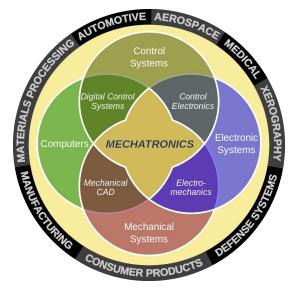
Fall 24

DIGITAL ELECTRONICS IN ROBOTICS

Roberto Martin-Martin

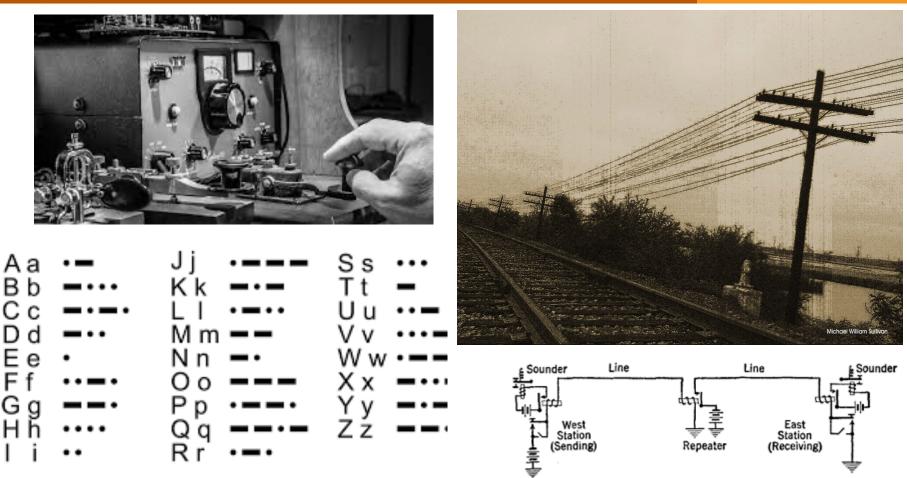
Assistant Professor of Computer Science


Recap

- Ohm's Law
- Kirchhoff's (current/voltage) Law
- Resistance, Capacitor, Inductor, Switches/Fuses
- Analysis of analog circuits
- Resistors in series and parallel
- RC circuit: charge and discharge
- RL circuit

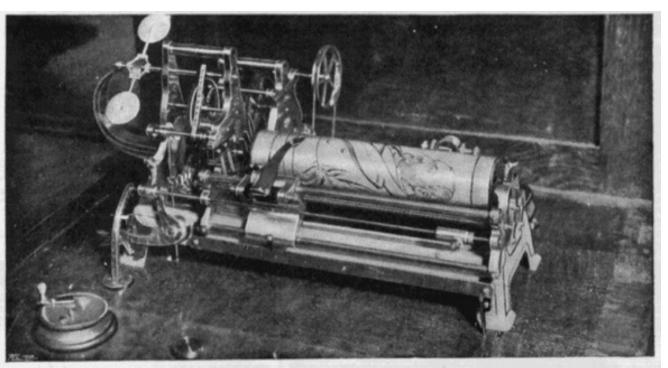
Common Topics in Mechatronics Course

- Electronic Circuits & Components
- Semiconductor Electronics
- System Response
- Analog Signal Processing using OpAmps
- Digital Signals & Logic
- Microcontroller Programming & Interfacing
- Data Acquisition
- Sensors
- Actuators (motors/gears)
- Component control methods (Bang-bang, PID, etc.)
- System control architectures (state machines)

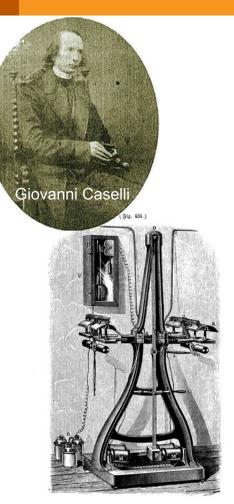


What will you learn today?

