
RBT350
GATEWAY TO ROBOTICS

Transformations



RBT350 – GATEWAY TO ROBOTICS

So now we can control the joints to move…
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…but move where? What is the goal?

u
Desired 
Position

Controller

Sensor

Disturbances

Actual 
Position

Measured Position

error

Hand (End-Effector, EE) 
Frame

Base Frame

Joint Frame

Tasks are usually defined in 3D Cartesian Space not joint space
We want to move a frame on the robot to a desired pose
We need to deal with poses and motion in Cartesian space
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Representations of Rotations in 3D Space

1. Axis-Angle 

2. Euler Angles

3. Rotation Matrix
4. Quaternions

Representations of Translation+Rotation in 3D Space

1. Transformation (Homogeneous) Matrices → SE(3) Group

2. Spatial vectors/Screw motions/Twists → se(3) Algebra

Representations of Translations in 3D Space

1. Displacement Vector → ℝ3 Group
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Recap: Translation

• Move a point to a new location

Translation → 3 Degrees of Freedom (DoF)

ҧ𝑑 ∈ ℝ3
𝑝 ∈ ℝ3

𝑝′ = 𝑝 + ҧ𝑑

• Move an object to a new location

Every point displaced by same vector
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Recap: Representations of Rotations

1) Rotation Matrix (direction cosine matrix) 2) Exponential Coordinates (Axis-angle)

3) Euler angles
4) Quaternion
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Summary of pros and cons

1) Rotation Matrix (direction cosine matrix)

+ Operations on other geometric elements

+ Composition

+ Unique representations

- 9 elements for 3 DoF

- Interpolation

2) Exponential Coordinates (Axis-angle)

+ Minimal representation

+ Intuitive to “visualize”

+ Necessary for differential equations, integration of 

velocity…

- Interpolation

- Operations on other geometric elements

- Composition

3) Euler angles

+ Intuitive to “define”

+ Minimal representation

- Gimbal lock

- Composition

- Operations on other geometric elements

4) Quaternion

+ “Almost” minimal representation

+ “Almost” intuitive to “visualize”

+ Interpolation (SLERP)

- Operations on other geometric elements
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Transformation: Defined

• A Transformation is a rotation plus a translation.

(𝑅, ҧ𝑑) • A rotation of a point: 𝑝′ = R ⋅ 𝑝

• A translation of a point: 𝑝′ = 𝑝 + ҧ𝑑

• A general motion of a point: 𝑝′ = R ⋅ 𝑝 + ҧ𝑑

• Several motions sequentially:

𝑝′ = R4(R3(R2(R1 ⋅ 𝑝 + ഥ𝑑1) + 𝑑2) +𝑑3) +𝑑4) 

(start ”inside” work way out)
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Chasles’ Theorem (Screw Theory)

• Every displacement is a translation along a line and a rotation about that line.
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Transformations: Representations

1) Homogeneous Transformation Matrix 2) Exponential Coordinates (Twist)

Any combination of rotation representation + translation

True, but Transformations and Twists are most useful in robotics

VIP
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(Homogeneous) Transformation Matrices

• If a point p is transformed with a homogenous transformation matrix, what 
are its new coordinates?

• Wait! 𝑝 ∈ ℝ3 and 𝑇 ∈ 𝑆𝐸 3  (matrices of 4x4 with some extra properties)

– The sizes do not match!

• We convert 𝑝 into the homogeneous coordinates of 𝑝

– Basically, we add a “1” as fourth coordinate (more complex and general, but for our 
purposes, that is what we will do

𝑝′ = 𝑇 ⋅ 𝑝
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(Homogeneous) Transformation Matrices

• With the homogeneous coordinates of 𝑝 we get:
 

• Special cases:

– Pure translation → 𝑅 = 𝐼 → 𝑝′ = 𝑇 ⋅ 𝑝 =
𝐼 𝑑

000 1

𝑝𝑥

𝑝𝑦
𝑝𝑧

1

=

𝑝𝑥 + 𝑑𝑥

𝑝𝑦 + 𝑑𝑦

𝑝𝑧 + 𝑑𝑧

1

– Pure rotation → d = 0 → 𝑝′ = 𝑇 ⋅ 𝑝 =
𝑅 0

000 1
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When do you use the Transformation matrix on a point?

• Two main cases:

– Changing the reference frame of a 
point (the point is the same, the 
coordinates change

– Moving a point (the point 
changes)

𝑐𝑎𝑚
𝑟𝑜𝑏𝑜𝑡𝑇

𝑟𝑜𝑏𝑜𝑡𝑝 = 𝑐𝑎𝑚
𝑟𝑜𝑏𝑜𝑡𝑇𝑐𝑎𝑚𝑝

𝑝𝑏𝑒𝑓𝑜𝑟𝑒

𝑝𝑎𝑓𝑡𝑒𝑟
𝑏𝑒𝑓𝑜𝑟𝑒

𝑎𝑓𝑡𝑒𝑟
𝑇

𝑎𝑓𝑡𝑒𝑟
𝑝 = 𝑏𝑒𝑓𝑜𝑟𝑒

𝑎𝑓𝑡𝑒𝑟
𝑇

𝑏𝑒𝑓𝑜𝑟𝑒
𝑝
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(Homogeneous) Transformation Matrices

• SE(3) – The Special Euclidean Group is the set of all possible 4x4 real 
transformation matrices.

