
STATE MACHINES

Roberto Martin-Martin

Assistant Professor of Computer Science

RBT350 – GATEWAY TO ROBOTICS

What will you learn today?

• What is a state machine?
– Connection to combinatorial logic

– When do we use state machines in robotics?

• Types of Finite Machines

• Deterministic Finite Automation (DFA)

• Tools for designing/implementing FSMs

• Other types of machines
– Petri Nets

– Hybrid Automata

RBT350 – GATEWAY TO ROBOTICS

Combinational Logic vs. State Machines

• Previous: combinational logic
– input → output
– nothing depends on the past!

• Today: (Finite) state machines
– like combinational logic

WITH MEMORY
– the memory is called “internal state”
– FSMs take inputs and produce outputs,

but outputs depend on the inputs AND
the internal state

– Apart from the “digital” role of
processing inputs into outputs, they
perform actions in robotics

FSM

internal state

RBT350 – GATEWAY TO ROBOTICS

What is a Finite State Machine (FSM)?

• Consider a vending machine

RBT350 – GATEWAY TO ROBOTICS

What is a Finite State Machine?

• Declared in patents to show a robot’s Concept of Operation (ConOp)

Link to Patent

https://patents.google.com/patent/US8954192B2/en

RBT350 – GATEWAY TO ROBOTICS

What is a Finite State Machine?

• And FSMs can be embedded in other FSMs

RBT350 – GATEWAY TO ROBOTICS

Hierarchical Finite State Machines

RBT350 – GATEWAY TO ROBOTICS

*Clear example, but there are
better ways to do this.

• Process digital inputs into digital
outputs with memory of the past
inputs!

• Behaviors in robots can be
combined using state machines

• Way of composing skills

RBT350 – GATEWAY TO ROBOTICS

Definitions

• Finite State Machine (FSM): A reactive system whose response to a particular stimulus
(a signal, or a piece of input) is not the same on every occasion, depending on its
current “state”

• The system can be in exactly one state at a given time

• It is composed of a quintuple (𝑆, 𝑠0, Σ, 𝑇, 𝑠𝑔)
– States (S): The finite (and non-empty) set of possible values
– Initial State s0: The initial state of the machine s0
– Alphabet ∑: A finite (and non-empty) set of possible inputs
– State Transitions Function, T: Describes how ∑ changes the state s. 𝑺 × 𝚺 → 𝑺
– Final State(s) (𝑠𝑔): A finite set (and possibly empty) subset of S
– We can also define O: set of possible outputs

RBT350 – GATEWAY TO ROBOTICS

Example: Ticket Machine

• Σ (m, t, r) : inserting money, requesting ticket,
requesting refund

• S (1, 2) : unpaid, paid
• s0 (1) : an initial state, an element of S.
• T: transition function: δ : S x Σ → S
• F : empty
• O (p/d) : print ticket, deliver refund

States (S): finite (and non-
empty) set of possible
values

Initial State s0: initial
state of the machine s0

Alphabet ∑: A finite (and
non-empty) set of
possible inputs

State Transitions
Function, T: Describes
how ∑ changes the state
s. 𝑺 × 𝚺 → 𝑺

Final State(s) (𝑠𝑔): A
finite set (and possibly
empty) subset of S

O: set of possible outputs

RBT350 – GATEWAY TO ROBOTICS

Representing a FSM

RBT350 – GATEWAY TO ROBOTICS

Example: Traffic Light (open loop example)

• States: Green, Yellow, and Red

• Initial State: Won’t matter in the long run. Let’s go with
Green.

• Final States: Lights run indefinitely*, So no final state(s)

• Alphabet: Positive integers to represent minutes
between 0 and 3

• Transitions:
– When light is green, wait 2 minutes, then go to Yellow

– When Yellow, wait 1 minute, then go to Red

– When red, wait 3 minutes, then go to Green

*simplified open loop solution that neglects initialization and
multilight coordination.

RBT350 – GATEWAY TO ROBOTICS

Exercise

• What state machine would
represent the traffic light?

green yellow

red

RBT350 – GATEWAY TO ROBOTICS

Types of FSMs

Moore Machine
• Output is only function of state

Mealy Machine
• Output is function of the state and the input

• The output is produced during the transition

• Often simpler diagrams (fewer states)

Output
(not all states have

to have outputs)

State

Transition

Transition

Output
(not all states have

to have outputs)

State

RBT350 – GATEWAY TO ROBOTICS

Input, Output and Internal State in a Moore Machine

[credit to K. Bala, Cornell CS]

RBT350 – GATEWAY TO ROBOTICS

Moore Machine – Output depends only on the present state.

