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Exercise

e Assuming that the end-effector configuration
of a 2 DoF robot has only two variables, x
andy

* K9 = (qz(j)h)

e Reminder:

— Inverse of a 2x2 matrix of the form

M= e =z (D)
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Recap

* Inverse Kinematics
— Mapping desired end-effector configuration (pose) to joint values to achieve it
— Not as easy as forward kinematics!
— It may have 0 solutions, 1 solution, infinite solutions
— Usually not a closed form = Iterative numerical process
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What will you learn today?

* Equations of motion in robots

* Elements of the equation

* Intuition behind each element
 Computing dynamics (bird’s eye view)
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Why does this matter?

Until now:

— We have been looking at motion (only)
But we know from Newton’s laws that F=ma
We also saw that motors generate forces
(torques)
What forces/torques do we need to generate to
create the desired motion?

What forces are already acting on the robot and
creating motion (disturbances)

— What disturbances act on the robot in the video?
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Equation of Motion of a Robot

T=M(q)G+C(q,9)q + g(q)

. T is the applied torque on each joint

. q is our joint coordinates, generally the joint angles of the serial link manipulator.

. g the joint velocities, the rates of change of the joint coordinates and

. g is the joint acceleration.

. g is a term which represents the torque that's due to the gravity acting on the robot manipulator and gravity is a function only of the
joint coordinates q.

. M is the inertia matrix and it is a function only of the joint coordinates multiply by the joint accelerations

J C is the
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The Gravity Term

T = g9(q)

* Avector of length = number of joints
 Depends only on the configuration (pose)

of the robot w
— No dependency with velocity/acceleration! 4\ »- J\‘:::I

e Can be computed based on the dynamic
parameters of the robot
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What are the Dynamic Parameters of a Robot?

For each link:
— Mass of the link
— Center of mass
— Inertia matrix

Hard to obtain!

— Requires knowing the material,
construction, density...
OR

— Infer the parameters (dynamics parameter
estimation) by applying forces/torques and
measuring motion
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The Inertia Matrix of a Rigid Body

 Moment of inertia: quantity that determines
the torque necessary to achieve a desired
angular acceleration about an axis
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Gravity Force on a Rigid Body
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Gravity Torque on a Joint from a Robot Link
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Back to the Gravity Term

I

I

WHAT STARTS HERE CHANGES THE WORLD

g(q): Propagate “up” the
contribution of the weight of each
link on each of the joints

g;(q) will depend on:

— Masses of the links “after” that joint
— Alljoint values
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Exercise 0
T = +9(q)

qs

top-down view
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Exercise 0
T = +9(q)

qs

top-down view
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Coriolis Effect (Force)

« C(q,9)q

* Fictitious force that
act on objects
when the

otating The Coriolis Effect

e We need to take it
into account to
compensate for it
when moving our
robot arm
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Centripetal Effect (Force)

* C(q,9)q
* Force that keeps a link rotating
instead of “flying away” _caliiiie .. Orbit
* |tactsoneach joint due to ,"’ : ‘“n
ther links rotating { s A
0 i I~ L E

Centripetal ,
force S

R
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The Mass Matrix

T = M(q)

Mass that represents the inertia of the robot with respect to motion of each
joint

* nxnmatrix (nis the number of joints)

* Positive semidefinite and symmetric

*  “How much torque is required to accelerate with one joint”

“How much torque the acceleration of a joint causes on another joint”
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The Mass Matrix — Main Diagonal

« M(q) = mi;
mnn

— Inertia of a rigid body (how much torque do | need to move that link)
— Directly related to the mass of each link

* Increasing the mass > increases that term and consecutive
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Exercise

T=M(q)q

mi1 My
« M(qg) =( ) all non-zero
q My Myy)’

« =M(qQ)§
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Forward Dynamics and Inverse Dynamics

* Forward Dynamics:

— Compute the acceleration generated by
some torques (given pose and velocity)

— Useful for simulation
* Inverse Dynamics:

— Compute the torques necessary to create
some given accelerations (given pose and
velocity)

— Useful for control
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Forward Dynamics

AL
e &  Therobot is at a pose (from
N previous time step)
-(/p * | apply some joint torque
) — This is usually what | can control in
« my robot/motors!

_  What is the acceleration in the next
== time step (and the pose)?
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Forward Dynamics

What are the joint accelerations created by some torque?

(@) {t—C(q,9)ad—g(q)}

—/th
quqm

= aka the forward dynamics

= maps torque to motion T —> (q, q, Q)

= used to simulate robot motion
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Inverse Dynamics

AL
e &  Therobot is at a pose (from
N previous time step)
-(/p * | know where | want to be in the
S next time step
t  Whatis the joint torque to achieve

the desired acceleration (and
pose)?
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How do we compute (Inverse) Dynamics?

What are the joint torques necessary to create some joint acceleration?

 Newton-Euler Approach
— lterative-recursive process

— Compute the torques necessary to create some given
accelerations (given pose and velocity)

— Step 1: Forward iteration
* We determine the Cartesian pose, velocity and acceleration

of each CoM

* Giveng, g, q for link i=1 to n:

Compute the Cartesian velocity of link i as the composition of
the Cartesian velocity of link i-1 and the motion caused by ¢;
Compute the Cartesian acceleration of link i as the composition
of the Cartesian acceleration of link i-1, the motion caused by g;
and a velocity-product term
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How do we compute (Inverse) Dynamics?

What are the joint torques necessary to create some joint acceleration?

 Newton-Euler Approach
— lterative-recursive process

— Compute the torques necessary to create some given
accelerations (given pose and velocity)

— Step 2: Backward iteration (from nto 1)
* We determine the joint torque necessary to create the
previously computed Cartesian motion
e forlinki=nto 1:

— Compute the Cartesian wrench of link i as the composition of
the Cartesian wrench of link i+1 and the wrench necessary to
create the Cartesian velocity and acceleration of link i

— Compute the torque 7; as the component of the Cartesian
wrench of link i around the joint axis i
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