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Logistics

Office Hours

Instructor: 5-6pm Tuesdays (in person) or by appointment (in person or Zoom)

TAS:
Yifeng: Thursdays 10:30-11:30 am
Jeff: Thursdays 5:30-6:30 pm

Presentation Sign-Up: Deadline Tomorrow (EOD)

First three abstracts due: Monday 9:59pm (AlexNet, Mask-RCNN, YOLO)
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On the abstracts

e \What should be contained in the abstract?

1-2 sentences describing the problem

1-2 sentences explaining why the state-of-the-art is not enough for this, why it fails
1-2 sentences explaining the clever idea of this paper

1-2 sentences explaining how the idea is implemented

1 sentence about the experimental evaluation

O O O O O

e The entire abstract should be 5-7 sentences long. Be concise.
e We will run a plagiarism software on the abstracts to compare to the original
abstract.
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On the abstracts

AlexNet: e 1-2 sentences describing the
The paper presents a learning algorithm for image classification: prOblem

assigning semantic labels to images based on their content B A1

Prior work failed because they applied hardcoded features to represent ¢ 1 2 sentences explalnlng Why
each image, and these features were not optimal, and thus the the state-of-the-art is not

methods were not able to improve performance, or they used learned
features but trained on few images, because the models didn’t have

enough for this, why it fails

enough capacity (trainable parameters). _ . . o 1-2 sentences explaining ’[he
In this paper, the authors proposed to map directly input images to the i .
right label with a very large learnable model. They do not hardcode clever idea of this paper

features, instead they propose to learn the most optimal features to
represent the image by learning a large capacity (many learnable

e 1-2 sentences explaining how

oarameters) model bgsed ona large amoun! of training data . the idea is imp|emen’[ed
They implement their idea with a deep artificial neural network, trained

| with backpropagation using labeled images in ImageNet. ® 1 sentence about the
Their results were a large leap over all previous image recognition : :
methods and started the Deep Learning era. experlmental evaluatlon
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On reading scientific text

Google Scholar

® Articles Case law

= Google Scholar

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Al
Verified email at cs.toronto.edu - Homepage

Cited by

machine learning  psychology  artificial intelligence ~ cognitive science computer science Citations 599869
4 hindex 170
10-index 400
e CTEDBY  YEAR
Imagenet classification with deep convolutional neural networks Tag87 2012

AKrizhevsky, | Sutskever, GE Hinton
Advances in neural information processing systems 25

Deep learning 54666 2015
¥ LeCun, Y Bengio, G Hinton
Nature 521 (7553), 436-44

2015 2016 2017 2018 2019 2020 202

Dropout: a simple way to prevent neural networks from overfitting 37954 2014
N Srivastava, G Hinton, A Krizhevsiy, | Sutskever, R Salakhutdinov
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SEMANTIC SCHOLAR

A free, Al-powered research tool for scientific literature

image recognition

Y SemANTICSCHOLAR  image recognition Search Q

About 6,420,000 results for “image recognition”

Fields of Study v DateRange v  HasPDF  PublicationType v Author v Journals & Conferences v SortbyRelevance v = =

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
A Dosoutskiy L Beyer, +9 authors . Houlsby, - Computer Scence - ICLR - 22 October 2020

TLOR Vision Transformer (VIT) attains excellent results compared to state-of-the-art convolutional networks while
requiring substantially fewer computational resources to train. Expand

€65325 | POF - BViewPDFonav M Save A Alett 6Cie

Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, Andrew Zisserman  Computer Science  ICLR - 4 September 2014

TLOR This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image
recognition setting using an architecture with very small convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. Expand

€664577  PDF - BViewPDFonaXv WSave @ Alert 5Cite

Deep Residual Learning for Image Recognition
Kaiming He, X Zhang, Shaoaing Ren, Jian Sun - Computer Science - IEEE Conference on Computer Vision and Pattern.
10 December 2015

TLOR This work presents a residual learning framework to ease the training of networks that are substantially deeper
than those used Iy, and showing that these residual networks are
easier to optimize, and can gain accuracy increased depth.

