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How do we know where we are and where do we need to
move?
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We have everything to move a robot, but...
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But to move it where? -
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Course Content

How to build a robot How to make a robot move How to program a robot

weeks 5-9 weeks 10-13

e PID Control
* Mechanics of Materials onre * Vision

. * Physics of Movement
Flecironics (A/D) * Transformations & Poses Grd.ph Searc.h
* State Machines Motion Planning

* F/IKi ti
* Mechatronics / |n?mq “ Machine Learning
* Dynamics
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How to program our robot?

 We have:
— adefinition of the task
— aset of methods to move the robot to
desired configurations
* We need to:

— Tell the robot where and how to move to
achieve the task (what configurations?)
* Motion planning

— We would like for the robot to do this in an
autonomous way

* Perception
* Machine learning




TEX_AS RBT350 — GATEWAY TO ROBOTICS WHAT STARTS HERE CHANGES THE WORLD
‘The University of Texas at Austin

What will you learn today?

* Robot Sensing

e Basics of Computer Vision
— Cameras
— Image formation
— Projective Geometry
— Calibration
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A robot acts Iin the world and observes it
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Robotic Sensors
Observing the physical world through multimodal senses

@y ®
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Some Vocabulary

e Sensor: Converter of a measured physical quantity to a signal readable by an observer.

* Whatis measured?
— Proprioceptive: Measure values internal to the robot
* Examples: motor speed, wheel load, robot heading, battery status, etc.
— Exteroceptive: Information from the robot’s environment
* Examples: distance to object, image data, sound data, gas detection, radiation, etc.
* Contact: Determine shape, size, weight, etc. by touching.
* Non-contact: Sense and indicate presence without physical contact.
e How s it measured?
— Passive: Energy from the environment
* temperature probe, microphone, RGB camera, Geiger Counter, IMU, etc.
— Active: Emit energy and measure the response

* LiDAR (light), Sonar (sound), Ultrasonics (sound), Capacitive sensors (electric field), GPS
(digital!), etc.
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Example: Human Visual System

Superior rectus m.

Inferior rectus m,
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Example: Human Visual System

eIy «Covered with light-sensitive receptors

* rods
* sensitive to a broad
spectrum of light.
* primarily for night vision &
detecting motion
« can't discriminate between
colors
« can sense intensity and
shades of gray
* cones
* used to sense color
*Center of retina (fovea) has most cones

Inferior roctus m,
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Another example: Thermometer

WHAT STARTS HERE CHANGES THE WORLD

Mercury expands or contracts
with changes in temperature
which we can measured with a
standard scale.

Key point: all sensors measure

energy (from the environment or
returned to the sensor) and
converts it to a form that the
observer (robot or human or
both) can digest.
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Robot Perception: Modalities

(X17 y17 Z’I)

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

[Source: PaintNet++; Qi et al. 2016]

e.g. 800 x 600 x 3
(3 channels RGB)

Pixels (from RGB cameras) Point cloud (from structure sensors)

Reaching Alignment Insertion

‘ v

EN)

L3
2
hJ ]
b

[Source: Calandra et al. 2018]

Time (ms)
[Source: Lee*, Zhu*, et al. 2018]

Time series (from F/T sensors) Tactile data (from the GelSights sensors)
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Robotic Sensors: We often use many.
Observing the physical world through multimodal senses

\ 2 Fisheye Cameras Multisense Head (3D Laser

Scanner & Stereo Camera)

Secure Wireless
Network Router

Perception Computer (3
Intel Core i7 Processor)

3.7-kilowatt-hour
lithium-ion battery
pack

Inductive Proximity Sensor

Robotiq 3-Finger Adaptive
Robot Gripper

30 degrees of
freedom(DOF) - 24
hydraulic actuators ]
& 6 electric motors

System with ROS (Robot
Operating System)

Software — Linux Operating ‘

Six-Axis Force/
Torque Sensor

Inertial Measurement Unit
(IMU)

