than search from scratch

Can realize latent potential of ideas

* How much DNA in the final Pareto front

Technology to bring the community effort together

* Thereis power in diversity

New Cases

400k

300k

2006

100k

COVID-19 Predictions and Prescriptions

Fordcast

Retrained daily May 2020 - December 2022

*  Based on data from Oxford University

¢ Adapting to the different stages of the pandemic
*  Generalizing from experiences across the world

Apr2020 12020 oct2020 Jan2021 Apr2021 2021

Recommendations about two weeks in advance, e.g.
¢ May 2020: Focus on schools and workplaces (i.e. indoors)

Mouse over bars for more nfo Foracast

*  Sept2020: Focus on gatherings, travel restrictions
*  March 2021: Delta surge: India lockdown

¢ August 2021: Recommendations for schools (Iceland)

*  Dec 2021: Missed omicron surge; everywhere at once

¢ March 2022: Masking to avoid a second omicron surge

Interactive demo:

* https://evolution.ml/demos/npidashboard/

Apr2020 112020 oatz020 Jan 2021 Apr2021 u2021

4.4 Evolving Collective Behavior

Prodator Prodator

Proy

Natural predators and prey

Formalization of behavior

» Complex cooperation observed in pursuit and evasion

> Motivated by biology, esp. hyenas vs. zebras (ay Holekamp, MSu)
» Largely innate, possible to see behaviors and their evolution

» Such behaviors evolve together, in coevolutionary environment
» Simultaneous competitive and cooperative coevolution



Experimental Setup

Evolutionary Arms Race

v

g r (Rawal et al. 2010)
Toroidal grid world [P A R RO e e

Predators, prey move with same speed in 4 directions
No direct communication between team members
» Communication still possible through stigmergy

» Does a coevolutionary arms race result?
DEMO

v

50-75: Single predator catches the prey 75-100: Prey evades by circling

v

Predators and prey populations develop increasingly sophisticated behaviors
* Eachimprovement provides a challenge to the other population

Evolutionary Arms Race Evolutionary Arms Race

100-150: Two predators cooperate 150-180: Prey baits and escapes 180-200: All predators cooperate



Evolutionary Arms Race )
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5. Synergies with other ML
1. Deep Learning

. observation
R e v T A UG Te 2. Reinforcement Learning

Z
3. LLMs Neural Network

200-250: Predators herd two prey 250-300: Prey evade by scattering

. ) . . (A) Evolutionary Neural Architecture Search
5.1 Neuroevolution Synergies with Deep Learning

Modde
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(A) Fundamental: Neural Architecture Search Evolution is a natural fit:
»  Optimizing structure and hyperparameters * Population-based search covers the space
» Takes advantage of exploration in EC * Crossover between structures discovers principles

Moreover,
¢ Can build on Neuroevolution work since the 1990s:
partial solutions, complexification, indirect encoding, novelty search
* Applies to continuous values; discrete choices; graph structures; combinations
* Can evolve hyperparameters; nodes; modules; topologies; multiple tasks

(B) Extended: Data and training
* Loss functions, activation functions, data augmentation, initialization, learning algorithm
* Takes advantage of flexibility of EC



E.G. NAS with CoDeepNEAT

Blueprint Module Assembled Network

1

(Liang et al. 2016)

Evolution at three levels

* Module subpopulations optimize building blocks

* Blueprint population optimizes their combinations

* Hyperparameter evolution optimizes their instantiation

Fitness of the complete network drives evolution

®* Candidates need to be evaluated through training
® Expensive; use partial training, surrogates...

(B) Optimizing Other Aspects of Deep Learning Design

1.0
30
- 0s
0.5 £
s == Log Loss
g, Baikal
0.0 BaikalCMA %
° q
— 0 02 o4 06 08 10 f
-10 0 10 Predicted Label (yo) F
(Bingham and Miikkulainen, 2022) (Gonzalez and Miikkulainen, 2020)

(Real et al. 2020)

Optimizing activation functions and loss functions (gingham and Miikkulainen, 2022; Neural Networks Best Paper Award at ICNN-25!)
. Regularization and I’efinement (Gonzalez and Miikkulainen, 2020)

Designing machine learning algorithms with GP  geatetat 2020

* Adapts to different task types

* Discovering new layer types

Coevolution of multiple aspects of network design?