€6100736 | @ PDF | EViewonlEEE W Save A Alert G Cite




What is your background?

e Machine learning?
e Deep Neural Networks?
e Computer Vision?
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Today’'s Agenda

e \What is Robot Perception?
e Robot Vision vs. Computer Vision
e |andscape of Robot Perception
e Quick Review

o Deep Learning (if time permits)

o Image formation and projective geometry (if time permits)
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What is Robot Perception?

Techniques that allow robots to make sense of the unstructured real world
extracting information from noisy sensor signals

A robot may need to perceive...

« Task-relevant information of objects and scene

« The progress and result of its own actions,
that may lead to failure

« Environment dynamics and other agents
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Robotic Sensors

Observing the physical world through multimodal senses
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Robotic Sensors

Observing the physical world through multimodal senses

2 Fisheye Cameras Multisense Head (3D Laser

Scanner & Stereo Camera)

Secure Wireless
Network Router

3.7-kilowatt-hour

Perception Computer (3
Intel Core i7 Processor)
lithium-ion battery

pack inductive Proximity Sensor
Robotiq 3-Finger Adaptive
30 degrees of Robot Gripper
freedom(DOF) - 24

hydraulic actuators
& 6 electric motors

System with ROS (Robot
Operating System)

Software — Linux Operating

Six-Axis Force/
Torque Sensor

Inertial Measurement Unit
(IMU)

Strain Gauge Pressure Sensor

[Source: HKU Advanced Robotics Laboratory]
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Robotic Sensors

Observing the physical world through multimodal senses

360 Fisheye C

16 Channel LIDAR e
(Upper)

RBGD Stereo Camera e

Stereo Cylindrical 5
Camera RGB Sensor

16 Ch | LIDAR
(Lower)
Microph

P

IMU Sensor

1 Channel LIDAR
(Back)

Position and
Velocity Encoders

1 Channel LIDAR
(Front)

[Source: JackRabbot, Stanford]

CS391R: Robot Learning (Fall 2022)



Robot Vision?
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= The Limits and Potentials of Deep Learning for Robotics. Niko Slinderhauf, Oliver
Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jiirgen Leitner, Ben Upcroft, Pieter
Abbeel, Wolfram Burgard, Michael Milford, Peter Corke (2018)

R O b O-t Vi S i O n VS . C O m p U -te r Vi S i O n o ﬁfg?zsgg:;otor Account of Vision and Visual Consciousness. Kevin O'Regan and Alva

[Detectron - Facebook Al Research] [Zeng et al., IROS 2018]

metrics: pixel accuracy, FP/FN... performance in a robotic task

1. Robot vision is task-oriented
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= The Limits and Potentials of Deep Learning for Robotics. Niko Slinderhauf, Oliver
Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jiirgen Leitner, Ben Upcroft, Pieter
Abbeel, Wolfram Burgard, Michael Milford, Peter Corke (2018)

R O b O-t Vi S i O n VS . C O m p U -te r Vi S i O n o ﬁfg?zsgg:;otor Account of Vision and Visual Consciousness. Kevin O'Regan and Alva

[Detectron - Facebook Al Research] [Zeng et al., IROS 2018]

2. Robot vision is embodied, active, and environmentally situated
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= The Limits and Potentials of Deep Learning for Robotics. Niko Slinderhauf, Oliver
Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jiirgen Leitner, Ben Upcroft, Pieter
Abbeel, Wolfram Burgard, Michael Milford, Peter Corke (2018)

R O b O-t Vi S i O n VS . C O m p U -te r Vi S i O n o ﬁfg?zsgg:;otor Account of Vision and Visual Consciousness. Kevin O'Regan and Alva

<
e
o

[Detectron - Facebook Al Research] [Zeng et al., IROS 2018]

2. Robot vision is embodied, active, and environmentally situated
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Robot Vision vs. Computer Vision

Robot vision is embodied, active, and environmentally situated.

e Embodied: Robots have physical bodies and experience the world directly. Their
actions are part of a dynamical system together with the environment and have
immediate feedback on their own sensation.

