

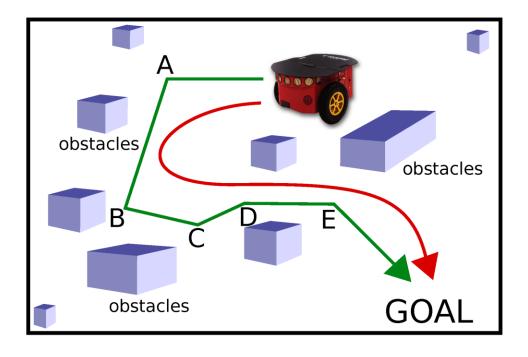
What do we have?

- Control
- Understanding of kinematics and dynamics
- Vision

What do we need?

A way to go from A to B without colliding!

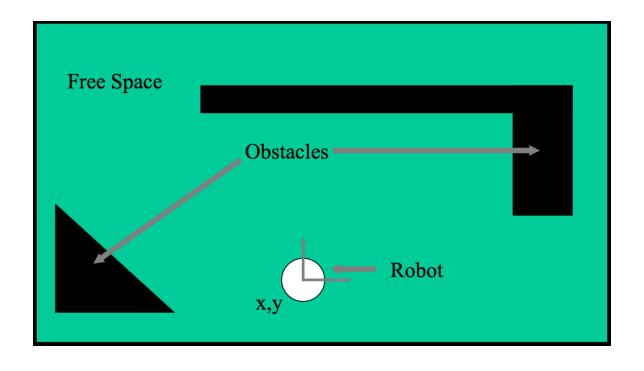
Another case



Motion Planning

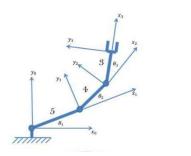
- Algorithm to find a path (sequence of states) to go from A to B without colliding
 - An algorithm is q procedure or formula for solving a problem, based on conducting a sequence of specified actions
- Our world for motion planning consist of:
 - Obstacles → Occupied space
 - Robot can't go there
 - Free space → Unoccupied space
 - Robot may be able to reach this

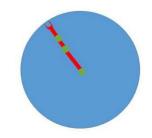
Example

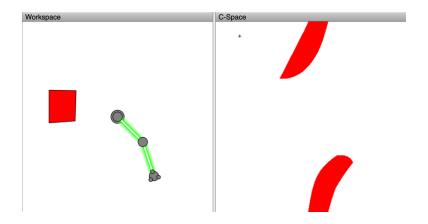


What does this look like for an arm?

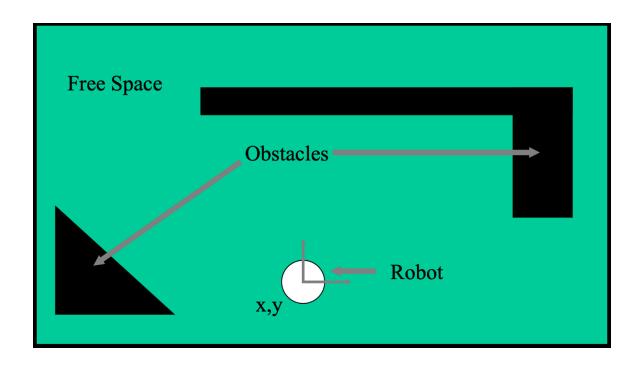
- We will search for paths in the robot's configuration space
 - Configuration space, $q \in C$, where q is the vector of joint configurations
- Why configuration space and not directly Cartesian/Workspace?
- How do obstacles look in configuration space?



