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1 Introduction

A common problem in molecular medicine, shared by many other fields, is to learn predictions
from data consisting of a large number of features (e.g., genes) and a small number of samples (e.g.,
drugs or patients). A key challenge is to tailor or “personalize” the predictions for each data sample.
essentially solving a multi-task learning problem [1, 2] where in each task n = 1. The features (genes)
important for predictions can be different for different samples (patients or drugs), and reporting the
important features is a key part of the data analysis, requiring models that are interpretable in addition
to having high prediction accuracy. That is, the problem can be regarded as a local feature selection
and prediction problem, which would be hard for existing multi-task learning approaches [1, 2].

Sparsity-based linear feature selection methods such as Lasso [3] are popular and useful for large p,
small n problems. Standard feature selection methods select the same small set of features for all
samples, which is too restrictive for the multi-task type of problems, where for instance effects of
different drugs may be based on different features, and dimensionality needs to be minimized due to
the very small sample size.

Recently, the network Lasso [4] method has been proposed for learning local functions f(xi;wi), i =
1, . . . , n, by using network (graph) information between samples. In network Lasso, a group reg-
ularizer is introduced to the difference of the coefficient vectors between linked coefficients (i.e.,
wi − wj), making them similar. We can use this regularizer to make the local models borrow
strength from linked models. In the network Lasso, sparsity has so far been used only for making the
coefficient vectors similar instead of for feature selection, resulting in dense models.

We propose a sparse variant of the network Lasso, called the localized Lasso, which helps to choose
interpretable features for each sample. More specifically, we propose to incorporate the sample-wise
exclusive regularizer into the network Lasso framework. By imposing the network regularizer, we
can borrow strength between samples neighboring in the graph, up to clustering or “stratifying”
the samples according to how the predictions are made. Furthermore, by imposing a sample-wise
exclusive group regularizer, each learned model is made sparse but the support remains non-empty,
in contrast to what could happen with naive regularization. As a result, the sparsity pattern and
the weights become similar for neighboring models. We propose an efficient iterative least squares
algorithm and show that the algorithm will obtain a globally optimal solution. Through experiments
on synthetic and real-world datasets, we show that the proposed localized Lasso outperforms state-of-
the-art methods even with a smaller number of features.

2 Problem Formulation

Let us denote an input vector by x = [x(1), . . . , x(d)]> ∈ Rd and the corresponding output value
y ∈ R. The set of samples {(xi, yi)}ni=1 has been drawn i.i.d. from a joint probability density p(x, y).
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Algorithm 1 Iterative Least-Squares Algorithm for solving Eq. (2)

Input: Z ∈ Rn×(dn), y ∈ Rn, R ∈ Rn×n, λ1, and λ2.
Output: W ∈ Rn×d.
Set t = 0, Initialize F

(0)
g , F (0)

e .
repeat

Compute vec(W (t+1)) = (λ1F
(t)
g + λ2F

(t)
e )−1Z>(In +Z(λ1F

(t)
g + λ2F

(t)
e )−1Z>)−1y,

Update F
(t+1)
g , where F

(t+1)
g = Id ⊗C(t+1).

Update F
(t+1)
e , where [F

(t+1)
e ]`,` =

∑n
k=1

Ik,`‖w(t+1)
k ‖1

[vec(|W (t+1)|)]`
.

t = t+ 1.
until Converges

We further assume a graph R ∈ Rn×n, where [R]i,j = rij ≥ 0 is the coefficient that represents the
relatedness between the sample pair (xi, yi) and (xj , yj). In this paper, we assume that R = R>

and the diagonal elements of R are zero (i.e., r11 = r22 = . . . = rnn = 0).

The goal in this paper is to select multiple sets of features such that each set of features is locally
associated with an individual data point or a cluster, from the training input-output samples and the
graph information R.

3 Proposed method

In particular, we aim to learn a model with an interpretable sparsity pattern in the features.

We employ the following linear model for each sample i:

yi = w>i xi. (1)

Here wi ∈ Rd contains the regression coefficients for sample xi and > denotes the transpose. Note
that in regression problems the weight vectors are typically assumed to be equal, w = w1 = . . . =
wn. Since we cannot assume the models to be based on the same features, and we want to interpret
the support of the model for each sample, we use local models.

