
PID CONTROL

Slides based on Peter Stone’s and Ben 
Kuipers’

Roberto Martin-Martin

Assistant Professor of Computer Science. 



RBT350 – GATEWAY TO ROBOTICS

Big Recap – How to Build our Robots?

• Statics, Friction, Grasping
– Newton, FBD, wrenches, stiction, kinetic friction, viscous friction

• Physics of Materials
– Physics of deformable bodies, strain-stress diagrams

• Articulations
– Types of joints, Grueber’s Formula

• Analog Electronics
– Current, Voltage, R, C, L, Kirchoff’s laws, power

• Digital Electronics
– Transistors, gates, truth tables, AND, OR, … Boolean algebra

• State Machines
– DFA, Deterministic/Stochastic DFAs, Petri Nets, Hybrid Automata

• Mechatronics
– Types of actuators, motors, torque/speed curve, encoders
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Everything to build a robot

But how do we move it?
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What will you learn today?

• What is control and what is it for?

• Simple controllers
– Bang-Bang control

– Proportional control (P)

– Integral control (I)

– Derivative control (D)

• PD Controller behavior (over/under/critically damped)

• Type of controller (feedback vs. feedforward)
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What is control and what is it for?

• Control deals with commanding a dynamical 
system, a system that changes its state over 
time

• With control, we influence those changes, 
ideally towards our desires

• Control is a mechanism to produce inputs to 
the dynamical system to try to guide its 
state towards a desired state

• Of course, we are assuming that the control 

has an effect in the state: 
𝛿𝐹

𝛿𝑢
≠ 0

ሶ𝑥 = 𝐹(𝑥, 𝑢)

𝑦 = 𝐺(𝑥)

𝑢 = 𝐻𝑖(𝑦)

ሶ𝑥 = 𝐹(𝑥, 𝐻𝑖(𝐺(𝑥)))

ሶ𝑠𝑚𝑡ℎ =
𝛿𝑠𝑚𝑡ℎ

𝛿𝑡
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A very special case: Linear Dynamics

• Many systems in robotics can be assumed to have linear dynamics

• Many others can be assumed to be ”linearizable”

• If the system is linear, we can use matrix algebra:
ሶ𝑥 = 𝐹 𝑥, 𝑢 = 𝐴𝑥 + 𝐵𝑢

• If the relationship between the state and the observation is also linear, we 
can do the same here:

𝑦 = 𝐺 𝑥 = 𝐺𝑥
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Important: Discrete time system

• Our controller is going to act at discrete time 
steps

• In most cases in robotics we assume a discrete 
system because:
– We have a sensor that provides signals at discrete 

time steps
• Camera providing images at N fps

– We compute the controller response in a 
computer (discrete time!)

• Controller frequency: 𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 =
1

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝑥𝑡+1 = 𝐹(𝑥𝑡 , 𝑢𝑡)

𝑦𝑡 = 𝐺(𝑥𝑡)

𝑢𝑡 = 𝐻𝑖(𝑦𝑡)

𝑥𝑡+1 = 𝐹(𝑥𝑡 , 𝐻𝑖(𝐺(𝑢𝑡)))

timet t+1

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟



RBT350 – GATEWAY TO ROBOTICS

VIP: Linear Dynamics in Discrete-Time Systems

𝑥𝑡+1 = 𝐹 𝑥𝑡 , 𝑢𝑡 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡

yt = 𝐺 𝑥𝑡 = 𝐺𝑥𝑡
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Diagram of the System and Controller

Controller System

Sensor

reference (input)

measured output

measured error

command
system output

𝑥𝑑 𝑒 𝑢

𝑦

𝑥

disturbance
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The intuition behind control

• Use action u to “push back” toward error e = 0 

– error e depends on state x (via sensors y)

• What does pushing back do? 

– Depends on the structure of the system: what can we control

– For example, position vs. velocity vs. acceleration vs. force/torque control

• How much should we “push back”?

