
SEARCH BASED 
MOTION PLANNING

RBT350

Roberto Martin-Martin

Assistant Professor of Computer Science. 



RBT350 – GATEWAY TO ROBOTICS

What do we have?

– Control

– Understanding of kinematics and 
dynamics

– Vision



RBT350 – GATEWAY TO ROBOTICS

What do we need?

A way to go from A to B without 
colliding!



RBT350 – GATEWAY TO ROBOTICS

Another case



RBT350 – GATEWAY TO ROBOTICS

Motion Planning

• Algorithm to find a path (sequence of states) to go from A to B without 
colliding

– An algorithm is q procedure or formula for solving a problem, based on 
conducting a sequence of specified actions

• Our world for motion planning consist of:

– Obstacles → Occupied space

• Robot can’t go there

– Free space → Unoccupied space

• Robot may be able to reach this



RBT350 – GATEWAY TO ROBOTICS

Example



RBT350 – GATEWAY TO ROBOTICS

What does this look like for an arm?

• We will search for paths in the 
robot’s configuration space

– Configuration space, 𝑞 ∈ 𝐶, 
where q is the vector of joint 
configurations

• Why configuration space and 
not directly 
Cartesian/Workspace?

• How do obstacles look in 
configuration space?

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml



RBT350 – GATEWAY TO ROBOTICS

Two families of solutions



RBT350 – GATEWAY TO ROBOTICS

Motion planning as graph search

• We will transform the problem of 
finding a path from a starting point 
to a goal location as a problem to 
find a connection between two 
nodes in a graph

• The solution involves then two steps:
– Discretize the problem → construct 

the graph

– Find a path → search in the graph

[based on Mussmann’s and Biswas’ slides]



RBT350 – GATEWAY TO ROBOTICS

Applications beyond robotics

paths in maps games / sequential decision making



RBT350 – GATEWAY TO ROBOTICS

Graphs

• 𝐺 = (𝑉, 𝐸)

a b

c
d

e

a b

c
d

e

a b

c
d

e

10

3
5

3

7

21

directed

weighted



RBT350 – GATEWAY TO ROBOTICS

Casting problems as graph search

a b

c
d

e

a

b

e



RBT350 – GATEWAY TO ROBOTICS

Casting problems as graph search

Each cell is a node

Edges connect adjacent cells.

Obstacles have no edges



RBT350 – GATEWAY TO ROBOTICS

Casting problems as graph search



RBT350 – GATEWAY TO ROBOTICS

Graph Traversal Algorithms

• We have transformed the original problem into a graph 
equivalent problem

– Find a collision free path from A to B →
→ Find a sequence of nodes/edges connecting node A and node B

• To find the path in the graph, we need to “traverse” the graph, 
searching for the connection between A and B

• Graph traversal algorithms specify the order in which we 
search the nodes in the graph

– Start at the source node (starting point)
– The frontier of the exploration: nodes that we have seen but we 

have NOT explored fully yet
• Exploring a node: seeing all its connected nodes

– At each iteration of a graph traversal algorithm, we explore a node 
of the frontier: we take a node off the frontier and add its neighbors 
to the frontier



RBT350 – GATEWAY TO ROBOTICS

Breath-First Search

• We search first all the nodes 
connected to a same “level”

• We use a “queue” to control the 
order in which we search nodes

– First in, first out (FIFO)

• BFS finds the shortest path queue: first-in, first-out



RBT350 – GATEWAY TO ROBOTICS

Breath-First Search

frontier = Queue()  // FIFO
frontier.push(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True

while not frontier.empty():
current = frontier.get()
if current == goal:
break

for next in neighbors(current):
if visited[next]  = False:
frontier.push(next)
visited[next] = True
parent[next] = current



RBT350 – GATEWAY TO ROBOTICS

Queue

frontier = Queue()  // FIFO
frontier.put(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True

while not frontier.empty():
current = frontier.get()
if current == goal:
break

for next in neighbors(current):
if visited[next] == False:
frontier.put(next)
visited[next] = True
parent[next] = current



RBT350 – GATEWAY TO ROBOTICS

Dictionary

frontier = Queue()  // FIFO
frontier.put(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True

while not frontier.empty():
current = frontier.get()
if current == goal:
break

for next in neighbors(current):
if visited[next] == False:
frontier.put(next)
visited[next] = True
parent[next] = current



RBT350 – GATEWAY TO ROBOTICS

Breath-First Search

frontier = Queue()  // FIFO
frontier.push(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True

while not frontier.empty():
current = frontier.get()
if current == goal:
break

for next in neighbors(current):
if visited[next]  = False:
frontier.push(next)
visited[next] = True
parent[next] = current



RBT350 – GATEWAY TO ROBOTICS

Breath-First Search



RBT350 – GATEWAY TO ROBOTICS

Exercise – Breath-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – Breath-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – Breath-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Depth-First Search

• We pick one direction and we go 
“deep” until we can’t go further

• We use a “stack” to control the 
order in which we search nodes

– Last in, first out (LIFO)

• DFS finds a path stack: last-in, first-out



RBT350 – GATEWAY TO ROBOTICS

Depth-First Search

frontier = Stack()  // LIFO
frontier.push(start)
parent = {}, parent[start] = Null
visited = {}
visited[start] = True

while not frontier.empty():
current = frontier.get()
if current == goal:
break

for next in neighbors(current):
if visited[next]  = False:
frontier.put(next)
visited[next] = True
parent[next] = current



RBT350 – GATEWAY TO ROBOTICS

Exercise – Depth-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – Depth-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – Depth-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Greedy Best First Search

BFS Greedy First Search



RBT350 – GATEWAY TO ROBOTICS

Greedy Best First Search

• At every iteration, Greedy Best First 
moves “in the direction of the target”
– Tries to “shorten” the distance