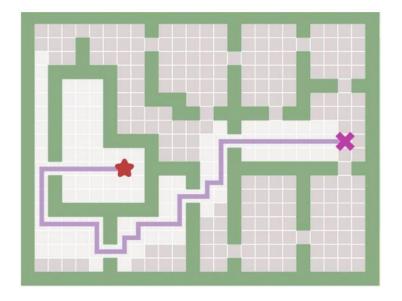




Two families of solutions

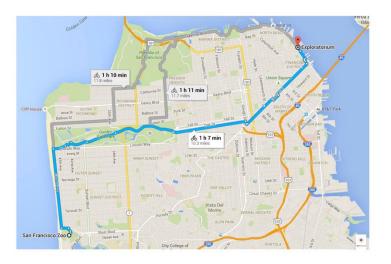


Motion planning as graph search

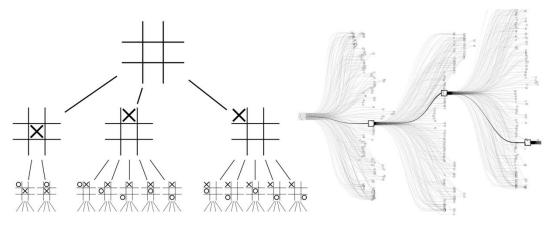


- We will transform the problem of finding a path from a starting point to a goal location as a problem to find a connection between two nodes in a graph
- The solution involves then two steps:
 - Discretize the problem → construct the graph
 - Find a path \rightarrow search in the graph

Applications beyond robotics



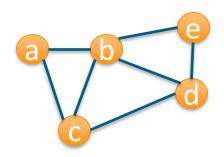
paths in maps

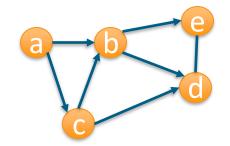


games / sequential decision making

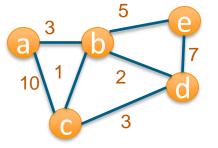
Graphs

• G = (V, E)



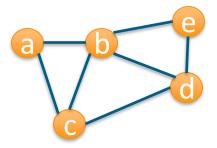


directed

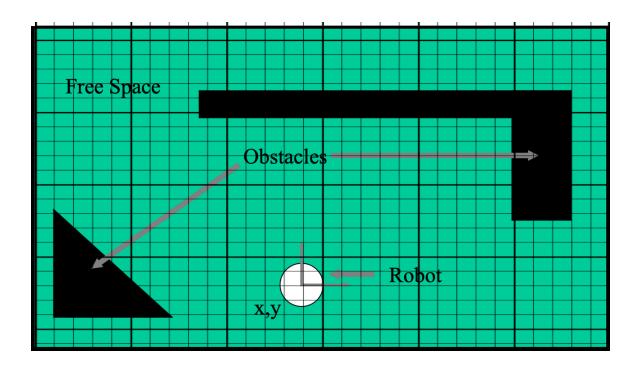


weighted

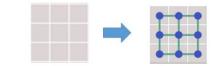
Casting problems as graph search



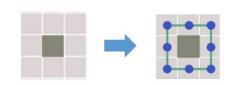
Casting problems as graph search



Each cell is a node

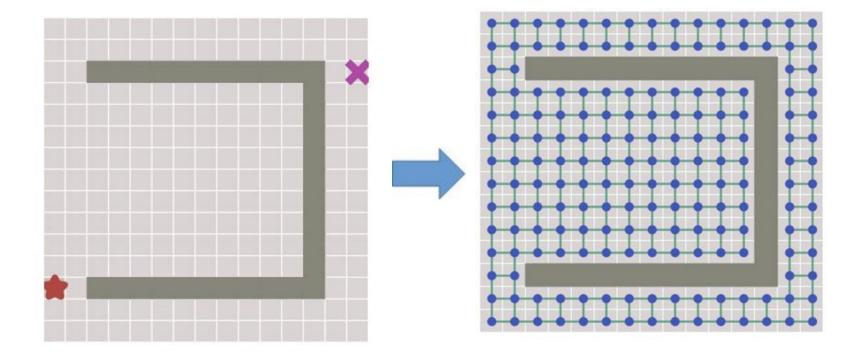


Edges connect adjacent cells.