- What are digital signals and logic and why do they matter?
 - High level overview...
 - ...with some practical considerations sprinkled in
- How do we
 - 1. Communicate digital signals?
 - 2. Represent alphanumeric data using digital signals?
 - 3. How do we perform calculations with digital signals?
 - Logic Circuits
 - Boolean Algebra

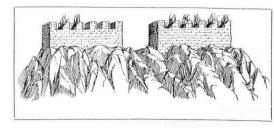


RBT350 – GATEWAY TO ROBOTICS



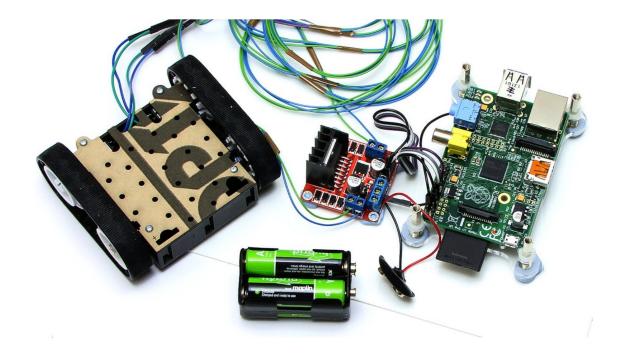
The Fax Machine

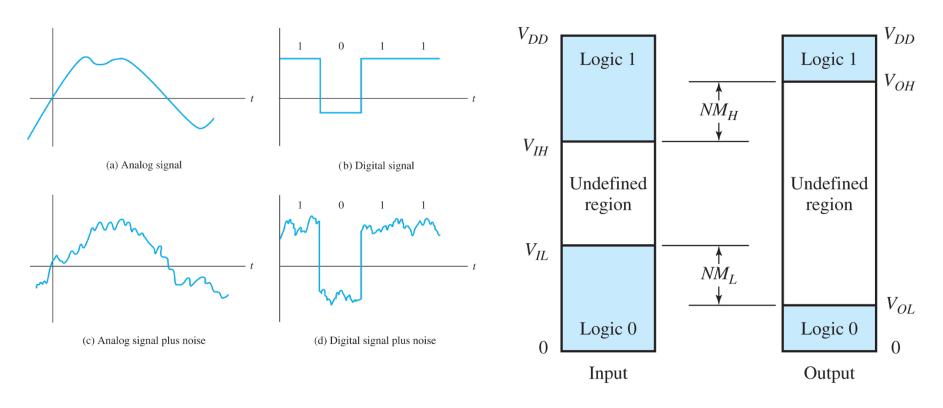
The transmitter in operation at the New York Herald office, showing Croker being telegraphed to the Chicago Times Herald, 1000 miles away.



Does digital communication need to be binary?

- Ancient Greeks used a different system
 - Base what?
- The system was called Phryctoria
- Two groups of torches on towers at the top of some mountains
- They communicated the fall of Troy with it



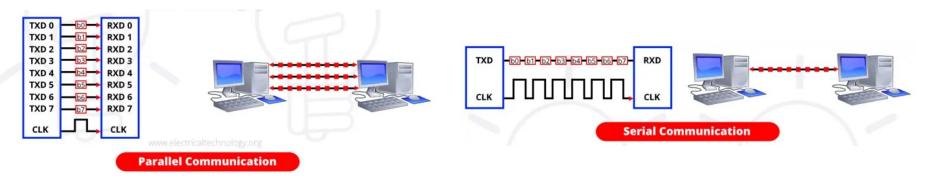


In Robotics

Defining a bit (0 or 1) using an analog signal

Advantages of Digital Over Analog

- 1. Minimizes need to accurately model the analog circuit
- 2. Less susceptible to noise (robust)
- 3. Digital circuits are easier and cheaper than analog circuits.
- 4. Hardware implementations are more flexible
- 5. Cross-talk issues are minimized.
- 6. Encryption and compression are possible.
- 7. Can employ error detection and correction in the algorithm.
- 8. Modern computers enable sufficient digital fidelity.
- 9. Etc. etc. etc.


Some Definitions

- Bit: single binary digit (0 or 1)
 - **Positive logic**: 1=higher voltage & 0-lower voltage
- Digital word: collection of bits
 - Nibble: collection of 4 bits
 - Byte: collection of 8 bits
- Bit order
 - LSB: Least significant bit represents the lowest valued bit (typically on the right)
 - MSB: Most significant bit represents the greatest valued bit (typically on the left)

How do we communicate digitally?

- **Parallel transmission**: *n*-bit word transferred on *n* wires (1 wire for each bit).
 - Includes a common or ground wire.
- Serial transmission: successive bits of an *n*-bit word transferred one after the other on a single pair of wires.
 - Requires a coordinated clock

How do we represent numbers/symbols with 1's and 0's?