Making NAS Evaluations Practical

0. Starting Population 3. Evaluate Individuals.

0.92) Evolution =
‘ ‘ ‘ =
‘ [_global avg poor | Z
global avg pool
== 7
o 5 [ g/ RL
S
1 =
Foparparmeters Foperparametars
-
P v

0.890

(Liang et al. 2021) (Real etal. 2019)

Population-based training aderverg et al 2017; Liang et al. 2021)

* Continual training and evolution

NAS benchmarks created to help evaluate (vingetat 2019; Dong et al. 2020; Siems et al. 2021)
¢ Collections of known architecture evaluations, surrogates

Scaling and regularization (suchetal 2017; Real etal. 2019)

¢ State-of-the art at the time in CIFAR-10, CIFAR-100, ImageNet
Specialized crossover operators (qiuand Mikkulainen 2023)

Example: Evolving Age-Estimation Networks

Parameter Possible Values ~ Type ~ Class
Algorithm [adam, rmsprop] ~ Enum  Opt

Initial Learning Rate (LR) | 1e-5, 1e-3] Float Opt (

Momentum [0.7,099]  Float  Opt Esti f faciali

(Weight Decay) / LR [26] [1e7,1¢:3]  Float  Opt stimate age from a facial image
Patience (Epochs) [1, 20] Int Opt

SWA Epochs [21] [1, 20] Int  Opt . . .

Rotation Range (Degrees) [1,60]  Int Aug Evolving multiple design aspects
Width Shift Range [0.01,03]  Float  Aug . L ing. d .

Height Shift Range [001,03]  Float Aug earning, data augmentation

Shear Range [0.01,03]  Float  Aug hyperparameters

Zoom Range [0.01,0.3] Float  Aug .

Horizontal Flip {True, False}  Bool  Aug + Seeded architecture search

Vertical Flip {True, False} ~ Bool  Aug e Loss-function optimization:

Cutout Probability [7] [0.01,0.999]  Float  Aug . .

Cutout Max Proportion [7] [005,05] Float Aug Combination of MAE and CE
Pretrained Base Model Keras App. [5]  Enum  Arch Also

Base Model Output Blocks ~ {B0, B1, B2, B3}  Subset ~ Arch . L

Loss function A in Eq. 5 [0, 1] Float  Arch * Populatlon—based tralnlng

* Ensembling of evolved solutions
(Miikkulainen et al. 2021)



