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Recap

* Motion planning: finding a
collision-free path from Ato B
 Two families:

— (Graph) Search Based Motion
Planning

— Sampling Based Motion Planning

* |deally, instead of finding a path,
we find the shortest path

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."
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Exercise — Optimality
* Optimal algorithm: @
— If the algorithm finds a path, the path

Breadth First Search Greedy Best-First Search A* Search

o o
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Play with them!

e https://cs.stanford.edu/people/abisee/tutorial/bfs.html

* https://cs.stanford.edu/people/abisee/tutorial/dfs.html

e https://cs.stanford.edu/people/abisee/tutorial/greedy.html

 https://cs.stanford.edu/people/abisee/tutorial/astar.html



https://cs.stanford.edu/people/abisee/tutorial/bfs.html
https://cs.stanford.edu/people/abisee/tutorial/dfs.html
https://cs.stanford.edu/people/abisee/tutorial/greedy.html
https://cs.stanford.edu/people/abisee/tutorial/astar.html
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Summary of Graph Search Algorithms

e Breadth First Search: First in first out, optimal but slow

* Depth First Search: Last in first out, not optimal and meandering
* Greedy Best First: Goes for the target, {25t but easily tricked
 A* Search: "Best of both worlds": optimal and fast

* Dijkstra: Explores in increasing order of cost, optimal but slow
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What will you learn today?

* Sampling based motion planning

— Why do we need them? Curse of
dimensionality

— PRM
— RRT

45 iterations 390 iterstions
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General Insights from Motion Planning

In the real world, the computational time for motion planning for robots is key and depends
on two factors:

* Obstacle checking: This is significant if
— Your robot is complex (e.g. a manipulator arm with many joints),

— If your environment representation is complex (e.g. detailed meshes to perform collision
checking with)

— If you have a very large number of samples to check

e Priority queue operations: This is significant if
— Planning in high-dimensional space, hence large state spaces
— Many alternatives, with no clear inferior / superior choices
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What is the problem with search-based motion planners?

2D grid-based graph representation for 2D (x,y) search-based planning:

S, | construct S1 ]_':/52 S \"' search the graph
the graph: \ for solution:
85 (5‘4 Ii A
(

SG Sﬁ

discretize:
> [

*  Constructing the graph (check all cells to see if they are in collision or not) becomes the real bottleneck!

*  Curse of dimensionality!
— The complexity of the algorithm increases exponentially with the dimensions of the problem
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What is the problem with search-based motion planners?

e Curse of dimensionality!

— The complexity of the search algorithm increases exponentially with the
dimensions of the problem

* How many iterations until | find a path with BFS? How many nodes/edges are
there if...

— the problemis 1D A
— the problemis 2D - Q_

A
— the problemis 3D I
-w
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That is really bad for robot arms

 Dimensionality of the space =
number of joints

e 7 DoF robot 2 7 dimensions!

* |Imagine we discretize each joint by 5
(0, 45, 90, 135, 180 degrees)
— Number of cells: 16807
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Alternative: Sampling

We "control” the number of collision
checks through a sampling process on the
configuration space

* Most significant algorithms:
— Probabilistic roadmaps (PRM)
— Rapidly-exploring random trees (RRT)




=1
TEXAS RBT350 — GATEWAY TO ROBOTICS WHAT STARTS HERE CHANGES THE WORLD

Probabilistic Roadmap (PRM)

Free/feasible space
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Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random
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Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random
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Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision
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Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors
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Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors
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Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM
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Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones
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Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g
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Probabilistic Roadmap (PRM)

e Build Phase:
— Randomly sample points in configuration-space. Reject the ones in collision
— Connect points:
e We can limit length of the connections: within a ball D

* We can limit the number of connections per point: at most K connections
* But we only connect them if the direct line is collision-free

— Done!

* Query Phase:
— Add start and goal nodes
— Run graph search (A* / Dijkstra/...)
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https://pollev.com/robertomartinmartin739

Exercise — PRM

e Given the problem of the map (no limit in connection
length or number of connections)

de

De
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Rapidly-Exploring Random Trees (RRT)

e Whatis a tree?

— Atype of graph that:
e itis connected
* doesn’t have cycles

* has asingle node that is the
root (has no parents)
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Rapidly-Exploring Random Trees (RRT)

 Sample a random pointin the space

 Create a new node in the tree going
from the closest node to the random
point towards the point
* Check if the new node is in collision
— Yes: go to the next iteration

— No: add to the tree (connected to the
closest node) and go to next iteration
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Rapidly-Exploring Random Trees (RRT)

e Sample a random pointin the space

 Create a new node in the tree going BUILD_RRT (Qipie) A
from the closest node (gnear) to the T.4init (g, ..) s
random point towards the point a ) (Qinic) /
distance of “step size” (g) for k = 1 to K do

* Check if the new node is in collision yang = RANDOM CONFIG() ;

— Yes: go to the next iteration o

— No: add to the tree (connected to the
closest node) and go to next iteration }

EXTENIXT, 4,4n4)

EXTEND ( T ’ qrand)
qnew [ Kuffner & LaValle , ICRA’00]

T  Yrana
o
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Variant 2: Bidirectional RRT / RRT-Connect

Dnew

ngal
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Variant 3: RRT* :
 Computes and stores the distance from of
each node to the parent node -2
 RRT* algorithm rewires the tree when it -
finds new connections |
* Finds optimal paths (after infinite time...)! - - ’ : .
3 q”e“’..": he s
(Jnearest ... \:"*!//!;. » (Jnearest ..‘.. :*!5.
init ./ \.{qnear Qinit ./ ‘* ..... "near
!"""'"AI ° !""""—‘I °
!,——'\!// ._——\!/
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https://pollev.com/robertomartinmartin739
Exercise — RRT

* Given the problem of the map op
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A user-guide to motion planning

* ROS - Movelt

— Library of motion planning
algorithms

— Connection to the ROS
environment

* Get configuration (state) of a
robot

e Uses the viewer from ROS

e Can execute the plan with a
trajectory controller

* Connects to sensors



Activities e ryiz v SunMar 6 16:46 0 V¥ £ ¢ 8 gsenv

movelt_empty.rviz* - RViz -
File Panels Help
Jinteract  “G°Move Camera Jselect  EEJKey Tool

3 Displays
» @ Global Options
+ v Global Status: Ok
v @ Grid
» % MarkerArray
3 MotionPlanning
v Status: Ok
Move Group Namespace
Robot Description robot_description
Planning Scene Topic move_group/monitored_planning...
+ Scene Geometry
+ Scene Robot
+ Planning Request
X Planning Metrics
+ Planned Path

Add
1 MotionPlanni
Context Planning Joints Scene Objects Stored Scenes
Commands Query Options

Plan Planning Group:  planning Time (s): 5.0
hand > Planning Attempts: 10 2

Plan & Execute  Start State: Velocity Scaling: 0.10

<current> ~ Accel. Scaling: 0.10
Goal State:

Seument> > Collision-aware IK

Approx IK Solutions
External Comm.
Replanning

None Sensor Positioning

Path Constraints

Reset
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Recap

* For large search spaces, discretizing and checking all cells
for collisions is unfeasible

We use sampling (random picked locations) instead

* PRM
— We sample random locations and connect them. Then use a
graph search algorithsm
* RRT

— We sample at each step and grow the tree until we find a
path

* Next: but how do we execute a path that is a sequence of
states?
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