• Base-2, Base-10, Octal (Base-8) Hexadecimal (Base-16)

	e a	n - 1			((n - 1	i n			ctal		decimal
256	128	64	32	16	8	4	2	1	0	000	0	0000
									1	001	1	0001
2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2	010	2	0010
Z	Z	Z	Z	Z	Ζ	2	Z	Z	3	011	3	0011
									4	100	4	0100
									5	101	5	0101
									6	110	6	0110
			~					Byte	7	111	7	0111
			C	I A				Dyte			8	1000
											9	1001
			12	140							A	1010
			12	10							B	1011
											C	1100
		8	421	842	1						D	1101
											E	1110
		1	100	101	0						F	1111
								Nibbles				

https://pollev.com/robertomartinmartin739

The (non) magic behind base-10

• Why do we use base-10?

Using numbers to represent letters and symbols: ASCII Table

ASCII TABLE

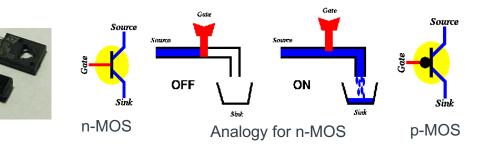
Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i i
10	А	[LINE FEED]	42	2A	*	74	4A	J	106	6A	i
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	- C.	77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	Ν	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Ρ	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r i
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	v
26	1A	[SUBSTITUTE]	58	ЗA	1	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	١	124	7C	- É
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
						-					

- 8b per character
- Other codes
 - EBDIC
 - UNICODE
 - etc.

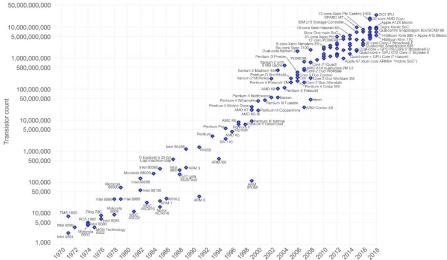
https://pollev.com/robertomartinmartin739

Exercise

- Write "hello" in ASCII in binary
 - 1. 01001000 01100101 01101100 01101100 01100000
 - 2. 11001000 01100101 01101100 01101100 01101111
 - 3. 01001000 01100101 01101100 01101100 01101111
 - 4. 01001000 01100101 01101101 01101101 01101111


How do we get from binary signals to calculation?

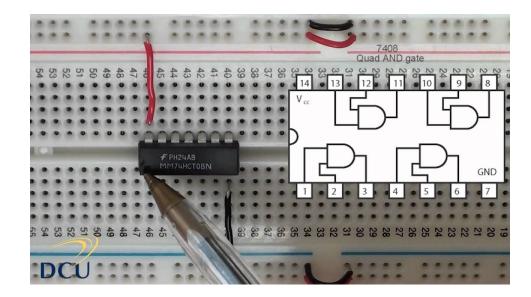
- Logic Circuits
 - A fundamental building block of to enable digital circuits to perform calculations.
 - Perform logical operations using binary inputs to produce binary outputs.
 - Transistors enable digital logic gates
 - 7 fundamental logic gates.
 - (BUF), AND, OR, XOR, NOT, NAND, NOR, and XNOR


Transistors

- Have three connections
 - Source, gate, sink.
- Todays chips have >1 million transistors per square millimeter
- Simple faucet analogy
 - When the gate is ON (value 1), then the sink connected to the source and transistor is ON.
 - When the gate is OFF (value 0), then the no flow from source to sink and transistor is OFF.
- Today's transistors are CMOS
 - Complementary Metal Oxide Semiconductors
- Two types:
 - n-MOS if the gate has a positive voltage, transistor is ON
 - p-MOST if the gate has a positive voltage, the transistor is OFF

Moore's Law – The number of transistors on integrated circuit chips (1971-2018) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

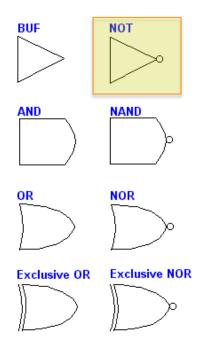
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

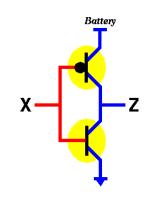


Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic Our World in Data

How do Logic Elements look like?

- Integrated circuits
 - These enable us to use simple logic chips for simple tasks.
 - Not everything needs a microcontroller.

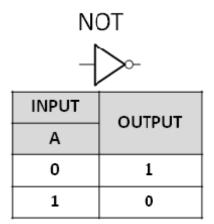




How do we get from binary communication to calculation?