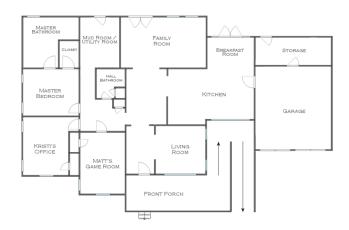
Obstacles have no edges

Casting problems as graph search



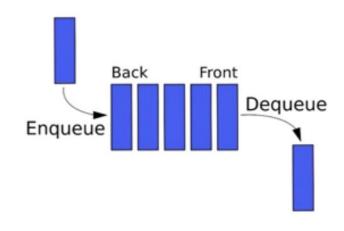
Graph Traversal Algorithms

- We have transformed the original problem into a graph equivalent problem
 - Find a collision free path from A to B →
 - → Find a sequence of nodes/edges connecting node A and node B
- To find the path in the graph, we need to "traverse" the graph, searching for the connection between A and B
- Graph traversal algorithms specify <u>the order</u> in which we search the nodes in the graph
 - Start at the source node (starting point)
 - The <u>frontier</u> of the exploration: nodes that we have <u>seen</u> but we have <u>NOT</u> explored fully yet
 - Exploring a node: seeing all its connected nodes
 - At each iteration of a graph traversal algorithm, we explore a node of the frontier: we take a node off the frontier and add its neighbors to the frontier



Breath-First Search

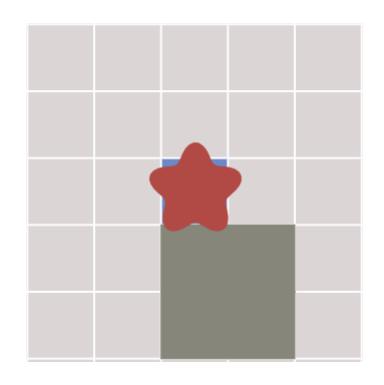
- We search first all the nodes connected to a same "level"
- We use a "queue" to control the order in which we search nodes
 - First in, first out (FIFO)
- BFS finds the <u>shortest path</u>



queue: first-in, first-out

Breath-First Search

```
frontier = Queue() // FIFO
frontier.push(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True
while not frontier.empty():
  current = frontier.get()
  if current == goal:
    break
  for next in neighbors(current):
    if visited[next] = False:
      frontier.push(next)
      visited[next] = True
      parent[next] = current
```



Queue

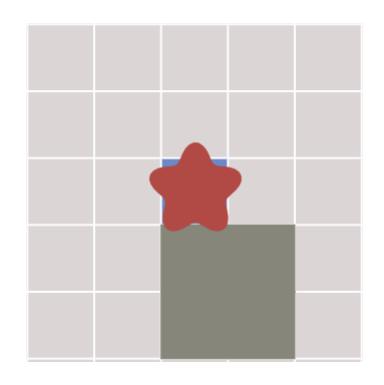
```
frontier = Queue() // FIFO
frontier.put(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True
while not frontier.empty():
  current = frontier.get()
  if current == goal:
    break
  for next in neighbors(current):
    if visited[next] == False:
      frontier.put(next)
      visited[next] = True
      parent[next] = current
```


Dictionary

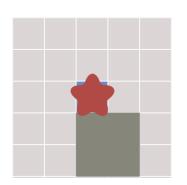
```
frontier = Queue() // FIFO
frontier.put(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True
while not frontier.empty():
  current = frontier.get()
  if current == goal:
    break
  for next in neighbors(current):
    if visited[next] == False:
      frontier.put(next)
      visited[next] = True
      parent[next] = current
```

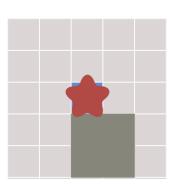

Breath-First Search

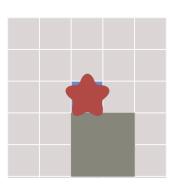
```
frontier = Queue() // FIFO
frontier.push(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True
while not frontier.empty():
  current = frontier.get()
  if current == goal:
    break
  for next in neighbors(current):
    if visited[next] = False:
      frontier.push(next)
      visited[next] = True
      parent[next] = current
```

