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So now we can control the joints to move...
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...but move where? What is the goal?
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. Position error u Position
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Tasks are usually defined in 3D Cartesian Space not joint space
We want to move a frame on the robot to a desired pose
We need to deal with poses and motion in Cartesian space
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Representations of Translation+Rotation in 3D Space

1. Transformation (Homogeneous) Matrices = SE(3) Group
2. Spatial vectors/Screw motions/Twists = se(3) Algebra
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Recap: Translation

* Move a point to a new location * Move an object to a new location
, _
p=p+d
@
3 d € R3
p € R
o) Every point displaced by same vector

Translation = 3 Degrees of Freedom (DoF)
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Recap: Representations of Rotations ‘\&'*LE |

by
* .y
1) Rotation Matrix (direction cosine matrix) 2) Exponential Coordinates (Axis-angle)
(ﬁ” s E:") Wl = w € s0(3)
R= :'E.'f:'b ﬁi’b Egﬁ £ SO(3)
&y Ua Eg

3) Euler angles 4) Quaternion

((I._./B,"}’) = YPR q = (QW1Q$=Qy:qz)
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Summary of pros and cons

1) Rotation Matrix (direction cosine matrix) 2) Exponential Coordinates (Axis-angle)
+  Operations on other geometric elements +  Minimal representation
+  Composition +  Intuitive to “visualize”
+  Unique representations +  Necessary for differential equations, integration of
velocity...
- 9 elements for 3 DoF - Interpolation
- Interpolation - Operations on other geometric elements

- Composition

3) Euler angles

4) Quaternion

+

Ll 13 * ”
Intuitive to “define +  “Almost” minimal representation
+  Minimal representation
- Gimbal lock

- Composition

+  “Almost” intuitive to “visualize”
+  Interpolation (SLERP)

) Operations on other geometric elements - Operations on other geometric elements
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Transformation: Defined

A Transformation is a rotation plus a translation.

(R, d)

A rotation of a point: p’ = R p

* Atranslation of apoint:p’ = p + d

*  Ageneral motion of apoint:p" =R-p+d
*  Several motions sequentially:

p' = Ry(R3(Ry(Ry - p + dy) + dy) +d3) +dy)

(start “inside” work way out)
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Chasles’ Theorem (Screw Theory)

e Every displacement is a translation along a line and a rotation about that line.

—
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Transformations: Representations

1) Homogeneous Transformation Matrix 2) Exponential Coordinates (Twist)

T = € SE(3) (v, w) € se(3)

VIP

Any combination of rotation representation + translation

e.g. (g,t) or (YPR,t)

True, but Transformations and Twists are most useful in robotics
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(Homogeneous) Transformation Matrices

e If a point p is transformed with a homogenous transformation matrix, what
are its new coordinates?

r_

p=T-p

« Wait! p € R3and T € SE(3) (matrices of 4x4 with some extra properties)
— The sizes do not match!

*  We convert p into the homogeneous coordinates of p

— Basically, we add a “1” as fourth coordinate (more complex and general, but for our
purposes, that is what we will do
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(Homogeneous) Transformation Matrices

*  With the homogeneous coordinates of p we get:

Dy Py
I __ . — R d py — p’y
p="1p (000 1) D, D'
1 1

e Special cases:

Px Dy + dy
— Puretranslation>R=12>p' =T -p= (060 Cli) (gJ’) —| Py 1 ZJ'
Z Pz z

1

1
Px (R-p)x
— Purerotation=>d=0->p' =T -p= (0}50 (1)) <§y> — E}; ' Z%y
Z . 7
1

1
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When do you use the Transformation matrix on a point?

e Two main cases:

— Changing the reference frame of a
point (the point is the same, the
coordinates change

— Moving a point (the point TObOtp — T%Z%Tcamp
changes) after
efo r
M [ fter
8fore
after_ afterTbefore

~ before
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(Homogeneous) Transformation Matrices

* SE(3) — The Special Euclidean Group is the set of all possible 4x4 real
transformation matrices.