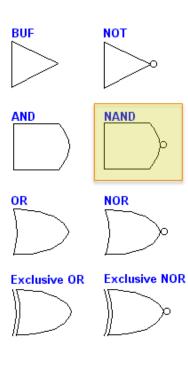
- Logic Circuits
 - A fundamental building block of to enable digital circuits to perform calculations.
 - Perform logical operations using binary inputs to produce binary outputs.
 - Transistors enable digital logic gates
 - 0 False realized by a +5V
 - 1 True realized by a +0V
 - 7 fundamental logic gates.
 - BUF, NOT, AND, NAND, OR, NOR, XOR, and XNOR

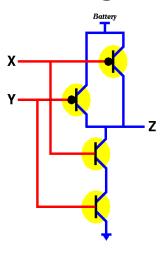
The NOT (Inverter) Logic Gate



If X=0:

•


•


- bottom n-transistor is OFF
- top p-transistor is ON
- Z is 1
- If X = 1
 - top p-transistor is OFF
 - no flow into the n-transistor even though it is ON
 - Z is 0

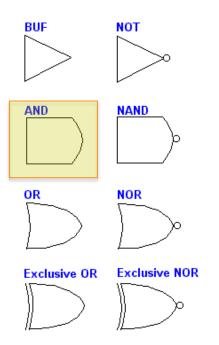
Truth Table

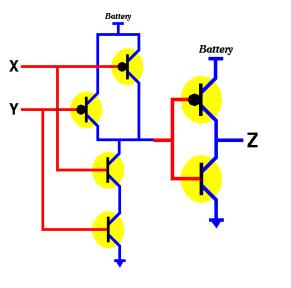
The NAND (not AND) Logic Gate

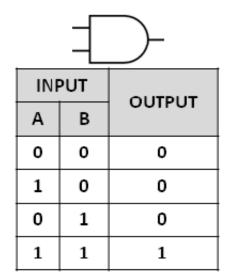
- If X=0 and Y=0
 - Both the bottom transistors are OFF
 - Both the top transistors are ON
 - Electricity will flow to Z which is ON
- If X = 1 and Y = 0
 - Then a circuit similar to OR exists with X
 - Same with Y
 - Z is 1

– Etc.

.

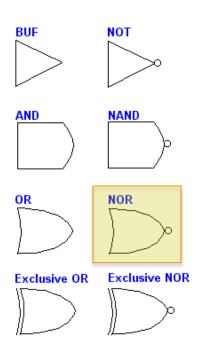

٠

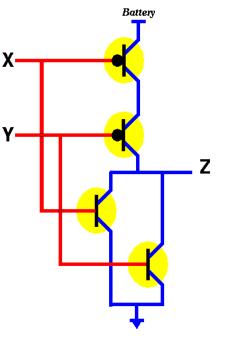

.


		\rightarrow
INF	DUT	OUTPUT
A	В	001701
0	0	1
1	0	1
0	1	1
1	1	0

Truth Table

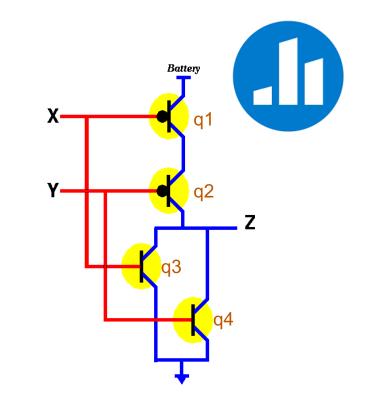
The AND Logic Gate




Truth Table

• Combine the NAND and the NOT gates.

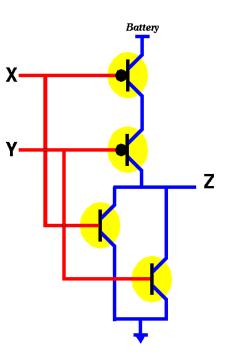
The NOR Logic Gate

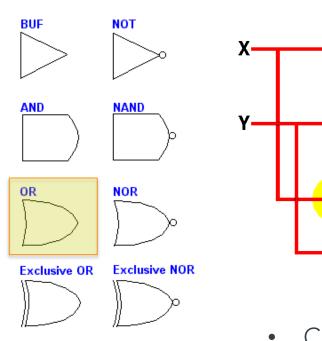

	_	\rightarrow
INF	DUT	OUTPUT
Α	В	001201
0	0	1
1	0	0
0	1	0
1	1	0

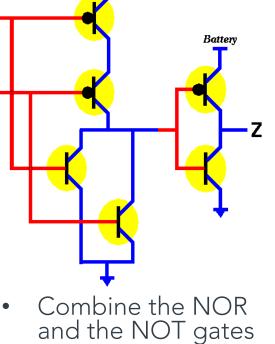
Truth Table

https://pollev.com/robertomartinmartin739

Exercise

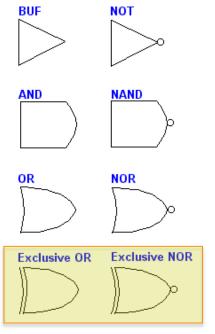

- What transistors are ON if X=1 and Y=0 in the following NOR logic gate?
- What is then the value at z?