Strain Gauge Pressure Sensor

[Source: HKU Advanced Robotics Laboratory]
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Robotic Sensors: We often use many
Observing the physical world through multimodal senses

360 Fisheye Camera

16 Ch | LIDAR
(Upper)
RBGD Stereo Camera  e————Jjp-

Stereo Cylindrical 5
Camera RGB Sensor

16 Ch | LIDAR
(Lower)
Microphone

IMU Sensor

1 Channel LIDAR  §
(Back)

Position and
Velocity Encoders

1 Channel LIDAR
(Front)

[Source: JackRabbot, Stanford]
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Some More Vocabulary

Color Image Depth map (2) 3D Data Map Point cloud (x, y, z)

orbbec.com
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Sensor Fusion
Combining Sensor data to:

— Get a more accurate reading
— Create a more complete picture

— Infer additional detail

* Example, combine LiDAR, thermal sensors, and CO,
sensors to identify which objects are humans.

— Fusion Types

* Early (Low-Level): Combine raw data from multiple
sensors (point clouds from LiDAR and pixels from
cameras and then doing object recognition.

* Late (Mid-Level): The algorithm uses the different
sensor data streams to decide. (Camera data and
thermal data to identify humans)
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Why Sensor Fusion: A Classic Example

How can we learn to fuse multiple sensory modalities together?

[The McGurk Effect, BBC]

Is seeing believing?

https://www.youtube.com/watch?v=2k8fHR9|KVM 18


https://www.youtube.com/watch?v=2k8fHR9jKVM
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VIP: Vision (Cameras, RGBD Cameras, and LiDAR)

Optimal Depth

Triangulating Depth
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Evolution of the Eye

e
charmnbe Retina ’FQ}I'HEQ Sy By o g
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Model

+ More than 50% of the human cortex
“involved” in vision!
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How do we see the world? Let’s Desigh a camera.

Put a piece of photosensitive film in front of an
object.

Do we get a reasonable image?

slides credit to Prof. Savarese
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Pinhole Camera

 Add abarrier to block most of the rays
— Reduces blurring
— Opening in barrier is known as the aperture.

slides credit to Prof. Savarese
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First one to do it (that we know about...)

illum 1n tabula per radios Solis, quam in ceelo contin-
P git: hoc eft,fi in ceelo fuperior pars deliquidi patiatur,in
radiis apparcbit inferior deficere,vt ratio exigit optica.

o oy ==

——

_ Aaidy
PR - '

Leénardb da Vinci
(1452-1519)
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Pinhole Camera Model

image
plane

pinhole virtual
' image

Capture all rays passing through a single ‘point’
— known as the Center of Projection or focal point
— Forms 2D image know as the image plane.

WHAT STARTS HERE CHANGES THE WORLD

slides credit to Prof. Savarese
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Pinhole Camera Model

7\

Pf=[?{2 lI: ] i




TEX_AS RBT350 — GATEWAY TO ROBOTICS WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Pinhole Camera Model

e 3D 2D Derived using similar friangles
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Shutter Button
Flash

Digital Camera e S T
S
—r
e Photosensitive sensitive sensor

(array of individual photosensitive
diodes) gets exposed to light rays Aperture Ring

* Digital measurements are collected
from each sensor

 We obtain a 2D array with the
measurements

e Different sensors for different colors

Light Bi==

Sensor Plate

Mirror Shutter

power cathode
source /\/ ﬂz g current
2 |

anode

1
1
—— — -
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Digital Image — From “metric” to “pixel space”

m J -
. f | /o
Retina plun-/ - \
',-l"'-""\‘ III
_— —o |

X
Digital image x'=f —
Z
1' <
[ 1] L 7

If fisin m (or
mm), X’ and y’
will be in m (or
mm)