– What does the magnitude of u depend on?

– This defines different types of control implementation
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How much should we “push back”?

• How do we set the value of u?

• Some options:

– Bang-Bang control

– Proportional control

– Integral control

– Derivative control
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Bang-Bang Control

• Push back, against the direction of the error 
– with constant action u

• Error is 𝑒 = 𝑥 − 𝑥𝑑
– if 𝑒 < 0 then 𝑢 = 𝑂𝑁 → ሶ𝑥 = 𝐹 𝑥, 𝑢 > 0
– if 𝑒 > 0 then 𝑢 = 𝑂𝐹𝐹 → ሶ𝑥 = 𝐹 𝑥, 𝑢 < 0

• Problem: chatter around 𝑒 = 0 → constant switch ON/OFF → 
Bad for the system!
– We add some hysteresis

• if 𝑒 < −𝜖 then 𝑢 = 𝑂𝑁 → ሶ𝑥 = 𝐹 𝑥, 𝑢 > 0
• if 𝑒 > +𝜖 then 𝑢 = 𝑂𝐹𝐹 → ሶ𝑥 = 𝐹 𝑥, 𝑢 < 0
• If −𝜖 < 𝑒 < 𝜖 then u depends on “history” (where do I come from?) 

error

ON

OFF

error

ON

OFF

𝜖−𝜖
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Exercise: Bang-Bang Control

• HVAC system
– 𝑥 = temperature

– 𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = 2𝐻𝑧
– 𝑢 = HVAC ON/OFF

• ON → 𝑥𝑡+1 = 𝑥𝑡 − 2
• OFF → 𝑥𝑡+1 = 𝑥𝑡 + 2

– We observe directly the 
temperature (y=x)

– With/without hysteresis

• Starting state: 𝑥0 = 90𝐹
• Desired state: 𝑥𝑑 = 75𝐹 error

ON

OFF

𝜖−𝜖

https://pollev.com/robertomartinmartin739
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Bang-Bang Control

• Pro: Super simple!

– Easy computation

– Easy implementation

• Cons: 

– Does not “converge”

• It keeps oscillating around the desired value

• That can be bad for the system

– Not very efficient: 

• No matter the “magnitude” of e, our response is the same
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Proportional Control

• Why not making u proportional to the “amount” of error?

• Proportional control: 
– Push back, proportional to the error

– Set 𝑢𝑏 so that  ሶ𝑥  = 𝐹 𝑥𝑑, 𝑢𝑏 = 0

– Example: driving. You (the controller) 
“converge” to pushing the pedal some 
amount (𝑢𝑏) so that your velocity is constant 
at your desired value

𝑢 = −𝑘𝑝𝑒 + 𝑢𝑏 = −𝑘𝑝 𝑥 − 𝑥𝑑 + 𝑢𝑏
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Exercise

• We want to control a robot arm 
holding an object

• We control the velocity of the robot’s 
joint

• The state of the robot is given by its 
joint position and velocity

• Because of the weight of the object, 
the arm drops at 1 rad/s

• q is the vector of joint values

• Frequency of the system is 1Hz

https://pollev.com/robertomartinmartin739

+
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Proportional Control

• We make our control proportional to the error: 

• For a(ny) linear system, we get exponential 
convergence

which with our controller leads to

𝛼 = 𝑘𝑝𝑏 − 𝑎 (if SISO system all real numbers)

𝑥 𝑡 = 𝐶𝑒−𝛼𝑡 + 𝑥𝑑

Derivation (we will call it kp instead of k1 and we call it xd instead of xset):

Control is proportional to the error!

