MOTION GENERATION

RBT350

Roberto Martin-Martin

Assistant Professor of Computer Science.

Recap

- How do we go from A to B without collisions?
 - Motion planning
- Two alternatives:
 - 1. We discretize the configuration space, convert it into a graph and search in the graph
 - 2. We sample the configuration space either covering the entire space uniformly and then creating a graph (PRM) or growing trees from the start to the goal (RRT)

What will you learn today?

- So far, when we want to get from A to B:
 - Motion planning gives us a path
 - A path is [x1, ..., xn] or [q1, ..., qn], a sequence of collision-free <u>states/configurations</u> to go from A to B
- How do we execute that path with our robot?
 - What are the actions to go through those states in a smooth way? → motion generation
 - − What do we do in-between? \rightarrow Interpolation

How do we execute a path?

USA

2.4

¢

Screencast=0=Mattiscom

RUN 1

10 Mikaela SHIFFRIN

How do we execute a path?

• We need to find what to do in between the points

• We want to have smooth motion

Motion generation! $[q_d[0], ..., q_d[N]] \rightarrow q_d(t), \dot{q}_d(t), \ddot{q}_d(t)$

Interpolating between two configurations in joint space

- We have an initial and a final configuration in joint space q_{start}, q_{end}
- Linear interpolation in joint space: $Q(s) = q_{start} + s(q_{end} - q_{start}), s \in [0,1]$

Interpolating between two positions in Cartesian space

• We have an initial and a final position in Cartesian space

 x_{start}, x_{end}

Not regular +/-

- Linear interpolation in Cartesian space: $X(s) = x_{start} + s(x_{end} - x_{start}), s \in [0,1]$
- IK(P(s)) = q Careful! May not exist

Linear interpolation

• Two conditions for u

$$- u(0) = u_0$$
$$- u(t_f) = u_f$$

- No control over velocities!
 - Discontinuities at the beginning and end of the motion requires infinite acceleration

Polynomials/Spline Interpolation

- Spline: function defined piecewise by polynomi
 - Instead of a single high degree polynomial, we have multiple lower degree polynomials for each piece
- What is the degree of each piece?
 - Depends on how many constraints we want to be able to control
 - − Degrees of polynomial (n) \rightarrow We can control n+1 constraints
 - Typical constraints we want to control:
 - Boundary conditions: <u>position</u>, velocity, acceleration at the via points
 - Max velocity or acceleration during the segment

• Initial pose conditions

$$- u(0) = u_0$$

$$- u(t_f) = u_f$$

• Velocity initial conditions

$$- \dot{u}(0) = 0$$

$$- \dot{u}(t_f) = 0$$

$$\dot{u}(t) = a_1 + 2a_2t + 3a_3t^2$$

- No control over accelerations!
- If we want to control accelerations, we need higher order polynomials (quintic, septic...)

- $u(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$
- Four equations:
 - $u(0) = u_0$
 - $u(t_f) = u_f$
 - $\dot{u}(0) = 0$

$$- \dot{u}(t_f) = 0$$

• Four unknowns: a_0, a_1, a_2, a_3

$$u(t) = u_0 + \frac{3}{t_f^2} \left(u_f - u_0 \right) t^2 - \frac{2}{t_f^3} \left(u_f - u_0 \right) t^3$$

Move the manipulator from an initial position $\{T_a\}$ to a desired final position $\{T_c\}$

• How do we handle the via points?

Cubic Spline – Via points

- We concatenate one spline to another, providing the boundary conditions
- We assume we do not stop at the via points (smooth trajectory!)

Cubic Spline – Via points

- We concatenate one spline to another, providing the boundary conditions
- We assume we do not stop at the via points (smooth trajectory!)

$$u_{1}(t) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}$$

$$u_{2}(t) = b_{0} + b_{1}(t - t_{via}) + b_{2}(t - t_{via})^{2} + b_{3}(t - t_{via})^{3}$$

$$u_{1}(0) = u_{0}$$

$$u_{1}(t_{via}) = u_{via}$$

$$u_{1}(t_{via}) = u_{via}$$

$$u_{2}(t_{f}) = u_{f}$$

$$u_{2}(t_{via}) = u_{via}$$

$$u_{2}(t_{ria}) = u_{via}$$

Cubic Spline – Via points

- How do we choose the velocity at the via point?
 - "User" specifies
 - Use a heuristic (e.g., half of the maximum velocity)
 - Modify the boundary conditions
 - Remove velocity constraints and impose acceleration and velocity to be continuous

How do we apply this to a robot trajectory?

- Path: $[q_0, ..., q_k] \rightarrow$ Via points in configuration space
- Separate per joint
- Interpolate each joint independently
- How do we coordinate them?
 - Either the times are given and the same

or

 We compute the maximum time (limited by max vel. or acc.) and use it for all joint dimensions

What will our controller take in?

Summary

- Motion generation
 - Goes from a sparse set of points (from a motion planner) to a continuous function of goals at each time step
 - Takes into account the velocity and accelerations necessary to make the motion smooth
 - Splines: we define the trajectory over time with a polynomial and use the boundary conditions (initial and end points, velocities, ...) to find the coefficients