® Active: Robots are active perceivers. They should know what and why it wishes to
sense, and they should be able to choose what to perceive, and determine how, when
and where to achieve that perception.

e Situated: Robots are situated in the world. They do not deal with abstract
descriptions, but with the here and now of the world directly influencing the behavior
of the system.
[Brooks 1991; Bajcsy 2018]
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The Perception-Action Loop

- 4§

g ' autonomousexecution
S

[Levine et al. JMLR 2016]

CS391R: Robot Learning (Fall 2022) 17




The Perception-Action Loop

Perceive Perceive
Act
Act
é Act

Perceive

[Sa et al. IROS 2014] [Levine et al. JMLR 2016] [Bohg et al. ICRA 2018]
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The Perception-Action Loop

A key challenge in Robot Learning is to close the perception-action loop.

Perceive Perceive
Act

Perceive

[Sa et al. IROS 2014] [Levine et al. JMLR 2016] [Bohg et al. ICRA 2018]
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Today’'s Agenda

e |andscape of Robot Perception
e Quick Review
o Deep Learning (if time permits)

o Image formation and projective geometry (if time permits)
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Robot Perception: Landscape

What you will learn in the chapter of Robot Perception

1. Modalities: neural network architectures designed for different sensory modalities

2. Representation & Attention: representation learning algorithms and latest attention
mechanisms

3. Temporal Integration: state estimation tasks for robot navigation and manipulation

4. Interactive Perception: embodied perceptual learning, Embodied Al
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Robot Perception: Modalities

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
i (3 channels RGB)

Pixels (from RGB cameras)

Reaching Alignment Insertion

FN)

Time (ms)

[Source: Lee*, Zhu*, et al. 2018]

Time series (from F/T sensors)
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(X1, Y1, Z1)

(X2, Y2, Z2)

[Source: PointNet++; Qi et al. 2016]

Point cloud (from structure sensors)

[Source: Calandra et al. 2018]

Tactile data (from the GelSights sensors)
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Robot Perception: Modalities

How can we design the neural network architectures that can effectively process

raw sensory data in vastly different forms?

classification

(x1,91,21)—> MLP. Eoree
2.2, 22)—> ML Y

Max — MLP — Table?
(X Y Zn) —» MLP -

® More sensory modalities
- h> 5 in later weeks. ..
xn.yn.a.)»,m;’)
Week 2: 2D Object Detection Week 3: 3D Data Processing
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Robot Perception: Modalities

How can we design the neural network architectures that can effectively process

raw sensory data in vastly different forms?

Vision Transformer (ViT) Transformer Encoder

Class
Bird MLP
Ball
Car Head
— CAR ...
— TRUCK
— VAN

1

|

1

I

I

1

e ‘ Transformer Encoder ’ :

H H H ; 1
: ] i ) 3

O [ — eicveie Pa:;c,:'. l:;, :3?:1‘;‘)“ - @ @ @ @ﬁ i Lgltg;ggﬁd

FULLY [ I

1

I

I

I

1

P, \F °°°°°°°°°°°°°°°°°°°°° ) Iclsl:srgll?r:ﬂ:i];ing Linear Projection of Flattened Patches ]
Y L
FEATURE LEARNING CLASSIFICATION . . I I I ] l I I _‘
wEn DB RSEE
[Credit: Sumit Saha] L

Embedded
Patches

Week 4: Attention Architectures
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Robot Perception: Multimodality

How can we learn to fuse multiple sensory modalities together?

[The McGurk Effect, BBC]

Is seeing believing?

https://www.youtube.com/watch?v=2k8fHR9jKVM
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Robot Perception: Representations

A fundamental problem in robot perception is to learn the proper representations

of the unstructured world.

° ° °
Things... Engineering Knowledge...
My heart beats as if the world is dropping, a=dv
you may not feel the love but i do its a heart dt V & dV f(x)
breaking moment of your life. enjoy the times
that we have, it might not sound good but
one thing it rhymes it might not be romantic .
but i think it is great,the best rhyme i've ever /
heard.
Representation
A a8 sct, ¢ =fa%s 81
" e ct-at. 8t ot-4:- a’-
a _H A
u‘. & HB ond £ gl
c a 8 sl
A= il
at=CxHB amd 82=cxH. 7
0 0 ot fz = cxHB-ocAﬂﬂscx(HBwW/)’C"
5 5 o+ f2= C"' smol= &~

chyot - & Gt F, c‘r”‘ =
[Source: Stanford CS331b]
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Robot Perception: Representations

“Solving a problem simply means representing it so as to make

the solution transparent.”