𝑢 = −𝑘𝑝𝑒 + 𝑢𝑏
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Proportional Control

• For a linear system, we get exponential 
convergence

• The controller gain 𝑘𝑝 determines how 

quickly the system responds to error

𝑥 𝑡 = 𝐶𝑒−𝛼𝑡 + 𝑥𝑑
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Proportional Control: Diagram

System

Sensor

reference (input)

measured output

measured error
command

system output

𝑥𝑑 𝑒 𝑢

𝑦

𝑥

disturbance

kp
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Proportional Control: Issues

• Relatively simple control but

– May have a steady-state error if the system has 
disturbances

– Depending on 𝑘𝑝 may not reach the desired 

configuration, need a very long time, or overshoot and 
oscillate (VIP: different behaviors of a controller)
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Steady-State Error

– Cause: Disturbances
• What are disturbances? Unmodeled dynamics

– Our controller was designed to lead to ሶ𝑥 = 0 at 
the desired point (e = 0), but due the 
disturbances, at the desired point:

– We need to adapt 𝑢𝑏 to different disturbances 
𝑑

ሶ𝑥 = 𝐹 𝑥, 𝑢 + 𝑑

ሶ𝑥 = 𝐹 𝑥𝑑 , 𝑢𝑏 + 𝑑 = 𝑑 ≠ 0
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Solution: Adaptive control

• We need controllers at different time scales

• This eliminates the steady-state error because the slower controller adapts 
𝑢𝑏𝑣

𝑢 = −𝑘𝑝𝑒 + 𝑢𝑏𝑣

ሶ𝑢𝑏𝑣 = 𝑓 𝑒 = −𝑘𝐼𝑒

𝑤𝑖𝑡ℎ 𝑘𝐼 ≪ 𝑘𝑝
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Proportional-Integral Control

• The adaptive controller ሶ𝑢𝑏 = −𝑘𝐼𝑒 means that:

• And then the control law is: 

• This is called PI control

𝑢𝑏𝑣 = −𝑘𝐼 න
0

𝑡

𝑒 𝑑𝑡 + 𝑢𝑏

𝑢 = −𝑘𝑝𝑒 −𝑘𝐼 න
0

𝑡

𝑒 𝑑𝑡 + 𝑢𝑏
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Examples

When do we use this in robotics

To overcome stiction!

- robot controlled by torques in motors 
𝑢 = 𝑘𝑝𝑒 = 𝜏 

- e is small → 𝑢 = 𝑘𝑝𝑒 = 𝜏 small → not enough 

to overcome stiction (𝜏 < 𝜏𝑠𝑡𝑖𝑐𝑡𝑖𝑜𝑛) 
- steady-state error
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Proportional Control

• Why not making u proportional to the “amount” of error?

• Proportional control: 
– Push back, proportional to the error

– Set 𝑢𝑏 so that  ሶ𝑥  = 𝐹 𝑥𝑑, 𝑢𝑏 = 0

– Example: driving. You (the controller) 
“converge” to pushing the pedal some 
amount (𝑢𝑏) so that your velocity is constant 
at your desired value

𝑢 = −𝑘𝑝𝑒 + 𝑢𝑏 = −𝑘𝑝 𝑥 − 𝑥𝑑 + 𝑢𝑏
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Steady-State Error

– Cause: Disturbances
• What are disturbances? Unmodeled dynamics

– Our controller was designed to lead to ሶ𝑥 = 0 at 
the desired point (e = 0), but due the 
disturbances, at the desired point:

– We need to adapt 𝑢𝑏 to different disturbances 
𝑑

ሶ𝑥 = 𝐹 𝑥, 𝑢 + 𝑑

ሶ𝑥 = 𝐹 𝑥𝑑 , 𝑢𝑏 + 𝑑 = 𝑑 ≠ 0
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Proportional-Integral Control

• The adaptive controller ሶ𝑢𝑏 = −𝑘𝐼𝑒 means that:

• And then the control law is: 

• This is called PI control

𝑢𝑏𝑣 = −𝑘𝐼 න
0

𝑡

𝑒 𝑑𝑡 + 𝑢𝑏

𝑢 = −𝑘𝑝𝑒 −𝑘𝐼 න
0

𝑡

𝑒 𝑑𝑡 + 𝑢𝑏
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Proportional-Integral Control: Diagram

System

Sensor

reference (input)

measured output

measured error
system output

𝑥𝑑 𝑒 𝑢

𝑦

𝑥

disturbance

kp

kI∫

command
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Exercise

• Robot joint trying to reach a desired 
configuration 𝑞𝑑 = 0

• Holding something in the hand → 
disturbance!