* Multiplying arbitrary transformations

r;I.l r.12 r.13

d
1 T Ty dy _ R p
d 0 1

r.31 r.32 r.33 z

0 0 0 1
T e SE@3),R € SO(3),p eR3
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Translation Matrix

* Express the translation usinga 4x4 * Multiplication Preserves the

matrix Translation
_ _ oT =0T T
1 0 0 d, 100 alL 00 b]
01 0 a0 1 00D
_ y y
010 001 al001b
00 1 000 1/000 1|
10 0 bW+a®
[0 10 b@+a,W
00 1 b@+a)
Simplifies Matrix operations 000 1]
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Regular Matrix operations preserve transformations
r_ (EH  SE@)
01

ol = JT3T5T3T

(0%20 df) (0%10 Cil) =(IE)2§01 R2d11+ dz)
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1 0 0 0]
0 cos® -sin6 O
0 sin® cos6 O
0 O 0 1

Rotation Transformations

(cos® 0 sin® O
o 1 0 O
-sin® 0 cosO O
* Multiplication Preserves the 0 0 0 1]
Rotation Matrix Properties 058 56 0 O
_ |sin® cos® 0 O
R = RZ(O) 10 0 1 0
0 0 01
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Properties of Transformation Matrices

* |nverse * Properties
T, T, € SE(3)
T! = R p}l (Tsz)Ts =T, (T2T3)
01 TT,#T,T,
_|R _RTp} c SE(3) T=5T
01 TOT=2T
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Example

T0,1 = trarzs(O,Ll,O)
T ,= trans(l,, 0,0)rot(z, 90°)

T, ; = trans(l4,0,0)rot(z,—90°+0,)

T3, r = trans(L,, 0,0)rot(z, 90°)rot(x, 90°)

¥
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Is this a real type of robot?

hello robot

https://spectrum.ieee.org/hello-robot-stretch-3 Ye S.
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X Z — -
Example iy Lor
P / Ty, = [910Ls
R 001 0
x 000 1]
: 1 00 /5| cos90° sin90° 0 0
Fl T, = 010 0/[-sin90° cos90° 0 0
x y " lootio|| O 0 10
2 0001/ O 0 01
| F2 - =
100/, | cos(—90° +8,) sin(-~90°+8,) 00
FO ) T,, = 010 0||-sin(—90°+6;) cos(-90°+6,) 00
. g ’ 0010 0 0 10
0001
T0,1 = trans(0,L,,0) = - L 0 0 0 1_
T, , = trans(l,, 0,0)rot(z, 90°) 1 00L,|cos9° sin90° 0 0|1 0 0 0
T, ; = trans(ly, 0,0)rot(z,—90° +0)) Ty 7= 010 0||-sin90° cos90° 0 0|0 cos90° sin90° 0
’ 001 0 0 0 1 0[]0 —sin90° cos90° 0
T3'T = trans(L,, 0,0)rot(z, 90°)rot(x, 90°) 000 1 0 0 o1llo 0 0 1
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(100 0

Ty = 010L,
0010
000 1]
_ e 1 0 0 Lo 12 0 0] [0 1 0 I,]
1 00 /5| cos90° sin90° 0 0 . 010 LJ|-1000 -1 0 0 L
T o= 0110 0] |=sno0"os30" 0 0 2"=10 01 0f0o 0107|001 0
ootoj 0 0 10O 000 1/[0 00 1] [0 0 0 1
000 L[ O 0 0l ) o - )
) o F ; 1. 0 0 Lo 12 0 0] [0 1 0 L]
1 00 /]| cos(-=90°+8,) sin(-90°+86,) 00 ) 010 L|-1000 10 0 L
T, = [0100||-sin(~90°+8,) cos(~90°+0,) 00 =0 01 ollo 0 1 07lo 01 o
0010 0 0 Lo 000 1J/0 OO0 1] [0 O O 1]
000 1]] 0 0 01
1 00L,l|cos90° sin90° 0 0[[L 0 0 0
T, 7= 010 0/|—sin90° cos90° 0 O Oco's90° sin90° 0 etc.
001 0 0 0 1 0]|0 —sin90° cos90° 0
000 1] 0 0 01/]|0 0 0 1
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URDF — Universal Robot Description Language