• Example:

– Input: 11

– Transition: δ (q0,11) → δ(q2,1)→q2
– Output: 000

RBT350 – GATEWAY TO ROBOTICS

Exercise

• In the given Moore FSM, what is
the output if the input is 10010?

• What is the minimum number of
bits to represent the state of this
FSM?

RBT350 – GATEWAY TO ROBOTICS

Input, Output and Internal State in a Mealy Machine

RBT350 – GATEWAY TO ROBOTICS

Exercise

• In the given Mealey FSM, what is
the output if the input is 10010?

• What is the minimum number of
bits to represent the state of this
FSM?

RBT350 – GATEWAY TO ROBOTICS

Designing a FSM

• Draw a state diagram

• Write output and next-state tables

• Encode states, inputs, and outputs as bits

• Determine logic equations for next state and outputs

• Draw the circuit

RBT350 – GATEWAY TO ROBOTICS

Example: Building a Circuit for a Serial Adder

• least-significant-bit first (lsb)

• Mealey FSM

RBT350 – GATEWAY TO ROBOTICS

Example: Building a Circuit for a Serial Adder

• least-significant-bit first (lsb)

RBT350 – GATEWAY TO ROBOTICS

Example: Building a Circuit for a Serial Adder

• least-significant-bit first (lsb)

RBT350 – GATEWAY TO ROBOTICS

Example: Building a Circuit for a Serial Adder

• least-significant-bit first (lsb)

RBT350 – GATEWAY TO ROBOTICS

How do we program FSM in Robotics?

• Introducing ROS (Robot Operating
System)

• Set of software libraries and tools
that help you build robot
applications

• System that intercommunicates
processing units (ROS nodes)

RBT350 – GATEWAY TO ROBOTICS

ROS

RBT350 – GATEWAY TO ROBOTICS

How do we program FSM in Robotics?

• SMACH in ROS

• Tools to create FSM
– Formal language

• Create states
– What is the action in each

state?

• Define transitions

• Build a machine

– Visualization

– ”Executor”

RBT350 – GATEWAY TO ROBOTICS

Benefits of FSM

• Separates the control logic (links) from the
functionality (nodes)

• The control logic can be expressed concisely as a
graph

• Provides an easy way to handle control problems
such as:
– fork/join

– randomness

– timeouts

• Easy way to trace/monitor execution

RBT350 – GATEWAY TO ROBOTICS

Types of FSMs

• Deterministic Finite Automaton

• Non-Deterministic Finite Automaton

RBT350 – GATEWAY TO ROBOTICS

Markov Chains

• Random FSMs are directly related to
Markov Chains

• A Markov chain or Markov process is a
stochastic model describing a sequence
of possible events in which the
probability of each event depends only
on the state attained in the previous
event

– 𝑝 𝑠𝑡+1 𝑠𝑡−1, 𝑠𝑡−2, … = 𝑝(𝑠𝑡+1|𝑠𝑡−1)

RBT350 – GATEWAY TO ROBOTICS

Primer on Probability

• X is a random variable if it can take different values with different probabilities and can be observed
with an experiment

• X can be continuous or discrete
– Outcome of a dice → Discrete random variable
– Height of adult population of a country → Continuous random variable

• Sample space: all possible values that a random variable can take
– X=outcome of a dice → S={1,2,3,4,5,6} → Discrete
– X=Height of adult population → S=[1 feet, 9 feet] → Continuous

• P(X=x): Probability of an event (or probability of X taking the value x)
– P(X=x) ≤ 1

– σ𝑥 𝑃(𝑋 = 𝑥) = 1

RBT350 – GATEWAY TO ROBOTICS

Probability distribution

• Function P(X=x) (or directly P(x))

– When we plot it:

• x axis: the sample space

• y axis: the probability of each sample, P(x)

0

0.1

0.2

"1
"

"2
"

"3
"

"4
"

"5
"

"6
"

P
ro

b
ab

ili
ty

 –
 P

(X
)

Samples - x

0

0.2

0.4

0.6

"1
"

"2
"

"3
"

"4
"

"5
"

"6
"

P
ro

b
ab

ili
ty

 –
 P

(X
)

Samples - x

RBT350 – GATEWAY TO ROBOTICS

Dependent and Independent Variables

• Let’s assume X and Y are two random variables
– X → outcome of a coin toss, Y → outcome of a dice toss

– X → develop lung cancer, Y → be a smoker

• P(X,Y) is called the joint probability
– P(X=“tails”, Y=“6”)

– P(X=“develop lung cancer”, Y=“smoker”)