Herbert A. Simon, Sciences of the Artificial

Our secret weapon? Learning ICLR | 2023

Eleventh International Conference on
Learning Representations

ICLR
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Robot Perception: Representations

“Solving a problem simply means representing it so as to make

the solution transparent.”

Herbert A. Simon, Sciences of the Artificial

What representations to learn”? How to learn them?
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Supervised Learning

s B\
1. Feed Forward Neural Networks
Input: Network: Output:
Afew > o » Representation Prediction -
numbers Encoder
-
2. Convolutional Neural Networks
Input: g
p Network: Output:
An image s » Representation Prediction <~
Encoder
\ J
@ B\
3. Recurrent Neural Networks
Input: Network:
Output:
Sequence il » Representation Prediction |[«-
Encoder
\ J
@ N\
4. Encoder-Decoder Architectures
Input: Network: Network: Output:
Image, Image,
Text, — i —» Representation —» oy —»  Text, (€t
Encoder Decoder
etc. etc.
& /
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Ground Truth:

Ground Truth:

Ground Truth:

Ground Truth:

Unsupervised Learning

Ve N
5. Autoencoder
Input: Network: Network:  Ground Truth:
Image, E
Text, —» e —»{ Representation — S - Exat?t copy :
i Encoder Decoder i ofinput |
. J
p
6. Generative Adversarial Networks
Throw away after training
Input: Network: Output: Network:
Noise Generator — ‘> Discriminator —» Prediction:
Image : Real or Fake
7'y
1
...... | p———
Real
Image |
| e
Reinforcement Learning
7. Networks for Actions, Values, Policies, and Models
Input: Network: Output: Ground Truth:
World Any . >
—> —> —> - -
State Sample Encoder Representation Action Reward
[6.5094, MIT]
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Robot Perception: Temporal Integration

Noisy Sensory Data

Physical State

Perception & Robot Control &
Computer Vision Decision Making

CS391R: Robot Learning (Fall 2022) 31
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Robot Perception: Temporal Integration

! ] i
e g ; g

physical
state
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Robot Perception: Temporal Integration

! ] ]
e g ; g

physical
state
[ o_o ] . '
= o P
Robot Control &

Decision Making
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Robot Perception: Temporal Integration

(A R A A A R A R AR B R B AR N RBE RN
! i

sensor signals

physical
state

| | Robot Control &
Decision Making

Localization

‘. i v'. ¢
.".‘
]2 ’\\'\ A\ *‘“\ v "
‘*’;' 3 {~ Ny m AL

Pose Tracking

Visual Tracking

L |
ma
Na

CS391R: Robot Learning (Fall 2022)



Robot Perception: Temporal Integration

|
sensor signals

physical
state

| | Robot Control &
Decision Making

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX

http://www.probabilistic-robotics.org/
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Robot Perception: Temporal Integration

State estimation methods: Bayes Filtering

Algorithm 1 The general algorithm for Bayes filtering
1: for each z; do
2 bel(z;) = [ p(ws|u, xy_1) bel(zi—1) doyy > transition update
3: bel(xy) = np(z|xs) bel (x;) > measurement update
4: end for each

Tt:state Zt:observation Ug:action  bel(xy): belief
p(a:t |ut, CUt—l) : transition model (motion model)

p(zt |xt) . measurement model (observation model)
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Week 4 Recursive State Estimation

Thu, Sept 15
« Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors. Rico

Divyam Rastogi, Oliver Brock (2018)

« Online Interactive Perception of Articulated Objects with Multi-Level Recursive

Robot Perception: Temporal Integration

+ Multimodal sensor fusion with differentiable filters. Michelle A Lee, Brent Yi, Roberto
Martin-Martin, Silvio Savarese, Jeannette Bohg (2020)
© Presenter:

o A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle
Applications. Hao Li

State estimation methods: Bayes Filtering

Tt:state Zt:observation Ut:action  bel(xy): belief

p(a:t |ut, CUt—l) . transition model (motion model)

p(zt |:Ct) . measurement model (observation model)

!