• Multiplying arbitrary transformations 

11 12 13 x

21 22 23 y

31 32 33 z

3

d

d

d 0 1

0 0 0 1

(3), (3),

r r r

r r r

r r r

SE SO

 
 

  = =     
 
 

  

R p
T

T R p ¡ℝ3
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Translation Matrix

• Express the translation using a 4x4 
matrix

x

y

z

1 0 0 d

0 1 0 d

0 0 1 d

0 0 0 1

 
 
 =
 
 
 

T

• Multiplication Preserves the 
Translation

2 1 2

0 0 1

x x

y y

z z

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0 0 1

1 0 0 (1) (1)

0 1 0 (1) (1)

0 0 1 (1) (1)

0 0 0 1

x x

y y

z z

a b

a b

a b

b a

b a

b a

=

   
   
   =
   
   
   

+ 
 

+
 =
 +
 
 

T T T

Simplifies Matrix operations
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Regular Matrix operations preserve transformations

4
0𝑇 = 4

3𝑇3
2𝑇2

1𝑇1
0𝑇

𝑅2 𝑑2

000 1
𝑅1 𝑑1

000 1
=

𝑅2𝑅1 𝑅2𝑑1 + 𝑑2

000 1



RBT350 – GATEWAY TO ROBOTICS

Rotation Transformations
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
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• Multiplication Preserves the 
Rotation Matrix Properties
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Properties of Transformation Matrices

• Inverse

1

1

0 1

(3)
0 1

T T
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• Properties
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Example
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Is this a real type of robot?

Yes.
https://spectrum.ieee.org/hello-robot-stretch-3

https://spectrum.ieee.org/hello-robot-stretch-3

https://spectrum.ieee.org/hello-robot-stretch-3
https://spectrum.ieee.org/hello-robot-stretch-3
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Example
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Example

2 2
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URDF – Universal Robot Description Language
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Representations of Rotations in 3D Space

1. Axis-Angle 

2. Euler Angles

3. Rotation Matrix
4. Quaternions

Representations of Translation+Rotation in 3D Space

1. Transformation (Homogeneous) Matrices → SE(3) Group

2. Spatial vectors/Screw motions/Twists → se(3) Algebra

Representations of Translations in 3D Space

1. Displacement Vector → ℝ3 Group
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Chasles’ Theorem

• “Every motion is a translation along a line and a rotation about the same 
line”
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Chasles’ Theorem

• Every motion is a translation along a line and a rotation about the same line

𝒅 = 𝒒 = a direction (vector) along that line

• To define a motion, we need to define the line and the amount of motion. Start by defining that line in standard 
parametric form

Why two equations? Same, just different symbols:
Typically, Robotics texts tend to use p and q, geometers 
use A and d

𝑟 𝑡 = 𝐴 + 𝑡𝒅 = 𝒑 + 𝑡𝒒

𝐴 = 𝒑 = points on the line
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Side note

• A given line only has 4 degrees of freedom

• One of many informal explanations:
– A line is defined by two points (6 values), but they are constrained to that line.

– There are many ways to define that constraint, but the simplest is to note that either 
point can move along the line (2 values) and still produces the same line.
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But first, Plücker Coordinates

• Let’s use 6 values, but values that enable matrix operations similar to why 
we used transformation matrices.
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Plücker (q, q0) Coordinates

• Define
– q  = The direction vector

• Is parallel to the line

– qo = The moment vector
• Is perpendicular to plane with O and the line.

• Why?
– For two lines Plucker Coordinates are (almost) unique

– Simplifies computation (coming soon)

– Enables both simple algebraic and matrix algebraic solutions 
for

• line-line intersections

• line-plane intersections

• rigid body transformations

• Simple application of quaternion rotations 

Moment vector

Moment vector

The constraints are mathematically 
simple.

0

( , ) ( )

o

o ok

=

=

q q

q q q q

g

g

Thus, 4 degrees of freedom.
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Example lines with Plücker Coordinates

• 𝑞, 𝑞0

– 𝑞 is parallel to the line

– 𝑞0 is perpendicular to the plane with the origin of 
coordinates (O) and the line

–
𝑞0

𝑞
= 𝑑 distance to the line from O

• Special cases

– 𝑞, 0 → Line through origin

– 0, 𝑞0  → Line at infinity

– 0,0  → No meaning
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Plucker Coordinate are (almost) unique

• Two lines are distinct IFF their Plucker coordinates are linearly 
independent

• Example, which two are linearly dependent (same line)?