• It is “greedy” because it takes the best-
looking direction at each step

• Greedy Best First picks the "best" node 
according to, some rule of thumb, called 
a heuristic
– A heuristic gives AN APPROXIMATE 

measure of the distance to the goal 

Greedy First Search



RBT350 – GATEWAY TO ROBOTICS

Greedy Best First Search - Heuristics

• Heuristic should be easy to compute at 
each step

• Candidates

– L2 distance

– Manhattan distance



RBT350 – GATEWAY TO ROBOTICS

Greedy Best First Search - Heuristics

• Heuristic should be easy to compute at 
each step

• Candidates

– L2/Euclidean distance

– Manhattan distance



RBT350 – GATEWAY TO ROBOTICS

Exercise – Greedy-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

• Euclidean distance

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – Greedy-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – Greedy-First Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – Optimality

• Optimal algorithm:

– If the algorithm finds a path, the path 
found is ALWAYS the shortest



RBT350 – GATEWAY TO ROBOTICS

A*

• Combines the strengths of BFS and GFS

– Optimal: finds the shortest path

– Fast

• At each iteration, A chooses to explore the node of the frontier that 
minimizes:

N = steps from source to node + approximate steps to target



RBT350 – GATEWAY TO ROBOTICS

Exercise – A* Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

• Euclidean distance

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – A* Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

• Euclidean distance

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Exercise – A* Search

• Given the problem of the map

• Assume the robot can only move

– up/down

– left/right

• Euclidean distance

https://pollev.com/robertomartinmartin739



RBT350 – GATEWAY TO ROBOTICS

Dijkstra’s Algorithm

• So far, traversing from one node to 
another (the cost of one step, the cost of 
one edge) was always =1

• In some problems, moving between two 
nodes can have different costs

• Our graph becomes a weighted graph

• We want to find the shortest path: the 
path where the sum of costs over 
transitions is the smallest



RBT350 – GATEWAY TO ROBOTICS

A weighted graph in navigation



RBT350 – GATEWAY TO ROBOTICS

Dijkstra’s Algorithm

• Like BFS for weighted graphs

– If all edge costs are 1, Dijkstra=BFS

• Explore nodes in increasing order of 
cost from source

Edsger W. Dijkstra 
1930-2002



RBT350 – GATEWAY TO ROBOTICS

Dijkstra’s Algorithm

frontier = PriorityQueue()  // Note priority!
frontier.push(start, 0)   // 0 = cost to go
parent = {}, parent[start] = Null
cost = {}
cost[start] = 0       // Cost from start

while not frontier.empty():
current = frontier.get()  // Get by priority!
if current == goal:
break

for next in neighbors(current):
new_cost = cost[current] + EdgeCost[current, next]
if next not in cost or new_cost < cost[next]:
cost[next] = new_cost  // Insertion or edit
frontier.put(next, new_cost)
parent[next] = current



RBT350 – GATEWAY TO ROBOTICS

Exercise – Dijkstra’s

• Given the problem of the graph

https://pollev.com/robertomartinmartin739

a b

c
d

e

10

3
5

3

7

21



RBT350 – GATEWAY TO ROBOTICS

Exercise – Dijkstra’s

• Given the problem of the graph

https://pollev.com/robertomartinmartin739

a b

c
d

e

10

3
5

3

7

21



RBT350 – GATEWAY TO ROBOTICS

Exercise – Dijkstra’s

• Given the problem of the graph

https://pollev.com/robertomartinmartin739

a b

c
d

e

10

3
5

3

7

21



RBT350 – GATEWAY TO ROBOTICS

Back to our robot


	Untitled Section
	Slide 1: Search Based  Motion planning
	Slide 2: What do we have?
	Slide 3: What do we need?
	Slide 4: Another case
	Slide 5: Motion Planning
	Slide 6: Example
	Slide 7: What does this look like for an arm?
	Slide 8: Two families of solutions
	Slide 9: Motion planning as graph search
	Slide 10: Applications beyond robotics
	Slide 11: Graphs
	Slide 12: Casting problems as graph search
	Slide 13: Casting problems as graph search
	Slide 14: Casting problems as graph search
	Slide 15: Graph Traversal Algorithms
	Slide 16: Breath-First Search
	Slide 17: Breath-First Search
	Slide 18: Queue
	Slide 19: Dictionary
	Slide 20: Breath-First Search
	Slide 21: Breath-First Search
	Slide 22: Exercise – Breath-First Search
	Slide 23: Exercise – Breath-First Search
	Slide 24: Exercise – Breath-First Search
	Slide 25: Depth-First Search
	Slide 26: Depth-First Search
	Slide 27: Exercise – Depth-First Search
	Slide 28: Exercise – Depth-First Search
	Slide 29: Exercise – Depth-First Search
	Slide 30: Greedy Best First Search
	Slide 31: Greedy Best First Search
	Slide 32: Greedy Best First Search - Heuristics
	Slide 33: Greedy Best First Search - Heuristics
	Slide 34: Exercise – Greedy-First Search
	Slide 35: Exercise – Greedy-First Search
	Slide 36: Exercise – Greedy-First Search
	Slide 37: Exercise – Optimality
	Slide 38: A*
	Slide 39: Exercise – A* Search
	Slide 40: Exercise – A* Search
	Slide 41: Exercise – A* Search
	Slide 42: Dijkstra’s Algorithm
	Slide 43: A weighted graph in navigation
	Slide 44: Dijkstra’s Algorithm
	Slide 45: Dijkstra’s Algorithm
	Slide 46: Exercise – Dijkstra’s
	Slide 47: Exercise – Dijkstra’s
	Slide 48: Exercise – Dijkstra’s
	Slide 49: Back to our robot