Exercise


• What is the truth table of the NOR gate?

Battery

The OR Logic Gate

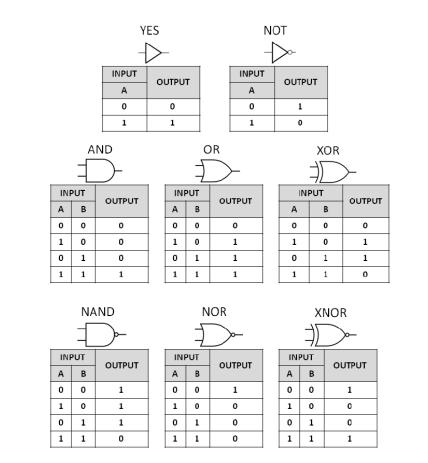


		\rightarrow
INF	PUT	OUTPUT
A	В	001201
0	0	0
1	0	1
0	1	1
1	1	1

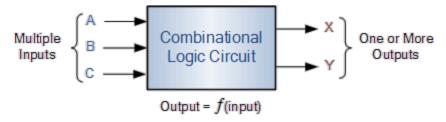
Truth Table

The XOR (eXclusive OR) and XNOR Logic Gates

IN	PUT	OUTPUT			
Α	В	001201			
0	0	0			
1	0	1			
0	1	1			
1	1	0			


IN	PUT	OUTPUT					
Α	В	001201					
0	0	1					
1	0	0					
0	1	0					
1	1	1					

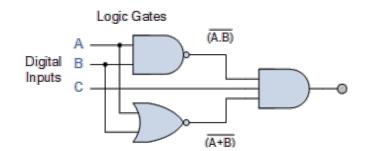
Truth Tables


Summary of Truth Tables

- Using transistors, we can create the foundational logic blocks to then construct higher functions.
- These functions are critical for
 - Core understanding of microcontrollers
 - IC integration
 - PLC programming

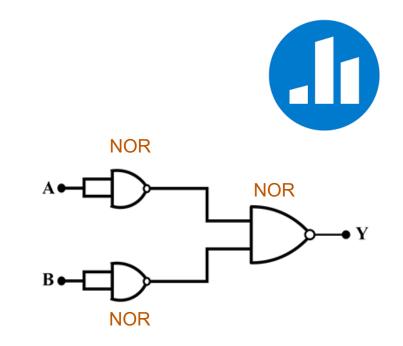
Combinatorial Logic Circuits

- Combinatorial Logic Circuits: Memoryless digital logic circuits whose output at anytime only depends on the combination of its inputs.
 - Akin to Functional Programming There are no stored internal states
 - There is no feedback previous output(s) are not known.
 - Built from the foundational logic gates presented above.
- Three ways to specify
 - Boolean Algebra: Uses only '0' and '1' and logic operators. CLCs formed resulting from algebraic expressions.
 - Truth Tables: A concise table showing all possible outputs given all possible combinations of inputs.
 - Logic Diagram: Graphical representation of the CLC showing wiring and connections between each individual logic gate.
- Also known as Decision Making Circuits



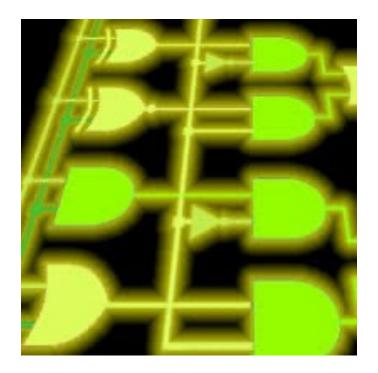
Boolean Expression $Q = \overline{(A.B)}.(\overline{A+B}).C$

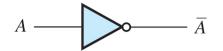
Typical Truth Table


$\begin{array}{ccccccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{array}$	С	В	А	Q
0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0	0	0	0	0
0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0	0	0	1	0
$\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array}$	0	1	0	0
1 0 1 0 1 1 0 0	0	1	1	0
1 1 0 0	1	0	0	1
	1	0	1	0
1 1 1 0	1	1	0	0
	1	1	1	0

https://pollev.com/robertomartinmartin739

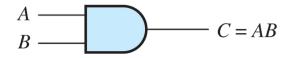
Exercise


- What is the truth table of the given circuit?
- What is it equivalent to?