What if models are hard to specify? Learning Example: Particle Filter Localization
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Robot Perception: Embodied Al

Input-Output Picture (Susan Hurley, 1998)

CS391R: Robot Learning (Fall 2022)

Classical View of Perception

* Perception is the process of building an internal
representation of the environment

* Perception is input from world to mind, and action

is output from mind to world, thought is the
mediating process.

[Action in Perception, Alva Noé 2004]
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Robot Perception: Embodied Al

Embodied View of Perception

* Asthe active cat (A) walks, the other cat (P) moves
and perceives the environment passively.

* Only the active cat develops normal perception
through self-actuated movement.

* The passive cat suffers from perception problems,
such as 1) not blinking when objects approach,
and 2) hitting the walls.

Kitten Carousel (Held and Hein, 1963)
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Robot Perception: Embodied Al

Embodied View of Perception

a ¥ n Subjects asked to find a reference object among a
set of irregularly-shaped objects

Pebbles (James J. Gibson 1966)

Three groups

a. Passive observers of one static image (49%)
b. Observers of moving shapes (72%)

c. Interactive observers (99%)

« The ability to condition input signals with actions is
crucial to perception.
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Robot Perception: Embodied Al

Take-home messages

» Perceptual experiences do not present the sense in the way that a photograph does.

» Perception is developed by an embodied agent through actively exploring in the

physical world.

« “We see in order to move; we move in order to see.” — William Gibson
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Robot Perception: Embodied Al

Week 5 (Tue) — Active & Interactive Perception: How can embodied agents (robots)

improve perception based on visual experiences through (inter)active exploration?

4 scene observation completion h

Whereto : \ )

Iooker::x'?? ) a g

. O £ | 2l

C cim [ 2

% ] E —$ ﬁ

. i, of, oot “n_)y'l-l' ?
View | o* " Amodal
SeleCtion 4 object observation completion h ReCOgnition
How t = — ”

man?;\l,JI:te? E, .. // %\ 5 Dp

fad |V w o (W@

: :ﬁ'ﬁ N

$ ° == ° [Yang et al. 2019]

- J

[Jayaraman and Grauman 2017]
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Research Frontier: Closing the Perception-Action Loop

v NN

Perception Robots Action
How robots develop better How robots’ intelligent behaviors
understanding of their surroundings are guided by their interactive
from embodied sensorimotor perception

experiences
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Visual Processing Methods

monkey?

pooling classification
5373 j RY AR (%
s i

B

Staged Visual Recognition Pipeline
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What is new since 1980s?

1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK

Hidden Multiple hidden layers
layer process hierarchical features

Output:
‘George’
AN 417‘/2&&
& /94 SN2 é
TSN N / Identif
Identi //‘\\:/ l:i:altiyons
light/dark or features
pixel value Identify Identify Identify
Links carry signals \ edges combinations features
from one node ~——3 of edges
to another, boosting - -a -
damping th
ke e 2.t HEF "Hs JE0 ﬂl
ks weight. e HEl ~R* BE

End-to-end Deep Learning




Quick Review of Deep Learning: Artificial Neurons

Biological Neuron versus Artificial Neural Network

impulses carried
towa:d cell body

branches
dendrites of axon
\é_//‘ axon Inputs ~

L —

nucleus -\ terminals Output
| |
mpulses carried Sum Activation
away from cell body Function
cell body
Biological Neuron Artificial Neuron
Computational building block for the brain Computational building block for the neural network

Note: Many differences exist — be careful with the brain analogies!

[Dendritic Computation, Michael London and Michael Hausser 2015]
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Quick Review of Deep Learning: Convolutional Networks

CONV 1
[ max
Eool
11 x 11 3x3
s=4 $§=2
227X227X3 55X 55X 96 27X27X96 27X27X256 13X13 X256

same

13X 13 x 384 13X13Xx384 13X 13X 256 6x6Xx256 0216 4096 4096 e

1000

https://indoml.com

CS391R: Robot Learning (Fall 2022)
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Quick Review of Deep Learning: Fully-Connected Layers

32x32x3 image -> stretch to 3072 x 1

input activation
) Wax )
1] ) —> —> 1 [O [
3072 . 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

What is the dimension of W/?