<robot name="My 2R robot">

<link name="base link"> . .
- <link name="link 1">

</link> <visual>
<origin xyz="0 0 0" rpy="0 1.5708 0" />
<link name="link 1"> <geometry>
ven <cylinder length="1" radius="0.1"/>
</link> </geometry>
<material name="grey">
<link name="link 2"> <color rgba="0.6 0.6 .6 1"/>
. </material>
</link> </visual>
<joint name="joint 1" type="revolute"> <collision>
. - <origin xyz="0 0 0" rpy="0 1.5708 0" />
<parent link="base link"/> <geometry>
<child link="1link 1"/> <cylinder length="1.0" radius="0.1"/>
</joint> a </geometry>
</collision>
<joint name="joint_ 2" type="revolute"> <inertial>
s <mass value="2.0"/>

<parent link="link 1"/>
<child link="link 2"/>
</joint>
</robot>

<inertia ixx="0.2" ixy="0.0" ixz="0.0" iyy="0.6" iyz="0.0" izz="0.6"/>
</inertial>
</link>
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Representations of Translation+Rotation in 3D Space

1. Transformation (Homogeneous) Matrices = SE(3) Group
2. Spatial vectors/Screw motions/Twists = se(3) Algebra
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Chasles’ Theorem

* “Every motion is a translation along a line and a rotation about the same
line”
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Chasles’ Theorem

* Every motion is a translation along a line and a rotation about the same line

. To define a motion, we need to define the line and the amount of motion. Start by defining that line in standard
parametric form

r(t)=A+td=p+tq

Why two equations? Same, just different symbols:
Typically, Robotics texts tend to use p and g, geometers
use Aand d

A =p = points on the line d = q = a direction (vector) along that line
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Side note

- =

 Agiven line only has 4 degrees of freedom

/;;;;;;::}x

* One of many informal explanations:
— Alineis defined by two points (6 values), but they are constrained to that line.

— There are many ways to define that constraint, but the simplest is to note that either
point can move along the line (2 values) and still produces the same line.
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But first, Plicker Coordinates

e Let’s use 6 values, but values that enable matrix operations similar to why
we used transformation matrices.

Line in parametric form

x(t)=p+1iq
Define g, = pxq 90
Plucker coordinate of the line (g, g,) O
Six coordinate 4 DOFs: p q
q,-q=0

(¢.9,)=k(g.q,) [scale g by k]
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Plucker (q, q,) Coordinates

Moment vector
e Define 9o

— q = Thedirection vector
* Isparallel to the line
— ¢,= The moment vector
* Is perpendicular to plane with O and the line.

*  Why? Moment vector
— For two lines Plucker Coordinates are (almost) unique
—  Simplifies computation (coming soon) The constraints are mathen
— Enables both simple algebraic and matrix algebraic solutions simple,
for _
* line-line intersections 9H, = 0
* line-plane intersections (q’ qo) — k(qmo)

* rigid body transformations
e Simple application of quaternion rotations ThUS, 4 degrees of freedom.
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Example lines with Plicker Coordinates

y (q! qO)
— q is parallel to the line . 0
— (g is perpendicular to the plane with the origin of - qisparallelto the ine
coordinates (O) and the line - qq s perpendicular o the plane with the
origin of coordinates () and the line
= % = d distance to the line from O - o= ddsancetothelnefom O
e Special cases * Specal s .
= (g,0) 3 Line through origin
— (g,0) = Line through origin = (0.q0) 3 Lineat niity

- (00)% Nomeani
— (0, qp) = Line at infinity e

— (0,0) > No meaning
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Plucker Coordinate are (almost) unique

 Two lines are distinct IFF their Plucker coordinates are linearly
independent

 Example, which two are linearly dependent (same line)?
- g=10,-2,-7,7,-14, 4}
— p=A{0, 4, 14, -14, 28, -8}
- s={2,1,0,4,5, 6}
* Note for the correct answer, the orientation is different which is why we
say (almost) unique
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Exponential Coordinates of a Transformation

 We need a line (4 DoF), the amount of rotation (1 DoF) and the amount of
translation (1 DoF)

e Alternatively, a line (4 DoF), the amount of “motion” and the way rotation
and translation relate (so much motion goes to rotation and so much to
translation)

