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Big Recap — How to Build our Robots?

*  Statics, Friction, Grasping
— Newton, FBD, wrenches, stiction, kinetic friction, viscous friction
*  Physics of Materials
—  Physics of deformable bodies, strain-stress diagrams
*  Articulations
— Types of joints, Grueber’s Formula
*  Analog Electronics
— Current, Voltage, R, C, L, Kirchoff’s laws, power
*  Digital Electronics
— Transistors, gates, truth tables, AND, OR, ... Boolean algebra
*  State Machines
— DFA, Deterministic/Stochastic DFAs, Petri Nets, Hybrid Automata
*  Mechatronics
— Types of actuators, motors, torque/speed curve, encoders
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Everything to build a robot

But how do we move it?
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What will you learn today?

e What s control and what is it for?

* Simple controllers
— Bang-Bang control
— Proportional control (P)
— Integral control (I)
— Derivative control (D)
* PD Controller behavior (over/under/critically damped)

e Type of controller (feedback vs. feedforward)
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: . : osmth
What is control and what is it for? smth = ———
ot
* Control deals with commanding a dynamical c — F
system, a system that changes its state over X = (X, u)
time y = G (x)
*  With control, we influence those changes,
ideally towards our desires
e Control is a mechanism to produce inputs to
the dynamical system to try to guide its u = Hi (y)
state towards a desired state
* Of course, we are assuming that the control .
x = F(x,H;(G(x)))

) SF
has an effect in the state: Y =0
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A very special case: Linear Dynamics

* Many systems in robotics can be assumed to have linear dynamics
* Many others can be assumed to be “linearizable”
* If the system is linear, we can use matrix algebra:

x = F(x,u) = Ax + Bu

e |f the relationship between the state and the observation is also linear, we
can do the same here:

y =G(x) = Gx
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Important: Discrete time system

Xerq1 = F(xe,u
e Our controller is going to act at discrete time 1 ( b t)

steps Ve = G(x¢)
* |n most cases in robotics we assume a discrete .
system because: ur = Hy(y)
— We have a sensor that provides signals at discrete —
* Camera providing images at N fps
— We compute the controller response in a Teontrolter
. . *—
computer (discrete time!) L 1 1 1 1 1 ‘
L t t+1 time

* Controller frequency: feontrotier = Toontrotler
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VIP: Linear Dynamics in Discrete-Time Systems

Xerq = F(x,ur) = Axy + Bug,

v = G(x) = Gx,
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Diagram of the System and Controller

disturbance

system output

reference (input) command l
S— R { System g
Xd e u X
measured error

measured output

y
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The intuition behind control

 Use action u to “push back” toward errore =0

— error e depends on state x (via sensors y)
 What does pushing back do?

— Depends on the structure of the system: what can we control

— For example, position vs. velocity vs. acceleration vs. force/torque control
How much should we “push back”?

— What does the magnitude of u depend on?
— This defines different types of control implementation
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How much should we “push back”?

e How do we set the value of u?

* Some options:
— Bang-Bang control
— Proportional control
— Integral control
— Derivative control
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Bang-Bang Control

ON ¢
e  Push back, against the direction of the error OFF
— with constant action u error
e Errorise =x — x4
— ife<Othenu=0N=>x=F(x,u) >0
— fe>0thenu=0FF>x=F(x,u) <0
*  Problem: chatter around e = 0 = constant switch ON/OFF =
Bad for the system! ON
— We add some hysteresis
e ife<—ethenu=0N=>x=F(x,u) >0 OFF
e ife>+ethenu=0FF>x=F(x,u) <0 L
€ | € error

* If —e < e < e then udepends on “history” (where do | come from?)
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Exercise: Bang-Bang Control

* HVAC system
— X = temperature

—  feontroller = 2Hz
— u = HVAC ON/OFF

* ON2> X441 =% — 2

* OFF 2 Xppq =x¢+ 2

— We observe directly the
temperature (y=x)

—  With/without hysteresis ON
e Starting state: xo = 90F OFF
e Desired state: x; = 75F —€ | € error
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Bang-Bang Control

* Pro: Super simple!
— Easy computation
— Easy implementation
* Cons:

— Does not “converge”
* It keeps oscillating around the desired value
* That can be bad for the system
— Not very efficient:
* No matter the “magnitude” of e, our response is the same
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Proportional Control

*  Why not making u proportional to the “amount” of error?