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

32x32x3 image -> preserve spatial structure

4

32 height

3 depth

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

32x32x3 image

/ 5x5x3 filter

32 £/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
A

|

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

Filters always extend the full

— e depth of the input volume
32x32x3 image /

/ 5x5x3 filter

32

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
A

w |

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

32x32x3 image

R
/ V 5x5x3 filter w

-

t ™~ 1 number:

the result of taking a dot product between the
A filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Sl

wlz +b

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

activation map

32x32x3 image

e

/ 5x5x3 filter
=

¢>O convolve (slide) over all

spatial locations
A

Wl

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

consider a second, green filter

e 32x32x3 image activation maps

/ 5x5x3 filter
=
@>® convolve (slide) over all

spatial locations
A 28

28

o
-_—

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Convolutional Layers

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

/ .
Convolution Layer
A A

3 6

activation maps

28

We stack these up to get a “new image” of size 28x28x6!

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Pooling Operations

Max Pooling Avg Pooling

3.3

43 |53

https://indoml.com
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Quick Review of Deep Learning: Activation Functions

Sigmoid 1 Leaky RelLU )

o(z) = i max(0.1z, x)

tanh Maxout

tanh(x) = - max(w{ x + b1, wd x + b)

RelLU | / ELU N_/V
ax(0 T a2 f)

m X( 7w) " ) {a(em — 1 G20 - - "
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Quick Review of Deep Learning: CNN Architectures

LeNet ResNet

50 layers

101 lagers

152 tayers

T

arg oo

1x1conv, 2048
w2
fc 1000

9216

1000
Softmax

Layer o Le. T, s e | O e 1 " v pinint )
Digit image Net - 5 H ( )i ( K '
CONV1 S H Soxlill - S HE P . ®
Qo 0B~ o8~ sl g8 83 || o~ o N
CONV2 avg §g 338 ||/s38|||s38||! S€5i| 88§ || 88§ §~95 g8¢g||||88¢g||: 558 [ 858 ||| 85
—rc FC sl3ls83 sis sEslelsEs sgslell szl s8sil)s8s i
N 2N gzl 223 § fel,! g LY galizzslel 22
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Quick Review of Deep Learning: Optimization

X Backpropagation

Stochastic Gradient Descent (SGD)

learning rate

f

0 =0 —nVyJ(0;2D;yD)

. Y N\

b g G are local gradients h weights input label
ox Oy

s’:’: YA
22
Q\*\:::’o? p
.Q O e V% 9,

S

RO,

a_L is the loss from the previous layer which
0z has to be backpropagated to other layers
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Quick Review of Deep Learning: Features

Low-Level| |Mid-Level| [High-Level Trainable
Feature Feature Feature Classifier

4

[Source: Stanford CS231N]
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Quick Review of Deep Learning: Implementation

[ ] import torch
from torch import nn

class MNISTClassifier(nn.Module):

def _init__ (self):
super (MNISTClassifier, self)._ init_ ()

# mnist images are (1, 28, 28) (channels, width, heig
self.layer 1 = torch.nn.Linear(28 * 28, 128)
self.layer 2 = torch.nn.Linear(128, 256)

self.layer 3 = torch.nn.Linear(256, 10)

PyTorch

def forward(self, x):
batch_size, channels, width, height = x.size()

# (b, 1, 28, 28) -> (b, 1%28%28)
X = x.view(batch size, -1)

H*

layer 1
= self.layer 1(x)

F' TensorFlow

= self.layer 2(x)
X = torch.relu(x)

»®

L

H*

layer 3
= self.layer 3(x)

»®

# probability distribution over labels
x = torch.log_softmax(x, dim=1)

PyTorch tutorial by Yifeng

return x
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Quick Review of Deep Learning: Resources

Online Courses
« (CS231N: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu/

«  MIT 6.5191: Introduction to Deep Learning

http://introtodeeplearning.com/

Textbooks:

* Deep Learning. lan Goodfellow, Yoshua Bengio, Aaron Courville

http://www.deeplearningbook.org/
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Quick Review: Image Formation - Pinhole Camera Model

slides credit to Prof. Savarese
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Quick Review: Image Formation - Pinhole Camera Model

slides credit to Prof. Savarese
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Evolution of the Eye