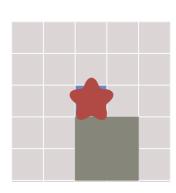


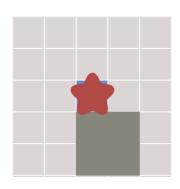
Breath-First Search

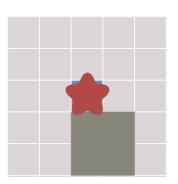


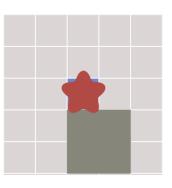


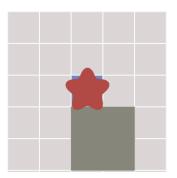


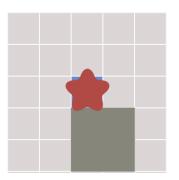


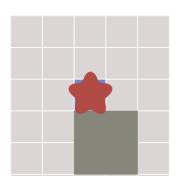






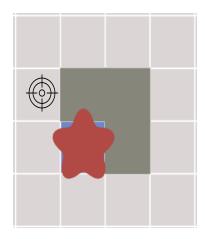






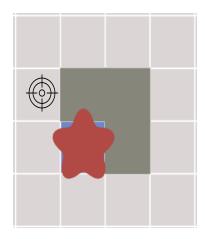
Exercise – Breath-First Search

- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right



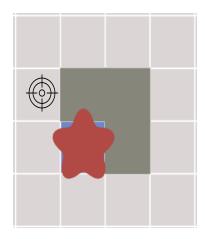
Exercise – Breath-First Search

- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right



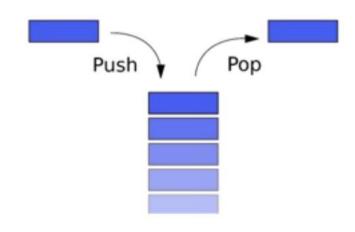
Exercise – Breath-First Search

- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right



Depth-First Search

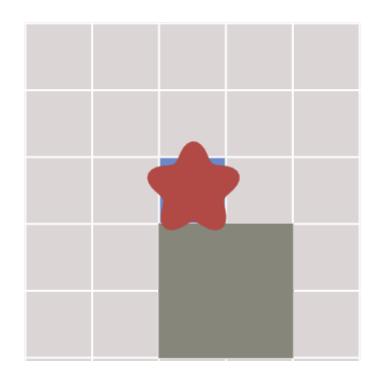
- We pick one direction and we go "deep" until we can't go further
- We use a "stack" to control the order in which we search nodes
 - Last in, first out (LIFO)
- DFS finds a <u>path</u>



stack: last-in, first-out

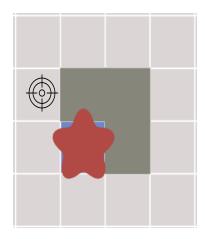
Depth-First Search

```
frontier = Stack() // LIFO
frontier.push(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True
while not frontier.empty():
 current = frontier.get()
  if current == goal:
    break
 for next in neighbors(current):
    if visited[next] = False:
      frontier.put(next)
      visited[next] = True
      parent[next] = current
```