But we want to
know the pixel
“Nnumber”!
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Digital Image — From “metric” to “pixel space”

height of a pixel [m/pixel]
(“'.“ w:r—':' ¢ (
2 x'=f = [m lpvels = — "[m][
i . 7 { 7 => width | pixel
—— . ylm]
o hyl= f % m e pixelneignt [Plxel
width of a pixel [m/pixel]

In practice, we use fx and fy in pixels, that combine both operations

f 1 X
fe == % =fis

pixelyidth

; o We round to the smallest integer >
Iy = et 1Y =S floor operation:
In pixels! floor(x) = greatest integer smaller or equal than x)
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Digital Image — referring to top-left corner

: J _
I 'F , /;}
Retina plane ‘
’ . Q0
Ii‘ P _ .r-" k, U
iz i .
/N v J Pixel (0,0)

e —y
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Offset to Image Center

I f
Retina plane
T ‘

L e,

Both in pixels orin
metric
k,

(x, y,z)—)(f +c +c v)
u z
X Digital im . .
Y E ; gleimese Projective
- Transformation
“1
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Homogeneous Coordinates

* We previously used these to transform a point with a pose
— Now we will use them to map 3D points to 2D (image space)

wirmial
image

E->H

T
(z,9) = { y ] (x.y.2) =
1

x

i

=

1

hﬂl’l’lﬂgﬁl’lﬂﬂul imu aﬂ homogunuuua scene
coordinates coordinates
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-f$x+cxz - fg; 0 ¢, 0 /fPh
Ph|= fyy+cyz : :
z |0 0 10

I

-

<P

)

@)
_—— = =

Homogenous Euclidian f 0 ¢ 0
T x
A r A N K=[0 y c, 0 ;Q;‘é"éfn“.inf ’
X Y
r '
B'=P'=(fi=+c.fy=+c) c oL
< Z

Intrinsic matrix
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Digital Image

e fin pixels

* fyxandf, are often the same (not
exactly, depends on calibration)

* ¢, andc, are the image width/2 and
height/2 (not exactly, depends on
calibration)

* In practice, how do we go from fin mm
to fin pixels?
— Knowing the physical size of the

photosensitive sensor and the resolution
of the image (cam specs)

3mm and 480 pixels
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Example camera matrix in real camera (ROS)

$ sudo nano ./ros/camera_info/head_camera.yaml
OUTPUT-

image_width: 640
image_height: 480
camera_name: head_camera
camera_matrix:
rows: 3
cols: 3
data: [729.1016874494248, 0, 277.5382540847794, 0,
728.3444988325477, 218.6703499234103, 0, 0, 1]
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https://pollev.com/robertomartinmartin739
Exercise

1.5 0 0.5
Given the internal camera matrix (in mm) K= ( 0 1.5 0.5)
2 o 0 1
and the 3D point (inm) P = |1
4

estimate the projection of the point (pixel coordinates) of the point in the
image
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https://pollev.com/robertomartinmartin739

Exercise
500 0 320
Given the internal camera matrix (in pixels) K = ( 0 500 240)
0 0 1

1 ~10
and the 3D points (in m) P1= (—g-5> and p, = ( g )

estimate the projection of the points (pixel coordinates) in the image
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Can we recover the 3D location of a point from an image?

* NO!

* If we know the camera
intrinsics, we can recover the
“ray” on which the point will
be, but not the depth

* Projective geometry
“removes” one dimension:
we go from 3D to 2D, but we
can’t go from 2D to 3D
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So, | made my pinhole cameral!

e Why s it so blurry?
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Size of the Aperture

LUZ

OPTIC/

I mm 0.6mm 0.35 mm

* So let’s make the aperture as small as possible...
— But...

. Diffraction becomes an
issue

*  Orlack of enough light

OO7F mm
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Camera Lenses

cbject lens filrm

L

slides credit to Prof. Savarese

* Alens focuses light on the film
— Larger aperture without blurriness
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New Problems: Lens Distortion

* Images are distorted due to lens, film, and
their locations.

— lensimperfections, finite aperture, alignment
errors, etc.