• Mass of arm: 𝑚𝑎𝑟𝑚 = 20𝑘𝑔
• COM of arm: 50cm from joint
• Mass of box: 𝑚𝑏𝑜𝑥 = 5𝑘𝑔
• COM of box: 70cm from joint
• Controlled by torque
• Range [−𝜋, 𝜋]

PollEv.com/robertomartinmartin739

https://pollev.com/robertomartinmartin739
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Derivative Control

• Remember viscous (damping) friction?
– Force opposing motion, proportional to velocity

– 𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = −𝜇𝑣𝑖𝑠𝑐𝑜𝑢𝑠𝑣

• We are going to include a term in our controller that acts as viscous 
friction (inverse and proportional to the velocity of the error)

• [Practical issue: computing derivative from measurements can be fragile 
and amplify noise!]

𝑢 = −𝑘𝑝𝑒 − 𝑘𝑑 ሶ𝑒
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Derivative Control in Action

Damping fights oscillation 

and overshoot
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Proportional-Derivative Control: Diagram

System

Sensor

reference (input)

measured output

measured error
system output

𝑥𝑑 𝑒 𝑢

𝑦

𝑥

disturbance

kp

kd𝛿𝑡

command
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Study: PD-Control and the Mass-Spring-Damper Model

• A controller creates a behavior that resembles the 
behavior of a mass attached to a spring, immersed in 
some fluid

• Mass: m

• Fluid viscous friction: 𝜇𝑣𝑓

𝐹𝑣𝑓 = −𝐹𝑁𝜇𝑣𝑓𝑣 = −𝑘𝑣𝑓 ሶ𝑥

• Spring constant: kspring

– Hooke’s law: 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔 𝑥 − 𝑥𝑒𝑞 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑥

• 2nd Newton’s law:
Σ𝐹 = 𝑚 ⋅ 𝑎 = m ሷ𝑥 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑥 − 𝑘𝑣𝑓 ሶ𝑥
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Study: PD-Control and the Mass-Spring-Damper Model

• Rearranging and renaming:
ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑐𝑥 = 0

𝑏 =
𝑘𝑣𝑓

𝑚

𝑐 =
𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑚

• Simple 2nd order differential equation. Solution of the form:
𝑥 𝑡 = 𝐴𝑒𝑟1𝑡 + 𝐵𝑒𝑟2𝑡

with 𝑟1 and 𝑟2 the roots of the equation ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑐𝑥 = 0

𝑟1, 𝑟2 =
−𝑏 ± 𝑏2 − 4𝑐

2
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Study: PD-Control and the Mass-Spring-Damper Model

• The behavior of the system+controller depends on the nature of the roots 𝑟1 and 𝑟2, 
which depend on the parameters b and c (k and kvf)

• The system converges to x=0 if its velocity at that point is also 0: 𝑥, ሶ𝑥 = 0,0

• For the system to converge, both roots must have negative real parts. This requires 
both c>0 and b>0
– c>0 → kspring>0, Hooke’s law “in the normal way”. 