Age-Estimation Results 5.2 Neuroevolution Synergies with RL

Age Prediction MAE

4.15 + DO stages: .. .
a00- \ ResNet-50, (A) Combining population-based search and RL-based search
DenseNet-121 ; 5
3.75- 169 - “ " . L — :
3.50 « D1 stages: DenseNet- S . - .
ey 169, DenseNet-201, o
3.25- —e— DO Evolution more epochs. L / 4
0. 2 (RGE EfficientNet-B6, TS pakan GO 4
. ensembling 28 030 0 O 5 AR a N s &
2.75- RL-Critic (a) HalfCheetah (b) Swimmer (c) Reacher
- * Human optimization Selection Actor Population .
D1 Human Design: 2.33 of BS_SNEt'so (DO), A ]
225 \ms\.“g EfficientNet-B6 (D1) Actor2 :‘ ,\,’\J,’D,“‘ A
RS0 s s1 oN'169 so 51 s s s 4 ; M
Base Base Mutation Actor n RL-Actor 000 M
Evolution Stage
Evolution improves significantly over SotA image models Newpopusion | 1 ietiesmed bebavio I EOET R ) ’
* Fitthe design to the task @ Ant (¢) Hopper (0 Walker2D
it . f ing: (Khadka and Tumer 2018)
Optimizes better than humans can Evolutionary Reinforcement Learning: nd Tumer
«  Many more parameters simultaneously . : pcl)pul_atlon of netwfcf)rks l§volve.d Fo rr;axn:lzeDrewa;iLs
Performance exceeds that of humans: 2.19 vs. 3-4 years va uations create o -po 'Cyt.ra}mng .ata orveeprt
* Trained networks periodically injected into the population
* ERL outperforms both EA and Deep RL alone
(B) Evolving Value Function Networks (C) Evolving Starting Points for RL
Unfom Meving Averag Sce P Epsode Uniom Moving Average Sors Per Episode
0 10000
a — meta-learning
o 0 --=- learning/adaptation %
1000
NEATIQ VL \
11500 5 AN
H § o T VLY V3 , 1:‘:.0.“" o
o0 s (00
e \ v e
o R TR TR (VL AP L] o R 5
Sl sl e i ') (Finn etal. 2017)
a0 1as00
o o 200 400 600 800 1000 80, o 200 400 800 800 1000
Epiads 1001 Epaode (<1000)
(a) Mountain Car (Whiteson 2006) (b) Server Job Scheduling
NEAT+Q MAML-Baldwin, ES-MAML (Fermando et al. 2018; Song et al. 2019)
* Many RL methods rely on value functions to estimate rewards * Model-agnostic Meta-Learning (MAML) finds good starting points for learning
¢ NEAT evolves both weights and topologies for better value-function networks * Evolutionary methods like MAML-Baldwin and ES-MAML improve by evolving the starting points
* NEAT+Q outperforms other value-function approximation methods Evolve initial weights that adapt to different tasks during the agent’s lifetime.

and manually designed networks in e.g. mountain car and server job scheduling « E.g.in half-cheetah task, adapts to changing direction rewards within seconds



5.3 Neuroevolution Synergies with LLMs (B) Neuroevolution of Large Language Models

(A) Neuroevolution through Large Language Models

]
11101111 XA2 + 2.1%x the moon is bad Initialize seed code samples 5 _
LM prompt 11110111 sinxA2 +7 the moon is boring CEERSIGAAESNTT 8 H | 5 § E
(Parents) 10100111 | | 3*sinx+6.6 the moonis cold i mmmmiEee : ’ ! i i
LM output 11111111 xA2sinx +6 the moon is zen na na e :,' :2
(Children) 10110111 | | cosxA2 + 2.1%x LeSkyiiaseinon e it | | snpos:  worigoss  sceipase

Our Morgod Models

(Meyerson et al. 2024) (Akiba etal. 2024)
Better evolution through LLMs?

* Evolution through large models (ELM)
¢ Language model crossover (LMX)

* Level generation for Mario (MarioGPT)

Better LLMs through evolution?

Model merging: combine multiple fine-tuned LLMs to one
¢ E.g.Japanese LLM with Math
X X X Evolving prompts: Promptbreeder
E.g. Evolutionary prompting for NAS (EvoPrompting) *  Evolving mutation prompts to improve task prompts
*  Existing architectures as prompts; generate new | Evolving multi-LLM interactions (Hong et al. 2023)
*  Tune the prompts based on performance +  E.g.roles for collaborative problem solving

(Chen et al. 2023)

. 6. Example: Evolution of
Outline Intelligent Coordinated
Behavior

) Stealing a kill from lions

fitness Behavior
Evolution N\~ -~ e . ¢ Succeeds in an otherwise impossible task

= (sometimes)
More sophisticated than other hyena
behaviors
* Highly rewarding compared to normal hunting|
* Largely genetically determined
* Abreakthrough in evolution of intelligence?

observation

- A collaboration with Kay Holekamp’s lab (MSU)
Neural Network *  Studying hyenas in Masai Mara since 1982

6. Insights into Biology
(Rajagopalan et al. 2021)

DEMO



Simulation Setup Initial Behaviors

Behaviors

Hyena 100
B Mobber
Risk-taker
x Hyena n 80 B Risk-evader
. ] \ Hyena
Hyema 60
/
Hyena . 40
20
0
Lion at a kill, with an interaction circle around it Risk evasion is common
Ten hyenas chosen and placed randomly in the field * Neverreach the circle; Medium fitness
If four or more hyenas enter the circle simultaneously, they get the kill Risk taking is common Screencast-0-Matic.com
+ Otherwise they die * Charge the circle; Frequent low fitness
Does mobbing behavior evolve? * Occasional high fitness by accident