— Most pronounced in wide angle lens 2
e Radial Distortion
— distortion in objects due to distance from the
principal point.
* Tangential Distortion

— Optical axis is not perfectly aligned with the
sensor plane

* Center of perspective projection

— Center of distortion is not aligned with center
of perspective.
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Modeling Distortion: Plumb Bob Model

- ()= (3)

2tz oy + to(r® + 222
Pf:=Pc-(1+k1r2+k2r4_|_k3Tﬁ)_|_( 1TcYe + ta (7 + a:))

t1(r* + 2y2) + 2k2zcYe

Radial distance 1’"2 = 213% -+ yg

Distortion parameters d = (kl, kg, kg, tl y tg)

We can “undistort” an image!!! ooy p— T ——
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Example distortion in real camera (ROS)

$ sudo nano ./ros/camera_info/head_camera.yaml
OUTPUT-

image_width: 640
image_height: 480
camera_name: head_camera
camera_matrix:

rows: 3

cols: 3

data: [729.1016874494248, 0, 277.5382540847794, 0,
728.3444988325477, 218.6703499234103, 0, 0, 1]
distortion_model: plumb_bob
distortion_coefficients:

rows: 1

cols: 5

data: [-0.00898402793551297, -0.04505947514194832,
-0.006922247877124037, -0.01114510192485125, 0]
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Internal and External Camera Parameters

Internal Camera Parameters: K
(scaling, inversion, distortion pb
correction, etc.) o

External Camera Parameters: T ch

pc:K'J:cb'ps

Axd | We add the last column of zeros
to K for the dimensions to match
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https://pollev.com/robertomartinmartin739

Exercise
5 0 10 O
Given the internal camera matrix K=10 4 10 0
O 0 1 O
and the 3D point P = (2,2,2)
1 0 0 3
on an object placed at T — 0O 1 0 3
cb 0O 01 O
0 0 0 1

Wrt. the camera, estimate the projection of the point into the camera.
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But what about depth?
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RGB-D Cameras

 Can we recover the 3D position of
a point?

YES!

We have the distance between
the sensor and the point, we
know where the point is along the
ray

RBT350 — GATEWAY TO ROBOTICS
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For 3d depth sensing

‘\
\
\
N

\

Low-res % Low-res

RGB Camera \\\ Infra-Red Camera
\

l

’
4
Accelerometer Infra-Red Projectof

(projects dots) '/

Depth camera

RGB camera

Microphones
Downward facing
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RGB-D Cameras

e Given a pixel (u,v), what is its 3D
location?

= (u,v) = (fx + Cx'fy + Cy)

(u — Cx)Z - (U o Cy)Z == e get z from the depth map!

"o fx . fy
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31 12 2010
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Estimating Camera Parameters, K: Camera Calibration

e Move known pattern (size) in front of the
camera and collect images

e Detect point-corners on the pattern
o Set of images -> set of corresponding
points

e Estimate:
o Camera-to-pattern poses T,
o Camera parameters that minimize the
reprojection error K,d
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Controlling a robot directly with images 02@
/ ’
ﬁ
7007
* Control the robot motion based eye-in-hand system
directly on vision
* Types of systems depending on //fﬂ ; Q{V o
where the camera is placed ; ‘ﬁ/

eye-to-hand system

endpoint closed-loop (ECL)
or
endpoint open-loop (EOL)
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Summary

 Way too many sensors to cover in two lectures
— Active vs Passive
— Proprioceptive vs Exteroceptive
* Vision is arguably the most important
* Image formation uses a pinhole camera model
— Gives us the coordinates (pixels) of a point in the image

* Ingeneral, we cannot know the 3D point that correspond to a given pixel (many points along a
ray would fall in the same pixel)

— Except if we have a depth sensor! = we know exactly which point on the line
 Camera calibration is the process of finding the internal parameters of the camera

— Focal length

— Image center

— Distortion params

* Robots uses camera-to-hand or camera-in-hand settings
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