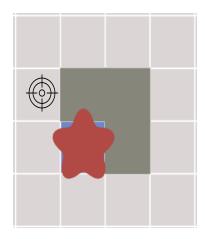
Exercise – Depth-First Search

- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right



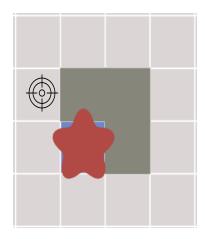
Exercise – Depth-First Search

- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right

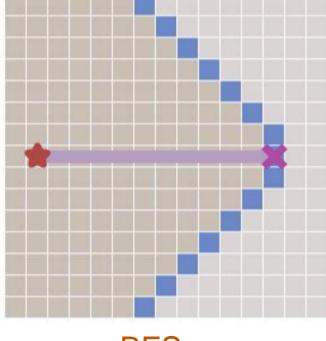


Exercise – Depth-First Search

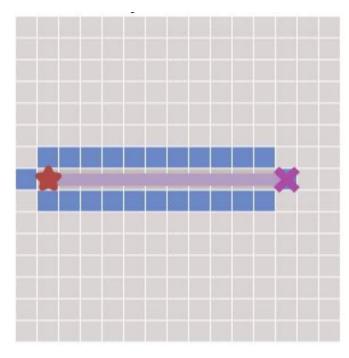
- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right



Greedy Best First Search



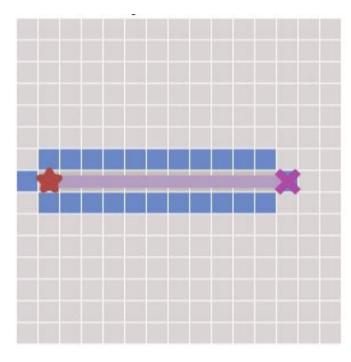
BFS



Greedy First Search

Greedy Best First Search

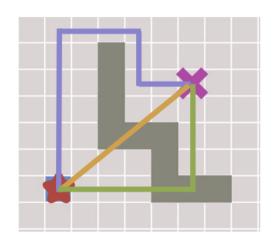
- At every iteration, Greedy Best First moves "in the direction of the target"
 - Tries to "shorten" the distance
- It is "greedy" because it takes the bestlooking direction at each step
- Greedy Best First picks the "best" node according to, some rule of thumb, called a heuristic
 - A heuristic gives AN APPROXIMATE measure of the distance to the goal



Greedy First Search

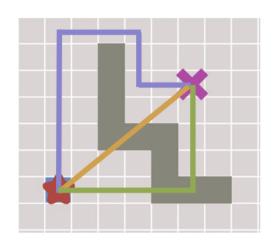
Greedy Best First Search - Heuristics

- Heuristic should be easy to compute at each step
- Candidates
 - L2 distance
 - Manhattan distance



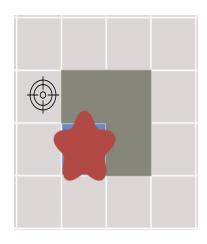
Greedy Best First Search - Heuristics

- Heuristic should be easy to compute at each step
- Candidates
 - L2/Euclidean distance
 - Manhattan distance



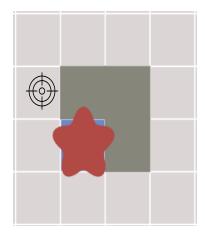
Exercise – Greedy-First Search

- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right
- Euclidean distance



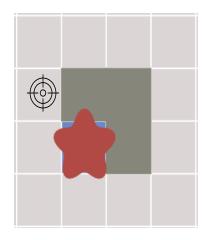
Exercise – Greedy-First Search

- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right



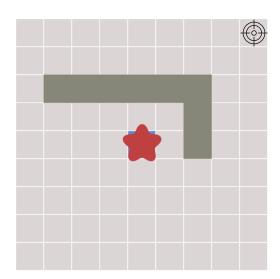
Exercise – Greedy-First Search

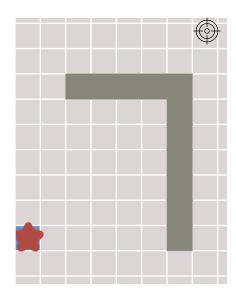
- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right



Exercise – Optimality

- Optimal algorithm:
 - If the algorithm finds a path, the path found is ALWAYS the shortest





A*

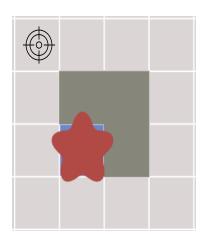
- Combines the strengths of BFS and GFS
 - Optimal: finds the shortest path
 - Fast
- At each iteration, A chooses to explore the node of the frontier that minimizes:

