The University of Texas at Austin

Computer Science

Synergies Between Affordance and Geometry:
6-DoF Grasp Detection via Implicit Representations

Presenter: Cheng-Chun Hsu

9/8/2022

CS391R: Robot Learning (Fall 2021) 1




Robotic Grasping

e Modules in robot manipulation
o Bin picking
o Part assembly

o Logistics
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Robotic Grasping

e (Geometric vs. data-driven
e Object model: known vs. unknown
e Sensor data:
o Single-view vs. multi-view
e Open-loop vs. closed-loop
e Human-supervised vs. self-supervised
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Prior work
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[Miller et al. 2003, Goldfeder et al. 2007,

[Bohg et al. 2011, Varley et al. 2017,
HUbner et al. 2008, Diankov et al. 2008]

[Mahler et al. 2017, Morrison et al. 2018,
Lundell et al. 2019] Liang et al. 2019, Breyer et al. 2020]

Geometry Analysis
» Analytical solution
» Require full 3D model

Reconstruction — Grasp Synthesis
» QOperate on raw visual observation
» Subject to 3D reconstruction quality

End-to-end Deep Learning
» High grasp performance
> No explicit geometry reasoning
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Problem Formulation

Input: partial point cloud Output: 6-DoF grasp pose

teR3  Grasp center

w € [0,wmax]  Grasp width

r € SO0(3) Gripper rotation

q € [0,1] Grasp quality
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Key ldea

Affordance and geometry reasoning are not isolated

Affordance Geometry

Predict affordance of
reconstructed part

Reconstruct
graspable region
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Implicit Neural Representations

A mapping function E.g., x-y coordina
from spatial coordinates to values olo 5 8
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Implicit Neural Representations

A mapping function E.g., x-y coordinate — RGB value
from spatial coordinates to values YOIONN *~ e =

f:R" =Y
It can also be conditioned on additional input

f:R"XX =Y
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Advantages: Tancik et al. 2020]
» Continuous and memory-efficient
» End-to-end differentiable

» Adaptively allocate representation resources

—
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Implicit Neural Representations

Occupancy Network mescheder et al. 2019) Mmaps 3D coordinates to in 3D
reconstruction

Implicit occupancy function
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Approach

Grasp affordance

Input TSDF GIGA

3D reconstruction
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Approach

Grasp affordance

fo it —q,r w,

| S ' 3D location
(Grasp center)

Jg:pP— 0.
3D location
(Any)

3D reconstruction
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Approach

Input TSDF V 3D feature grid Projected 2D feature grids Structured feature grids C
zZ zZ
= Projection
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Approach

Structured feature grids C Grasp center t
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n q: grasp quality
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n mknt ation Grasp Selection

W : gripper width

3D Reconstruction

Query point p
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Experimental Setup - Scenarios

Packed objects (more occlusion) Piled objects (less occlusion)
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Quantitative Comparison

Geometry learning facilitates affordance learning

Continuity of implicit function enables higher precision
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Geometry Learning Facilitates Occluded Grasps

gt vies GIGA-AS Glen &= \\ = VGN (Breyer et al.)

»

failure
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Reconstruction Focuses on Graspable Parts
Ground truth GIGA-Geo GIGA
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Strengths

e Not require known object
models or multiple views

e [Deal with cluttered and
occluded scenes

° and
representation
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Weaknesses

3D reconstruction is only used as an
auxiliary task during training

o Reconstructed 3D information can be used for test-
time optimization or closed-loop control

GIGA relies on several assumptions

o Single fixed viewpoint — what about a mobile robot?

o Static scene and object

Unrealistic real-world scenario

o Evaluated only on tabletop scenarios




Future Directions

e Explore the potential of reconstructed 3D information
e [Extended to a mobile robot

e T[ested in more varied environments
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Summary

e Synergies between affordance and geometry GitHub Page

o Better grasp prediction, especially in occluded regions

o 3D reconstruction focuses on action-relevant parts
e Structured implicit neural representation

o and representation for both affordance and geometry

o Combine with
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