Lens

hamb | Retina
| ‘ S \ Cornea ﬁqueous
Photoreceptors | ~ S umor

{ | |
Nerve | { [ | [ \
\ fl | ‘ 2 J./>Cornea
I / [ g Optic \I .
| [ ris
| | | Lens WERZ / ="
Fems Retina itreous

photoreceptors/ Transparent
retina humor

Pin Hole Model

+ More than 50% of the human cortex
“involved” in vision!
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First one to do it (that we know about...)

illum 1n tabula per radios Solis, quam in ceelo contin-
git:hoc eft,fi in ceelo fuperior pars deliquii patiatur,in
radiis apparebit inferior deficere,vt ratio exigitoptica.

Leonardo da Vinci (1452-1519)
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Pinhole Camera Model

image
plane

f = focal length

pinhole

" virtual

image

o = aperture = pinhole = center of the camera
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Pinhole Camera Model

Derived using similar triangles
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Pinhole Camera Model

) X
P'=[x’, f]!

—
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Digital Image

J
Retina plane / P
—> o
o
k’
i .,
v J
v i Digital image
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Offset to Image Center

(x,7,2) > (f =+c_, f y+c )
Z

v Digital image Projective Transformation
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Homogeneous Coordinates

E->H
N T
(z,y) = | v (r,y,2) = y
1 z
1
homogeneous image homogeneous scene
coordinates coordinates

 Converting back from homogeneous coordinates

H>E

= (z/w,y/w, z/w)

[ Y ] = (z/w,y/w)

w

E ne 8
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Projective Transformation with Homogeneous Coordinates

-fwx+cxz | fCB O Cx O & /Ph
B'=| fyy+c,z |=[ 0 f ¢ O a_l
<

. [0 0 1 off 7] I[Eq8l

Homogenous Euclidian fa: 0 c, O

A~ - - > K=| 0 fy ¢ O

p! g X Yy 00 1 0

n = P'=(fs +Cxafy +Cy)
4 4
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Camera Lenses

/%/

slides credit to Prof. Savarese

CS391R: Robot Learning (Fall 2022)




Problem: Radial Distortion

No distortion

Pin cushion

Image magnification decreases
with distance from the optical axis
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Problem: Tangential Distortion

Lens and sensor are parallel Lens and sensor are not parallel

(\ Cameralens ACamera lens

Vertical plane Vertical plane

amera

sensor Camera
sensor
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Modeling Distortion: Plumb Bob Model

2t1 T Yo + to (r? + 222) )

Pt =D - (14 kar? + kar* + k3r®) + (
( ) tl (7"2 + zyg) + 2k2a;cyc

Radial distance T2 — 33% + y%

Distortion parameters d — (kl 3 kz, kg ) tl g tz)
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Quick Review of Projective Geometry: Resources

CTL AN N VLA
SECOND EDITION

Online Course Multiple View
« (CS231A: Computer Vision Geometry

. . in computer vision
http://vision.stanford.edu/teaching/cs231a _autumniii12/lecture/ _, Seiay

Textbook:

* Multiple View Geometry. Richard Hartley and Andrew Zisserman (some

content: https://www.robots.ox.ac.uk/~vgg/hzbook/) Richard Hartley R e
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Resources

Related courses at UTCS
o (CS342: Neural Networks

« (CS 376: Computer Vision

« (S 378 Autonomous Driving

» (S 393R: Autonomous Robots

» (CS394R: Reinforcement Learning: Theory and Practice

Extended readings:

» Action-based Theories of Perception, Stanford Encyclopedia of Philosophy

e Action in Perception, Alva Noé
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https://philkr.github.io/cs342
https://www.cs.utexas.edu/~huangqx/CS376_Computer_Vision.html
https://amrl.cs.utexas.edu/CS378-F1Tenth-Autonomous-Driving/
http://www.cs.utexas.edu/~pstone/Courses/393Rfall18/
http://www.cs.utexas.edu/~pstone/Courses/394Rfall19/
https://plato.stanford.edu/entries/action-perception/
https://mitpress.mit.edu/books/action-perception