N = steps from source to node + approximate steps to target

https://pollev.com/robertomartin739

Exercise – A* Search

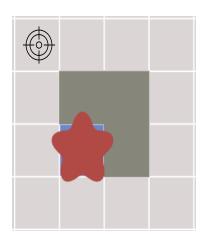
- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right
- Euclidean distance



https://pollev.com/robertomartin739

Exercise – A* Search

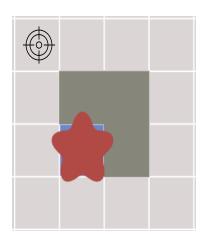
- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right
- Euclidean distance



https://pollev.com/robertomartin739

Exercise – A* Search

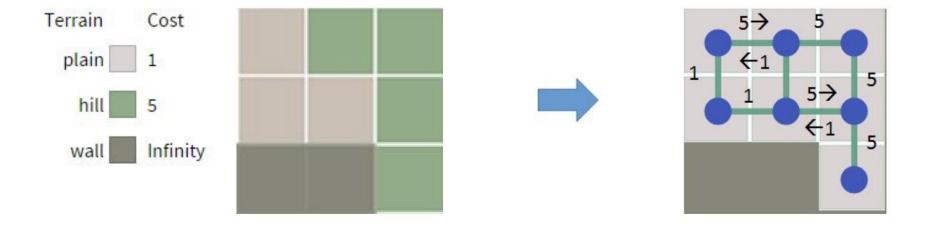
- Given the problem of the map
- Assume the robot can only move
 - up/down
 - left/right
- Euclidean distance



Dijkstra's Algorithm

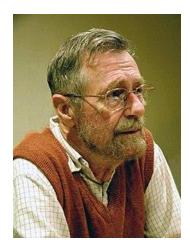
- So far, traversing from one node to another (the cost of one step, the cost of one edge) was always =1
- In some problems, moving between two nodes can have different costs
- Our graph becomes a weighted graph
- We want to find the shortest path: the path where the sum of costs over transitions is the smallest

A weighted graph in navigation



Dijkstra's Algorithm

- Like BFS for weighted graphs
 - If all edge costs are 1, Dijkstra=BFS
- Explore nodes in increasing order of cost from source



Edsger W. Dijkstra 1930-2002

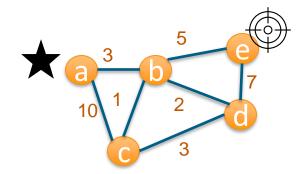
Dijkstra's Algorithm

```
frontier = PriorityQueue() // Note priority!
frontier.push(start, 0) // 0 = cost to go
parent = {}, parent[start] = Null
cost = {}
cost[start] = 0  // Cost from start
while not frontier.empty():
  current = frontier.get() // Get by priority!
  if current == goal:
   break
 for next in neighbors(current):
   new_cost = cost[current] + EdgeCost[current, next]
   if next not in cost or new cost < cost[next]:</pre>
      cost[next] = new cost // Insertion or edit
     frontier.put(next, new_cost)
      parent[next] = current
```


Exercise – Dijkstra's

Given the problem of the graph

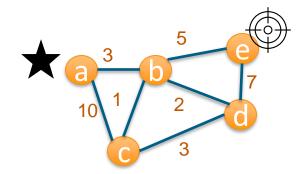
https://pollev.com/robertomartin739



Exercise – Dijkstra's

Given the problem of the graph

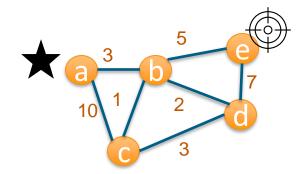
https://pollev.com/robertomartin739



Exercise – Dijkstra's

Given the problem of the graph

https://pollev.com/robertomartin739



Back to our robot