* Proportional control:
— Push back, proportional to the error

u=—kye+u, =—k,(x —x4) +u,
— Setuy sothat x = F(xg,up) =0
— Example: driving. You (the controller)
“converge” to pushing the pedal some

amount (up) so that your velocity is constant
at your desired value
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Exercise

e We want to control a robot arm
holding an object

* We control the velocity of the robot’s
joint

 The state of the robot is given by its
joint position and velocity

* Because of the weight of the object,
the arm drops at 1 rad/s

e ¢ isthe vector of joint values
* Frequency of the system is 1Hz
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Proportional Control

* We make our control proportional to the error:

* Fora(ny Iﬁea‘rkws@e?h,%lf get exponential
convergence

which with our contidlfer lEaéistto “* + x4
a = k,b — a (if SISO system all real numbers)

e — e — e — e — e =

Increasing gain

Temperature (*C)
3

Derivation (we will call it k, instead of k; and we call it x4 instead of Xge): 140 %l i i i

€ = I — Tget 0 500 1000 1500

u = —kie+ up Control is proportional to the error! Time ()

r = = az+ b(—

T az -+ bu T ( kle T 'I'.tb) B To ensure that z(00) = ¢, We must set up = — $2 5.

(@)
—(k1b — a)z + (k1T ser + ub)b) z(t) = Ce (kib—a)t (k1 2ser + up)b
kib—a
= —ox —|— B 1
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Proportional Control

* For a linear system, we get exponential
convergence

x(t) = Ce % + x,

Increasing gain

Temperature (*C)
3

500 1000
Time (s)

=
|\I
o
=)
o=

* The controller gain k;, determines how
quickly the system responds to error
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Proportional Control: Diagram

disturbance

measured error
system output

command i l i
u X

reference (input)

Xd e

measured output

y
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Proportional Control: Issues

e Relatively simple control but
— May have a steady-state error if the system has
disturbances
— Depending on k;, may not reach the desired

configuration, need a very long time, or overshoot and
oscillate (VIP: different behaviors of a controller)
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Steady-State Error

— Cause: Disturbances
* What are disturbances? Unmodeled dynamics Y = F(X u) + d
)

— Our controller was designed to lead to x = 0 at
the desired point (e = 0), but due the
disturbances, at the desired point:

x=F(xg,u,) +d=d=+0
— We need to adapt u, to different disturbances
d
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Solution: Adaptive control

e We need controllers at different time scales

Upy = f(e) = —kje
with k; < kp

* This eliminates the steady-state error because the slower controller adapts
Upy
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Proportional-Integral Control

* The adaptive controller 1, = —k;e means that:

t
ub,,:—k,f e dt + uy
0

e And then the control law is:

t
u=—kye —k,J e dt + u,
0
* Thisis called Pl control
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Examples

Each hox has

Integral term continually
sums e{f) = SP - PV

inlega sum of 20 ¢
2 m'ggo wide) / E //
¥

e

. Integral sum =—34 o Integral sum =7

10 20 30 40 50 60 70 80 %0

Time (minutes)

When do we use this in robotics

To overcome stiction!

- robot controlled by torques in motors
u=kpe=rt

- eis small > u = k,e = 7 small - not enough
to overcome stiction (7t < Tgtiction)

- steady-state error
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Proportional Control

*  Why not making u proportional to the “amount” of error?

* Proportional control:
— Push back, proportional to the error

u=—kye+u, =—k,(x —x4) +u,
— Setuy sothat x = F(xg,up) =0
— Example: driving. You (the controller)
“converge” to pushing the pedal some

amount (up) so that your velocity is constant
at your desired value
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Steady-State Error

— Cause: Disturbances
* What are disturbances? Unmodeled dynamics Y = F(X u) + d
)

— Our controller was designed to lead to x = 0 at
the desired point (e = 0), but due the
disturbances, at the desired point:

x=F(xg,u,) +d=d=+0
— We need to adapt u, to different disturbances
d
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Proportional-Integral Control

* The adaptive controller 1, = —k;e means that:

t
ub,,:—k,f e dt + uy
0

e And then the control law is:

t
u=—kye —k,J e dt + u,
0
* Thisis called Pl control
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Proportional-Integral Control: Diagram

\ disturbance

measured
system output

reference (input)

measured output

y
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Exercise

* Robot joint trying to reach a desired
configurationgq; = 0

* Holding something in the hand =
disturbance!