Introduce Boolean Algebra

- Succinctly represent a logic gate or truth table as an *algebraic expression*
- The algebraic properties of the expression must be defined and strictly followed
 - What are the symbolic representations
 - What are operations
 - What are valid transformations on expressions

Boolean Algebra: NOT Gate

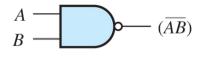


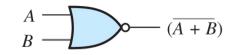
Boolean Algebra: AND Gates

A	В	C = AB
0	0	0
0	1	0
1	0	0
1	1	1

(a) Truth table

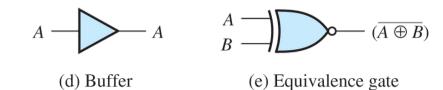
- AA = A
- A1 = A
- A0 = 0
- $A\overline{A} = A$
- AB = BA
- A(BC) = (AB)C = ABC




Boolean Algebra: OR Gates

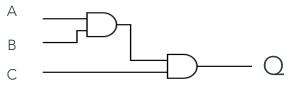
A	В	C = A + B	
0	0	0	• $A + 0 = A$
0	$\frac{1}{0}$	1	• $A + 1 = 1$
1	1	1	• $A + \overline{A} = 1$
	(a) Tru	th table	• $A + A = A$
			• $A(B+C) = AB + AC$
$\begin{array}{c} A \\ B \end{array}$		C = A + B	• $(A + B) + C = A + (B + C) = A + B + C$

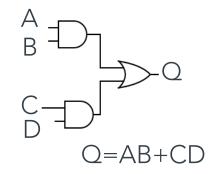
Other logic gates



(a) NAND gate

(c) XOR gate

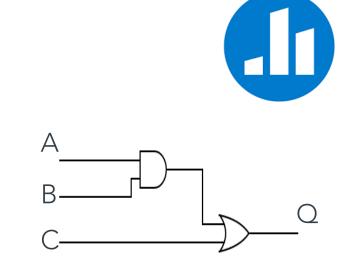



Summary of Properties in Boolean Algebra

1.	0 + X = X	
2.	1 + X = 1	
3.	X + X = X	
4.	$X + \overline{X} = 1$	
5.	$0 \cdot X = 0$	
6.	$1 \cdot X = X$	
7.	$X \cdot X = X$	
8.	$X \cdot \overline{X} = 0$	
9.	$\overline{\overline{X}} = X$	
10.	X + Y = Y + X	Commutative law
11.	$X \cdot Y = Y \cdot X$	feelinnaarve law
12.	X + (Y + Z) = (X + Y) + Z	Associative law
13.	$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$	J
14.	$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$	Distributive law
15.	$X + X \cdot Z = X$	Absorption law
16.	$X \cdot (X + Y) = X$	
17.	$(X+Y) \cdot (X+Z) = X + Y \cdot Z$	
18.	$X + \overline{X} \cdot Y = X + Y$	
19.	$X \cdot Y + Y \cdot Z + \overline{X} \cdot Z = X \cdot Y + \overline{X} \cdot Z$	

-

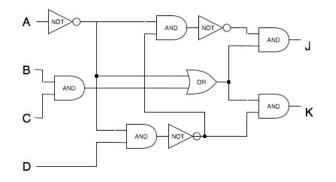
Q=ABC



https://pollev.com/robertomartinmartin739

Exercise

• What is the algebraic expression of the given circuit?



71

https://pollev.com/robertomartinmartin739

Exercise

• What is the algebraic expression of the given circuit?

Conclusions

- From analog voltage to abstract Boolean algebra in one lecture!
- Digital communication has been understood as necessary since ancient times → clean signal!
- The transistor enabled the use of digital concepts to make decisions using combinations of logical gates.
- We can design decision making circuits using
 - Boolean Algebra
 - Truth Table Analysis
 - Looking at the Combinatorial Logic Circuits
- Common Decision-Making Circuits are commonly found in robotics in ICs to perform common functions.
- Next up: State machines (~CLCs + memory)