The optimization problem of the localized lasso can be written as

min
W

J(W ) =

n∑
i=1

(yi −w>i xi)
2 + λ1

n∑
i,j=1

rij‖wi −wj‖2 + λ2

n∑
i=1

‖wi‖21, (2)

where λ1 ≥ 0 and λ2 ≥ 0 are the regularization parameters. By imposing the network regularization
(second term) [4], we regularize the model parameters wi and wj to be similar if rij > 0. If λ1 is
large, we will effectively cluster the samples according to how similar the wis are, that is, according
to the prediction criteria in the local models. More specifically, when ‖wi −wj‖2 is small (possibly
zero), we can regard the i-th sample and j-th sample to belong to the same cluster.

The third term is the `1,2 regularizer (a.k.a., exclusive regularizer) [5, 6, 7]. By imposing the `1,2
regularizer, we can select a small number of elements within each wi.

Predicting for new test sample: For predicting on test sample x, we use the estimated local models
ŵk which are linked to the input x. More specifically, we solve the Weber problem [4]

min
w

n∑
i=1

r′i‖w − ŵi‖2, (3)

where r′i ≥ 0 is the link information between the test sample and the training sample xi. Since
this problem is convex, we can solve it efficiently by an iterative update formula. If there is no link
information available, we simply average all ŵis to estimate ŵ, and then predict as ŷ = ŵ>x.
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(a) True pattern.
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(b) Network Lasso.
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(c) Proposed (λ2 = 0.01).
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(d) Proposed (λ2 = 0.05).
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(e) Network Lasso + `1
(λ2 = 0.1).
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(f) Network Lasso + `1
(λ2 = 0.3).

Figure 1: The learned coefficient matrix for the synthetic data for the different methods. Proposed =
Localized Lasso. For Network Lasso + `1, we use the `1 regularizer instead of `1,2 and λ2 ≥ 0 is the
regularization parameter for the `1 term.

4 Experiments

In this section, we first illustrate our proposed method on synthetic data and then compare it with
existing methods using a real-world dataset.

We compared our proposed method with Lasso [3], Elastic Net [8], FORMULA [9], and Network
Lasso [4, 10]. For Lasso, Elastic Net, and FORMULA, we used the publicly available packages. For
the network Lasso implementation, we set the regularization parameter to λ2 = 0 in the localized
Lasso. For supervised regression problems, all tuning parameters are determined by 3-fold nested
cross validation. The experiments were run on a 3GHz AMD Opteron Processor with 48GB of RAM.

4.1 Synthetic experiments (High-dimensional regression)

We illustrate the behavior of the proposed method using a synthetic high-dimensional dataset.

In this experiment, we first generated the input variables as xk,i ∼ Unif(−1, 1), k = 1, . . . , 10, i =
1, . . . , 30. Then, we generated the corresponding output as

yi =

{
5x1,i + x2,i − x3,i + 0.1ei (i = 1, . . . , 10)
x2,i − 5x3,i + x4,i + 0.1ei (i = 11 . . . , 20)
0.5x4,i − 0.5x5,i + 0.1ei (i = 21 . . . 30)

, (4)

where xk,i is the value of the k-th feature in the i-th sample and ei ∼ N(0, 1). In addition to the
input-output pairs, we also randomly generated the link information matrix R ∈ {0, 1}30×30. In the
link information matrix, only 40% of true links are observed.We experimentally set the regularization
parameter for the proposed method to λ1 = 5 and λ2 = {0.01, 1, 10}. For the network Lasso, we
used λ1 = 5. Moreover, we compared the proposed method with the network Lasso + `1 regularizer,
in which we used λ1 = 5 and λ2 = {0.05, 0.5}, where λ2 is the regularization parameter for the `1
regularizer.

Figures 1(a)-(f) show the true coefficient pattern and the results of the learned coefficient matrices
W by using the localized Lasso, the network Lasso, and1 the network Lasso + `1. As can be seen,
most of the unrelated coefficients of the proposed method are shrunk to zero. On the other hand, for
the network Lasso, many unrelated coefficients take non-zero values. Thus, by incorporating the

1Note that the combination of the network lasso and `1 is also new.
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Table 1: Test root MSE on toxicogenomics data. The best method under sigfinicance level 5%
(Wilcoxon signed-rank test) is reported in bold.