* Massofarm: my,,, = 20kg
e COM of arm: 50cm from joint
* Mass of box: my,,, = 5kg

e COM of box: 70cm from joint
* Controlled by torque

* Range [—m, ]
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Derivative Control

« Remember viscous (damping) friction?
— Force opposing motion, proportional to velocity

= Fyiscous = —HviscousV
* We are going to include a term in our controller that acts as viscous
friction (inverse and proportional to the velocity of the error)

u=—kye—kyé

e [Practical issue: computing derivative from measurements can be fragile
and amplify noise!]
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Derivative Control in Action

178

176

Damping fights oscillation

o~ P

(
(
(

174
and overshoot

Temperatore {"C)

172 Increasing damping

170

163 -I 1 I L1 11 I L1 11 I L1 1 1 I L1 1 1 I L1 1.1
0 100 200 300 400 500
Time {3)
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Proportional-Derivative Control: Diagram

disturbance

measured error
system output

reference (input)

measured output

y
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Study: PD-Control and the Mass-Spring-Damper Model

e A controller creates a behavior that resembles the
behavior of a mass attached to a spring, immersed in
some fluid

. Mass: m

*  Fluid viscous friction: p,, ¢ k Smooth
Fyr = =Fypyrv = —kyrx
e Spring constant: k

spring
* 2" Newton’s law:
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Study: PD-Control and the Mass-Spring-Damper Model

e Rearranging and renaming:

5& + bx +cx = O —'V\N\I\/ViN\/\/\a—'TI ;mooﬂl
_ s =
m
c = kspring
m

* Simple 2" order differential equation. Solution of the form:
x(t) = Ae™t + BeT2t
with r; and r, the roots of the equation X + bx + cx = 0
—b + Vb2 —4c¢
2

r,T =
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Study: PD-Control and the Mass-Spring-Damper Model

* The behavior of the system+controller depends on the nature of the roots r; and 15,
which depend on the parameters b and c (k and k)

* The system converges to x=0 if its velocity at that point is also 0: (x,x) = (0,0)

* Forthe system to converge, both roots must have negative real parts. This requires
both ¢>0 and b>0
— >0 2 Kk,i0g>0, Hooke’s law “in the normal way”.

¢ If c<0 (Kgpring<O) it would work as an anti-spring: increasing force in the same direction than the
displacement, pushing the mass to the infinite

—  b>0 = k>0, Damping “in the normal way”: opposing velocity.

* If b<0 (k,<0) the damping would increase velocity in the same direction of motion, making the system
to diverge
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Study: PD-Control and the Mass-Spring-Damper Model

: : —b Vb2 — 4
e >0, b>0. What is the behavior of the system? 11,72 =fc
— Depends on the discriminant D = b? — 4c

— b small (k,ssmall) > D <0 - System is underdamped

*  System oscillates with decreasing amplitude _,\M,\,W"va_m j‘“““"‘

It may converge, depending if r; and 1, imaginary parts [
— b large (k,large) > D > 0 > System is overdamped
* System moves slowly towards convergence, eventually reaching it
— D =b?—4c=0->b = 2/c. System is critically damped:

* Moves as quickly as possible to the resting (desired) position without overshooting

e« To tune a PD controller to the optimal behavior, we model it as a spring-mass damped
system and find the parameters so that the system is critically damped
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Study: PD-Control and the Mass-Spring-Damper Model

e Some extra definitions:

X+ bx+cx=0 ¥+ 2{wex + wix =0
b — ka kSpTiTlg Natural (undamped)
k m (1)0 — m — \/E frequency
.= spring N
-  ky b

Damping ratio (unitle:

¢

Zx/mkspring 2\/E
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Study: PD-Control and the Mass-Spring-Damper Model

e Some extra definitions:

k .
Wy = sz:;mg
—
2, mkspring
b = 2(0)0
c = wh

¥+ 2¢wex + wix =0

2
D=b2_4c_k_"f_m

D=0-

~ m? m
k_‘z,f _ 4Kspring . kxzzf 15 Ky — 1
m? m 4‘mkspring 2/ mkspring

Critically damped: (=1
Overdamped: { >1
Underdamped: ¢ <1
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How does this look like? N | ot
' Unc!erdamped
e Critically Damped (D=0, {=1) oo ot |]

x(t) = (A + Bt)e @ot 0
—

AWARAL

. S
* Overdamped (D>0, {>1) 02| |
x(t) = Ae¥+! + Be?-t o4 :
Y+ = 0)0(—( + V (2 - 1) 08} A
5 10 1

0 5

* Underdamped (D<0, ¢<1) e Critically damped: {=1
x(t) = e €@t (A cos(wyt) + B sin(wgyt)) . Overdamped: { >1

wqg = wgy 1 — {2 e Underdamped: { <1
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Recap

 Whatis a dynamical system?

— asystem that changes its state (x) over time
x=FQ,u) #0 or X1 =F(xs,u) #0

 Whatis the goal of control?

— Control is a mechanism to produce inputs (u) to the dynamical system to try to guide its state
towards a desired state

— Ourgoalisthate=x—x;3 =0

ll ”

. Types of control 2 What ”"u” we generate depending on
Bang-bang: depending on the sign of “e” we output one of two possible “u”s
— Proportional: u = —kye + uy
— Proportional-Integral: u = —kpe — k; fedt+u,
— Proportional-Derivative: u = —kpe — kgé + uy
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Why do we look at a spring-damped mass?

* The behavior of the spring-damped mass is
equivalent to the behavior of our controller:

— In a PD controller, we have control over the ‘M )
stiffness of the spring and the viscosity of the
damping Q

— With these two values, we can vary the - T
behavior of the system: from oscillating to s ;. ¥ I

converging fast and without overshoot, to
converging too slow.

— Our ideal case: critically damped! oy 4

Critically damped: ¢ = e
spring

kvf = 2\/ mkspring
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Exercise

 We have an existing mass-spring-damper system
(uncontrollable!)

* Unit mass m=1
¢ kspring =10000, kvf =10 ‘M o
* Whatis wg, { and the behavior of the system? |

 We connect the mass-spring-damper system to a PD
controller (we control it!)

What should be the gains of the controller to change Wy = Kspring
the frequency to 200 rad/s and make it critically m
damped? Ky

. . . . (:
The gains of the combined system result from adding ZW

the natural system and the PD gains
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* https://www.matthewpeterkelly.com/tutorials/pdControl/index.html
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We can put all together: Proportional-Integral-Derivative (PID)
Control

t
u=—kye —k,j edt —kgx
0

* PDandPID are the most used types of controller everywhere!

— Industry
— Research

e Tuning the values of the parameters becomes “an art”
— Some principled strategies
— Tends to be trial and error
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Proportional-Integral-Derivative Control: Diagram

measured error

reference (input)

disturbance

system output

u

command (system
input)

measured output

y
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Feedback vs. Feedforward Control ,I;
xi_} Feedback | U _ PEAREES X
controller
*  Feedback control (closed loop):

— Sense error (due to disturbances), then determine control
— Reactive
— Problem: it always goes “behind” the error

*  Feedforward control (open loop): D
— Sense directly the disturbance

— Consider the response from the system (model!) to plan
the best signal “u” to compensate the disturbance

— Problem: Independent of the outcome from the system Feedforward
(does not closes the loop) controller

*  Combined feedforward and feedback \
— We predict the response from the system and compute ol X

o, . .n

u” accordingly but we also compensate for disturbances Process ——s
based on observations
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Example of Feedforward

e Autonomous car
e Controls steering

e Feedback controller:

— If error (for example, distance to middle
line) changes, change the steering

— Reactive (we will move away from the line)

e Feedforward controller:

— Measure disturbance (for example, the
inclination of the road)

— Compute how much to steer the wheel to
compensate for the deviation

— If well done, we do not need to move away
from the line!
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Final Recap

 Whatis control and what is it for?
* Inputs/Outputs

* Types of control: SISO/MIMO

* Open loop vs. closed loop

* State-Space Representation

e Simple controllers

— Bang-Bang control

— Proportional control (P)

— Integral control (I)

— Derivative control (D)
* PD Controller behavior (over/under/critically damped)
* Type of controller (feedback vs. feedforward)
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