• P(X|Y) is called a conditional probability, probability of X conditioned on knowing Y
– P(X|Y=“6”) → Probability of outcome of a coin toss given that the dice tossed “6”

– P(X|Y=“smoker) → Probability of developing lung cancer given that is a smoker

RBT350 – GATEWAY TO ROBOTICS

Dependent and Independent Variables

• X and Y are said to be independent variables if the distribution of X is not
influenced by the value taken by Y and vice versa. In that case:

– the probability of a joint event is the product of the probability of one event and the
probability of the other

• P(X=“tails”, Y=“6”) = P(X=“tails”)・P(Y=“6”)

– the conditional probability of one knowing the other is the same as the original probability

• P(X | Y=“6”) = P(X)

• X and Y are said to be dependent variables if knowing the value of one of the
events affects the probability distribution over the other event. In that case:

• P(X | Y=“smoker”) ≠ P(X)

RBT350 – GATEWAY TO ROBOTICS

Back to Markov Chains / Markov Processes

• The state is only dependent on the previous
state!

• If we can decide the action to take (the input to
the process) we talk about a Markov Decision
Process
– Critical concept in Robot Learning!

– Formalism for planning, reinforcement learning,
imitation learning…

• Non-Deterministic Finite State Machines are
Markov Processes!

RBT350 – GATEWAY TO ROBOTICS

Petri Nets (Place Transition (PT) Network)*

• Bipartite Graph → Two types of
elements:
– Places
– Transitions

• Places can contain tokens
• A transition is enabled (can happen) if

all places connected to contain at least 1
token

• After a transition triggers, all places
connected to it gain a token

• Execution is clocked triggered

* actually named after Carl Petri

RBT350 – GATEWAY TO ROBOTICS

What are Petri Nets for?

• Modeling processes

– Chemical processes

– Business processes

– Automation processes!

• Represents concurrency and
interdependencies

• Related to workflows

RBT350 – GATEWAY TO ROBOTICS

Example of Petri Net

RBT350 – GATEWAY TO ROBOTICS

Exercise

• In the given Petri Net, what is the
sequence of transitions after three
clock steps?

• What is the final state of each of
the places (number of tokens)?

RBT350 – GATEWAY TO ROBOTICS

Hybrid Automata

• Model to describe systems in which
digital computational processes
interact with analog physical processes

– Robots!

• A HA is a bipartite graph (V,E)

– V: vertices = control modes

– E: edges = control switches

• Control modes change the state of the
system (dynamics!) until a switch
condition is reached

RBT350 – GATEWAY TO ROBOTICS

Example of Hybrid Automaton

	Untitled Section
	Slide 1: State machines
	Slide 2: What will you learn today?
	Slide 3: Combinational Logic vs. State Machines
	Slide 4: What is a Finite State Machine (FSM)?
	Slide 5: What is a Finite State Machine?
	Slide 6: What is a Finite State Machine?
	Slide 7: Hierarchical Finite State Machines
	Slide 8: *Clear example, but there are better ways to do this.
	Slide 9: Definitions
	Slide 10: Example: Ticket Machine
	Slide 11: Representing a FSM
	Slide 12: Example: Traffic Light (open loop example)
	Slide 13: Exercise
	Slide 14: Types of FSMs
	Slide 15: Input, Output and Internal State in a Moore Machine
	Slide 16: Moore Machine – Output depends only on the present state.
	Slide 17: Exercise
	Slide 18: Input, Output and Internal State in a Mealy Machine
	Slide 19: Exercise
	Slide 20: Designing a FSM
	Slide 21: Example: Building a Circuit for a Serial Adder
	Slide 22: Example: Building a Circuit for a Serial Adder
	Slide 23: Example: Building a Circuit for a Serial Adder
	Slide 24: Example: Building a Circuit for a Serial Adder
	Slide 25: How do we program FSM in Robotics?
	Slide 26: ROS
	Slide 27: How do we program FSM in Robotics?
	Slide 28: Benefits of FSM
	Slide 29: Types of FSMs
	Slide 30: Markov Chains
	Slide 31: Primer on Probability
	Slide 32: Probability distribution
	Slide 33: Dependent and Independent Variables
	Slide 34: Dependent and Independent Variables
	Slide 35: Back to Markov Chains / Markov Processes
	Slide 36: Petri Nets (Place Transition (PT) Network)*
	Slide 37: What are Petri Nets for?
	Slide 38: Example of Petri Net
	Slide 39: Exercise
	Slide 40: Hybrid Automata
	Slide 41: Example of Hybrid Automaton