Blood Breast Prostate Average
GI50 TGI LC50 GI50 TGI LC50 GI50 TGI LC50

Localized Lasso 1.030 0.622 0.529 1.129 0.627 0.562 1.297 0.518 0.539 0.760
Network Lasso 1.096 0.918 0.921 1.368 0.821 1.065 1.475 0.711 0.690 1.007
FORMULA 1.503 1.179 1.253 1.367 1.109 1.197 1.376 1.121 1.129 1.248
Lasso 1.201 1.006 0.514 1.435 0.879 0.560 1.455 0.763 0.523 0.926
Elastic Net 1.129 0.875 0.514 1.164 0.800 0.560 1.130 0.633 0.505 0.812
Kernel Regression 1.070 0.808 0.623 1.165 0.677 0.688 1.466 0.551 0.509 0.839

Table 2: The number of selected features (genes) on toxicogenomics data. For Localized Lasso,
Network Lasso, FORMULA, and Elastic Net, we select features by checking ‖W·,i‖2 > 10−5, where
W·,i ∈ Rn is the i-th column of W .

Blood Breast Prostate Average
GI50 TGI LC50 GI50 TGI LC50 GI50 TGI LC50

Localized Lasso 32.7 33.4 92.5 92.6 125.9 58.2 35.1 53.9 43.4 63.4
Network Lasso 1039.6 1047.3 1052.2 1054.6 1051.5 1053.3 1060.5 1052.9 1053.1 1061.0
FORMULA 576.6 445.6 550.5 914.3 936.7 776.3 942.0 712.2 633.6 720.8
Lasso 29.6 12.0 1.0 12.0 1.9 1.0 12.5 4.4 3.8 8.7
Elastic Net 310.8 91.4 39.2 124.9 77.2 1.0 116.6 87.9 98.9 105.3

exclusive regularization in addition to the network regularization, we can learn sparse patterns in
high-dimensional regression problems. Moreover, by setting the `1,2 regularizer term to be stronger,
we can obtain a sparser pattern within the wi. In contrast, Network Lasso + `1, which produces a
similar pattern when the regularization is weak (Fig. 1(e)), shrinks many local models to zero if the
regularization parameter λ2 is large (Fig. 1(f)). This shows that the network Lasso + `1 is sensitive to
the setting of the regularization parameter. Moreover, since we want to interpret features for each
sample (or model), the `1,2 norm is more suited than `1 for our tasks.

4.2 Prediction in Toxicogenomics (High-dimensional regression)

We evaluate our proposed method on the task of predicting toxicity of drugs on three cancer cell
lines, based on gene expression measurements. The Gene Expression data includes the differential
expression of 1106 genes in three different cancer types, for a collection of 53 drugs (i.e., Xl =

[x
(l)
1 , . . . ,x

(l)
53 ] ∈ R1106×53, l = 1, 2, 3). The learning data on Toxicity to be predicted contains

three dose-dependent toxicity profiles of the corresponding 53 drugs over the three cancers (i.e.,
Yl = [y

(l)
1 , . . . ,y

(l)
53 ] ∈ R3×53, l = 1, 2, 3). The gene expression data of the three cancers (Blood,

Breast and Prostate) comes from the Connectivity Map [11] and was processed to obtain treatment
vs. control differential expression. The toxicity screening data from the NCI-60 database [12],
summarizes the toxicity of drug treatments in three variables, GI50, LC50 and TGI, representing the
50% growth inhibition, 50% lethal concentration, and total growth inhibition levels. The data were
confirmed to represent dose-dependent toxicity profiles for the doses used in the corresponding gene
expression dataset.

In this experiment, we randomly split the data into training and test sets. The training set consisted of
48 drugs and the test set of 5 drugs. Moreover, we introduced a bias term in the proposed method
(i.e., [x> 1]> ∈ Rd+1), and regularized the entire wis in the network regularization term, and only
vi ∈ Rd−1 in the `1,2 regularization term; here wi = [v>i 1]>. We computed the graph information
using the input X as

R =
S> + S

2
, [S]ij =

{
1 xj is a 5 nearest neighbor of xi

0 Otherwise .

We repeated the experiments 20 times and report the average test RMSE scores in Table 1. We
observed that the proposed localized Lasso outperforms state-of-the-art linear methods. Moreover,
the proposed method also outperformed the nonlinear kernel regression method, which has high
predictive power but cannot identify features.

In Table 2, we report the number of selected features in each method. It is clear that the number of
selected features in the proposed method is much smaller than that of the network Lasso. In some
cases Lasso and Elastic net selected only one feature. This means that the features were shrunken
to zero and only bias term remained. In summary, the proposed method is suited for producing
interpretable sparse models in addition to having high predictive power.
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