– q = {0, -2, -7, 7, -14, 4}

– p = {0, 4, 14, -14, 28, -8}

– s = {2, 1, 0, 4, 5, 6}

• Note for the correct answer, the orientation is different which is why we 
say (almost) unique



RBT350 – GATEWAY TO ROBOTICS

Exponential Coordinates of a Transformation

• We need a line (4 DoF), the amount of rotation (1 DoF) and the amount of 
translation (1 DoF)

• Alternatively, a line (4 DoF), the amount of ”motion” and the way rotation 
and translation relate (so much motion goes to rotation and so much to 
translation)

• Screw axis:

– A line

– a line (4 DoF
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Screw Axis

• To describe a screw axis, we need a 
line (4 DoF) and the way rotation and 
translation relate (so much translation 
corresponds to some rotation)

• Screw axis:
– A line (4 DoF)

– “Pitch” of the screw: h (1 DoF)

• Only 1 DoF ”free”: how much we 
move along the screw axis
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Twists

• Pure translation: the rigid body moves with linear velocity, 𝑣
• Pure rotation: the rigid body moves with angular velocity, 𝜔
• “Every motion is a translation along a line and a rotation about the 

same line”

• What happens if the rigid body has at the same time linear and 
angular velocity?
– Twist!
– 6D vector that express the simultaneous linear and angular velocity

• A twist is a normalized screw axis
– The screw axis defines the direction of motion and the relationship 

rotation/translation
– The twist, on top of that, tells us how much we move per time unit 

𝜉 = 𝜔, 𝑣 𝑇 ∈ 𝑠𝑒(3)

(∈ ℝ6)
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Exponential Coordinates

• Remember for rotations:

– If a rigid body rotates with 𝜔 for a 
time t, it has moved 𝜃 = |𝜔|𝑡 around 

the axis 𝑒 =
𝜔

𝑜𝑚𝑒𝑔𝑎
= ෝ𝜔 (axis-angle)

– From axis-angle we can go into 
rotation matrix using the exponential 
transformation

𝑅 = 𝑒 ෝ𝜔 𝜃 = 𝐼 + ෝ𝜔 𝑠𝜃 + ෝ𝜔 2(1 − 𝑐𝜃)

ෝ𝜔 =
0 −𝜔3 𝜔2

𝜔3

−𝜔2

0
𝜔1

−𝜔1

0
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Exponential Coordinates

• We can extend the same concept to 
full transformations (rotation and 
translation) and twists integrated 
over time

• 𝜃 amount of motion along the twist

• Exponential of a matrix is something 
that any math library gives us!

• Same for matrix logarithm

𝑇 = 𝑒
෠𝜉 𝜃

መ𝜉 =
ෝ𝜔 𝑣

000 0
∈ ℝ4𝑥4

ෝ𝜔 =
0 −𝜔3 𝜔2

𝜔3

−𝜔2

0
𝜔1

−𝜔1

0

𝜉 = log(𝑇)
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Why so many representations for pose?

1) Homogeneous Transformation Matrix 2) Exponential Coordinates (Twist)

+ Operations on other geometric elements

+ Composition

- 16 elements for 6 DoF

- Interpolation

+ Minimal representation

+ Good for optimization and iterative error minimization

- Interpolation

- Operations on other geometric elements

- Composition
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VIP: Transforming (moving, changing reference frame) of 3D 
points

• A very common operation in 
robotics
– I know the point I want to reach 

in the reference frame of my 
camera, what is that point with 
respect to my robot?

– I have a point on an object. I 
move the object, where is the 
point now?
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Transforming Clouds of Points

𝑝′ = 𝑇 ⋅ 𝑝 =
𝑅 𝑑

000 1

𝑝𝑥

𝑝𝑦
𝑝𝑧

1

=

𝑝′𝑥
𝑝′𝑦
𝑝′𝑧
1

Remember for one point:

1. Create a matrix with all the points in the point cloud (per 

column): 𝑃𝐶 =

1𝑝𝑥 … 𝑁𝑝𝑥

1𝑝𝑦 … 𝑁𝑝𝑦

1𝑝𝑧

1
… 𝑁𝑝𝑧

1
2. Apply transformation on the entire point cloud:

𝑃𝐶𝑏 = 𝑇𝑠𝑏 ⋅ 𝑃𝐶𝑠
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Let’s practice it!
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Summary

• Representative of Spatial Transformations
– Transformation Matrices

– Screw or Screw/Spatial Vectors, Exponential coordinates

• We can use our Super Calculator to let use define our robot in 
the most intuitive way and then convert internally to whatever 
representation we need. 

• NEXT: 
– Use the information to find any part of our robot relative to any 

other part.

– Find the joint angles that give us the transformation that we want!
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