• If c<0 (kspring<0) it would work as an anti-spring: increasing force in the same direction than the 
displacement, pushing the mass to the infinite

– b>0 → kvf>0, Damping “in the normal way”: opposing velocity. 
• If b<0 (kvf<0) the damping would increase velocity in the same direction of motion, making the system 

to diverge
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Study: PD-Control and the Mass-Spring-Damper Model

• c>0, b>0. What is the behavior of the system?
– Depends on the discriminant  𝐷 = 𝑏2 − 4𝑐

– 𝑏  small (kvf small) →  𝐷 < 0  →  System is underdamped
• System oscillates with decreasing amplitude
• It may converge, depending if 𝑟1 and 𝑟2 imaginary parts

– 𝑏  large (kvf large) →  𝐷 > 0  →  System is overdamped
• System moves slowly towards convergence, eventually reaching it

– 𝐷 = 𝑏2 − 4𝑐 = 0 → 𝑏 = 2 𝑐. System is critically damped:
• Moves as quickly as possible to the resting (desired) position without overshooting

• To tune a PD controller to the optimal behavior, we model it as a spring-mass damped 
system and find the parameters so that the system is critically damped

𝑟1, 𝑟2 =
−𝑏 ± 𝑏2 − 4𝑐

2
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Study: PD-Control and the Mass-Spring-Damper Model

• Some extra definitions:

ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑐𝑥 = 0

𝑏 =
𝑘𝑣𝑓

𝑚

𝑐 =
𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑚

ሷ𝑥 + 2𝜁𝜔0 ሶ𝑥 + 𝜔0
2𝑥 = 0

𝜔0 =
𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑚
= 𝑐

𝜁 =
𝑘𝑣𝑓

2 𝑚𝑘𝑠𝑝𝑟𝑖𝑛𝑔

=
𝑏

2 𝑐

Natural (undamped) 

frequency 

Damping ratio (unitless)
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Study: PD-Control and the Mass-Spring-Damper Model

• Some extra definitions:

𝜔0 =
𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑚

𝜁 =
𝑘𝑣𝑓

2 𝑚𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑏 = 2𝜁𝜔0

      𝑐 = 𝜔0
2

ሷ𝑥 + 2𝜁𝜔0 ሶ𝑥 + 𝜔0
2𝑥 = 0

• Critically damped: 𝜁=1

• Overdamped: 𝜁 >1

• Underdamped: 𝜁 <1

𝐷 = 𝑏2 − 4𝑐 =
kvf

2

m2 −
4kspring

𝑚

𝐷 = 0 →
kvf

2

m2 =
4kspring

𝑚
→

kvf
2

4𝑚𝑘𝑠𝑝𝑟𝑖𝑛𝑔
= 1 →

𝑘𝑣𝑓

2 𝑚𝑘𝑠𝑝𝑟𝑖𝑛𝑔

= 1
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How does this look like?

• Critically Damped (D=0, 𝜁=1)

• Overdamped (D>0, 𝜁>1)

• Underdamped (D<0, 𝜁<1)

𝑥 𝑡 = 𝐴 + 𝐵𝑡 𝑒−𝜔0𝑡

𝑥 𝑡 = 𝐴𝑒𝛾+𝑡 + 𝐵𝑒𝛾−𝑡

𝛾± = 𝜔0(−𝜁 ± 𝜁2 − 1)

𝑥 𝑡 = 𝑒−𝜁𝜔0𝑡(𝐴 cos(𝜔𝑑𝑡) + 𝐵 sin 𝜔𝑑𝑡 )

𝜔𝑑 = 𝜔0 1 − 𝜁2

• Critically damped: 𝜁=1

• Overdamped: 𝜁 >1

• Underdamped: 𝜁 <1
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Recap

• What is a dynamical system?
– a system that changes its state (x) over time 

ሶ𝑥 = 𝐹 𝑥, 𝑢 ≠ 0 or    xt+1 = 𝐹 𝑥𝑡, 𝑢𝑡 ≠ 0 

• What is the goal of control?
– Control is a mechanism to produce inputs (u) to the dynamical system to try to guide its state 

towards a desired state
– Our goal is that 𝑒 = 𝑥 − 𝑥𝑑 = 0

• Types of control → What ”u” we generate depending on “e”
– Bang-bang: depending on the sign of ”e” we output one of two possible “u”s

– Proportional: 𝑢 = −𝑘𝑝𝑒 +  𝑢𝑏 

– Proportional-Integral: 𝑢 = −𝑘𝑝𝑒 − 𝑘𝐼 ∫𝑒 𝑑𝑡 + 𝑢𝑏

– Proportional-Derivative: 𝑢 = −𝑘𝑝𝑒 − 𝑘𝑑 ሶ𝑒 + 𝑢𝑏
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Why do we look at a spring-damped mass?