* Screw axis:

— Aline
— aline (4 DoF
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Screw AXxis

 To describe a screw axis, we need a
line (4 DoF) and the way rotation and
translation relate (so much translation
corresponds to some rotation)

* Screw axis:
— Aline (4 DoF)
— “Pitch” of the screw: h (1 DoF)

 Only 1 DoF ”free”: how much we
move along the screw axis
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Twists

*  Puretranslation: the rigid body moves with linear velocity, v
*  Purerotation: the rigid body moves with angular velocity, w

*  “Every motion is a translation along a line and a rotation about the
same line”

*  What happens if the rigid body has at the same time linear and
angular velocity?

—  Twist!
— 6D vector that express the simultaneous linear and angular velocity

+  Atwist is a normalized screw axis 6 — ((1)’ U)T - 56(3)

— The screw axis defines the direction of motion and the relationship
rotation/translation

— Thetwist, on top of that, tells us how much we move per time unit (E R6)
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Exponential Coordinates

e  Remember for rotations:

— If arigid body rotates with w for a
time t, it has moved 6 = |w|t around

the axis e = ——— = & (axis-angle) R = el®0 =] + [@]sg + [@]%(1 — cg)
lomegal
— From axis-angle we can go into 0 —w3 Wy
rotation matrix using the exponential [&] =| @3 0 —wq
—Wy wq 0

transformation
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Exponential Coordinates

* We can extend the same concept to

full transformations (rotation and T = elé16

translation) and twists integrated

over time
6 amount of motion along the twist €] = ([)(6)2) gl € R**4
* Exponential of a matrix is something

that any math library gives us! 0 —Ww3 Wy
* Same for matrix logarithm @] =| @3 0 —w




RBT350 — GATEWAY TO ROBOTICS WHAT STARTS HERE CHANGES THE WORLD

Why so many representations for pose?

1) Homogeneous Transformation Matrix 2) Exponential Coordinates (Twist)
+  Operations on other geometric elements +  Minimal representation
+  Composition +  Good for optimization and iterative error minimization
- 16 elements for 6 DoF - Interpolation
- Interpol ation - Operations on other geometric elements

- Composition
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VIP: Transforming (moving, changing reference frame) of 3D
points

* A very common operation in
robotics

— | know the point | want to reach
in the reference frame of my
camera, what is that point with
respect to my robot?

— | have a point on an object. |
move the object, where is the
point now?
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Transforming Clouds of Points

Remember for one point:

* PCy , R d 5,’5 5’;
3 P =Tp=(g00 1|p]" D
% R
+ ++ {b} 1. Create a matrix with all the points in the point cloud (per

+ 1px pr
+ column): PC = 1Py - NDy
S} 1pZ . sz
1 1
2. Apply transformation on the entire point cloud:

PCb =st'PCS
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Let’s practice it!

We have a pointp = (1, 2, 3)T on the surface of an object that rotates

0 0 1
R= 1 0 1 0 | whatisthe position of the point at the end of the
-1 0 O

rotation?



W

hat is the rotation matrix from S to B?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app




For the same rotation, what are the exponential coordinates?

w=(0,7/2,0)

b
yS xg} w=(0,v2/2,v2/2)-7/2
Zb
18} g

w=(0,1,0)-7/2

w=(1,0,0) -7

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



For the same rotation, what is its representation as quaternion?

q=(w=0,1,0,0)

b
Ys a:g} ¢ = (w=1,0,0,0)
{st z,°

q:(w:ﬁ/zunaﬂ/zﬁo)

qg=(w=+2/2,0,0,1)

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



For the same rotation, what are the Euler angles (yaw, pitch, roll)?

YPR = (0, 7/2,0)

2 YPR = (0,7/2,7/2)

YPR = (0,/2/2,0)

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app
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Summary

* Representative of Spatial Transformations
— Transformation Matrices
— Screw or Screw/Spatial Vectors, Exponential coordinates

* We can use our Super Calculator to let use define our robot in
the most intuitive way and then convert internally to whatever
representation we need.

* NEXT:

— Use the information to find any part of our robot relative to any
other part.

— Find the joint angles that give us the transformation that we want!
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