* What are the stepping stones for it?
DEMO

Early Behaviors Later Behaviors

Behaviors Behaviors
100 100
mm Mobber N Mobber
Risk-taker Risk-taker

80 mmm Risk-evader 8o W Risk-evader

60 60

40 40

20 l
0

Risk taking grows

20

0

Mobbing emerges
* Aslongasitis successful often enough * Notjust coincidence of risk takers

Risk evasion also persists * Hyenas wait until there’s enough of them
Evasion at the circle starts to emerge Risk-evaders evolve into latecomers

Is mostly detrimental, but an important stepping stone Simple risk-taking and risk-evasion still exist

DEMO DEMO



These Behaviors Persist in Prolonged Evolution Insight into Real-life Behaviors

Merage score
w

0 100 200 300 400 500 600 700 800 900 1000

Number of generations

Risk taking and risk evasion never go away completely These behaviors are observed in real-life hyenas as well
* They serve arole in maintaining the mobbing behavior

* If mobbing starts to get lost, it can be reintroduced A computational explanation of why they are there:

* Stepping stones in discovery
* Safeguards in maintaining

Future Challenge: Evolution of Language Conclusion

Benavior

Evolution -
A .otlls...

o)
!
L

Accurscy 018 Accursey 031 Accuscy 02 Acowscy 036 Accurscy 056

Noural Network

Al is progressing from imitation to creativity; from models to agents

Outcomes

Neuroevolution is a powerful approach to discovering behavior o

; Lo . . ) . . * Control, strategy, collective behavior, decision-maki
Signaling is possible to evolve in ecological simulations onirol, sirategy, collective benavior, decision-maring

Structured language is much harder Neuroevolution can provide a boost to ML
* Deep learning designs; RL exploration; LLM optimization

Perhaps language evolved not from &g@lmg, but cognition *  Automatic design of learning machines &
* Complex social structure, with modifiable roles . R . . .

Neuroevolution can provide insight into biological evolution e o
* Language structure can reuse the same conceptual structures ) - . o - 4

® Evolutionary origins of circuits, behavior, intelligence Context Prescribe Actions

Enough compute, complex simulations to study now? * Evolution of language as a current challenge
* Apossible path to AGI



A Hands-on Exercise Further Material

g saem 6 ame +ew @ ¢ ByYujinTang

| Qcommods  code +Ten > Aunel = | copiodme wns -~ ¢ Direct link:

l= tves0E ps://colab research google.com/drive/10QFhaIHV8apep o * www.cs.utexas.edu/~risto/talks/enn-tutorial

B ) ) Also under: * Slides, references, demos, video

o | Tutorial on Neurcevolution https://neuroevolutionbook.com/code-exercises

e e . Three parts * nn.cs.utexas.edu/?miikkulainen:science25

[m] The N N . . . . n
folowingsar th topics e wil over: P . * Areview of neuroevolution insights into neuroscience
Part 1. Neuroevolution for Control * Neuroevolution for Control
eteon * Evolutionary Model Merging * Neuroevolution sessions at conferences (e.g. GECCO)

| Part2. Evolutionary Model Merging * QD for Model Merging
e poverameod o etvcing ot eomence o s, e * And....

Part 3. QD for Model Merging

Well cow igha
~ Part 1. Neuroevolution for Control

| > Import libraries
| [ Jr—_—"
> Know the task

©  visualize the CartPole task with a random control policy.
€3 Varisbles [ Terminal

The Neuroevolution Book!

Neuroevolution: Harnessing
Creativity in Al Model Design

‘Sebastian Risi, David Ha, Yujin Tang, and Risto Milkkulainen

Forthcoming in 2025 by MIT Press.

e MIT Press, 2025

* A comprehensive overview

* Software platform: Demos, exercises
* Openaccess

* https://neuroevolutionbook.com

i pinizng eutl nesaora o harawaremamantatn. Tis bock

This site is under apreview,
Demos, See here for the accompanying code and exercises.