• The behavior of the spring-damped mass is 
equivalent to the behavior of our controller:
– In a PD controller, we have control over the 

stiffness of the spring and the viscosity of the 
damping

– With these two values, we can vary the 
behavior of the system: from oscillating to 
converging fast and without overshoot, to 
converging too slow.

– Our ideal case: critically damped!

≈

Critically damped: 𝜁 =
𝑘𝑣𝑓

2 𝑚𝑘𝑠𝑝𝑟𝑖𝑛𝑔
= 1

𝑘𝑣𝑓 = 2 𝑚𝑘𝑠𝑝𝑟𝑖𝑛𝑔  
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Exercise

• We have an existing mass-spring-damper system 
(uncontrollable!)

• Unit mass m=1

• 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 =10000, 𝑘𝑣𝑓 =10
• What is 𝜔0, 𝜁 and the behavior of the system?
• We connect the mass-spring-damper system to a PD 

controller (we control it!)
• What should be the gains of the controller to change 

the frequency to 200 rad/s and make it critically 
damped?
– The gains of the combined system result from adding 

the natural system and the PD gains

https://pollev.com/robertomartinmartin739

𝜔0 =
𝑘𝑠𝑝𝑟𝑖𝑛𝑔

𝑚

𝜁 =
𝑘𝑣𝑓

2 𝑚𝑘𝑠𝑝𝑟𝑖𝑛𝑔



RBT350 – GATEWAY TO ROBOTICS

• https://www.matthewpeterkelly.com/tutorials/pdControl/index.html
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We can put all together: Proportional-Integral-Derivative (PID) 
Control

𝑢 = −𝑘𝑝𝑒 −𝑘𝐼 න
0

𝑡

𝑒 𝑑𝑡 − 𝑘𝑑 ሶ𝑥

• PD and PID  are the most used types of controller everywhere!

– Industry

– Research

• Tuning the values of the parameters becomes “an art”

– Some principled strategies

– Tends to be trial and error
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Proportional-Integral-Derivative Control: Diagram
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Feedback vs. Feedforward Control

• Feedback control (closed loop):
– Sense error (due to disturbances), then determine control
– Reactive 
– Problem: it always goes “behind” the error

• Feedforward control (open loop):
– Sense directly the disturbance
– Consider the response from the system (model!) to plan 

the best signal “u” to compensate the disturbance
– Problem: Independent of the outcome from the system 

(does not closes the loop)

• Combined feedforward and feedback
– We predict the response from the system and compute 

“u” accordingly but we also compensate for disturbances 
based on observations

𝑥𝑑 𝑥

𝑥

𝑥𝑑
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Example of Feedforward

• Autonomous car
• Controls steering
• Feedback controller:

– If error (for example, distance to middle 
line) changes, change the steering

– Reactive (we will move away from the line)

• Feedforward controller:
– Measure disturbance (for example, the 

inclination of the road)
– Compute how much to steer the wheel to 

compensate for the deviation
– If well done, we do not need to move away 

from the line!
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Final Recap

• What is control and what is it for?
• Inputs/Outputs
• Types of control: SISO/MIMO
• Open loop vs. closed loop
• State-Space Representation
• Simple controllers

– Bang-Bang control
– Proportional control (P)
– Integral control (I)
– Derivative control (D)

• PD Controller behavior (over/under/critically damped)
• Type of controller (feedback vs. feedforward)
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