
A Greedy Approach for
Budgeted Maximum Inner Product Search

Hsiang-Fu Yu∗
Amazon Inc.

rofuyu@cs.utexas.edu

Cho-Jui Hsieh
University of California, Davis
chohsieh@ucdavis.edu

Qi Lei
The University of Texas at Austin

leiqi@ices.utexas.edu

Inderjit S. Dhillon
The University of Texas at Austin
inderjit@cs.utexas.edu

Abstract

Maximum Inner Product Search (MIPS) is an important task in many machine
learning applications such as the prediction phase of low-rank matrix factorization
models and deep learning models. Recently, there has been substantial research
on how to perform MIPS in sub-linear time, but most of the existing work does
not have the flexibility to control the trade-off between search efficiency and
search quality. In this paper, we study the important problem of MIPS with a
computational budget. By carefully studying the problem structure of MIPS, we
develop a novel Greedy-MIPS algorithm, which can handle budgeted MIPS by
design. While simple and intuitive, Greedy-MIPS yields surprisingly superior
performance compared to state-of-the-art approaches. As a specific example, on a
candidate set containing half a million vectors of dimension 200, Greedy-MIPS
runs 200x faster than the naive approach while yielding search results with the
top-5 precision greater than 75%.

Introduction
In this paper, we study the computational issue in the prediction phase for many embedding based
models such as matrix factorization and deep learning models in recommender systems, which can be
mathematically formulated as a Maximum Inner Product Search (MIPS) problem. Specifically, given
a large collection of n candidate vectors: H =

{
hj ∈ Rk : 1, . . . , n

}
and a query vector w ∈ Rk,

MIPS aims to identify a subset of candidates that have top largest inner product values with w. We
also denote H = [h1, . . . ,hj , . . . ,hn]> as the candidate matrix. A naive linear search procedure
to solve MIPS for a given query w requires O(nk) operations to compute n inner products and
O(n log n) operations to obtain the sorted ordering of the n candidates.
Recently, MIPS has drawn a lot of attention in the machine learning community due to its wide
applicability, such as the prediction phase of embedding based recommender systems [6, 7, 10].
In such an embedding based recommender system, each user i is associated with a vector wi of
dimension k, while each item j is associated with a vector hj of dimension k. The interaction (such
as preference) between a user and an item is modeled by wT

i hj . It is clear that identifying top-ranked
items in such a system for a user is exactly a MIPS problem. Because both the number of users
(the number of queries) and the number of items (size of vector pool in MIPS) can easily grow to
millions, a naive linear search is extremely expensive; for example, to compute the preference for all
m users over n items with latent embeddings of dimension k in a recommender system requires at
least O(mnk) operations. When both m and n are large, the prediction procedure is extremely time
consuming; it is even slower than the training procedure used to obtain the m+n embeddings, which

∗Work done while at the University of Texas at Austin.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

costs only O(|Ω|k) operations per iteration, where |Ω| is number of observations and is much smaller
than mn. Taking the yahoo-music dataset as an example, m = 1M , n = 0.6M , |Ω| = 250M ,
and mn = 600B � 250M = |Ω|. As a result, the development of efficient algorithms for MIPS is
needed in large-scale recommender systems. In addition, MIPS can be found in many other machine
learning applications, such as the prediction for a multi-class or multi-label classifier [16, 17], an
object detector, a structure SVM predicator, or as a black-box routine to improve the efficiency of
learning and inference algorithm [11]. Also, the prediction phase of neural network could also benefit
from a faster MIPS algorithm: the last layer of NN is often a dense fully-connected layer, so finding
the label with maximum score becomes a MIPS problem with dense vectors [6].
There is a recent line of research on accelerating MIPS for large n, such as [2, 3, 9, 12–14]. However,
most of them do not have the flexibility to control the trade-off between search efficiency and
search quality in the prediction phase. In this paper, we consider the budgeted MIPS problem,
which is a generalized version of the standard MIPS with a computation budget: how to generate
a set of top-ranked candidates under a given budget on the number of inner products one can
perform. By carefully studying the problem structure of MIPS, we develop a novel Greedy-MIPS
algorithm, which handles budgeted MIPS by design. While simple and intuitive, Greedy-MIPS yields
surprisingly superior performance compared to existing approaches.
Our Contributions:
• We develop Greedy-MIPS, which is a novel algorithm without any nearest neighbor search

reduction that is essential in many state-of-the-art approaches [2, 12, 14].
• We establish a sublinear time theoretical guarantee for Greedy-MIPS under certain assumptions.
• Greedy-MIPS is orders of magnitudes faster than many state-of-the-art MIPS approaches to

obtain a desired search performance. As a specific example, on the yahoo-music data sets with
n = 624, 961 and k = 200, Greedy-MIPS runs 200x faster than the naive approach and yields
search results with the top-5 precision more than 75%, while the search performance of other
state-of-the-art approaches under the similar speedup drops to less than 3% precision.

• Greedy-MIPS supports MIPS with a budget, which brings the ability to control of the trade-off
between computation efficiency and search quality in the prediction phase.

Existing Approaches for Fast MIPS
Because of its wide applicability, several algorithms have been proposed for efficient MIPS. Most of
existing approaches consider to reduce the MIPS problem to the nearest neighbor search problem
(NNS), where the goal is to identify the nearest candidates of the given query, and apply an existing
efficient NNS algorithm to solve the reduced problem. [2] is the first MIPS work which adopts
such a MIPS-to-NNS reduction. Variants MIPS-to-NNS reduction are also proposed in [14, 15].
Experimental results in [2] show the superiority of the NNS reduction over the traditional branch-
and-bound search approaches for MIPS [9, 13]. After the reduction, there are many choices to solve
the transformed NNS problem, such as locality sensitive hashing scheme (LSH-MIPS) considered in
[12, 14, 15], PCA-tree based approaches (PCA-MIPS) in [2], or K-Means approaches in [1].
Fast MIPS approaches with sampling schemes have become popular recently. Various sampling
schemes have been proposed to handle MIPS problem with different constraints. The idea of the
sampling-based MIPS approach is first proposed in [5] as an approach to perform approximate
matrix-matrix multiplications. Its applicability on MIPS problems is studied very recently [3].
The idea behind a sampling-based approach called Sample-MIPS, is about to design an efficient
sampling procedure such that the j-th candidate is selected with probability p(j): p(j) ∼ h>j w. In
particular, Sample-MIPS is an efficient scheme to sample (j, t) ∈ [n] × [k] with the probability
p(j, t): p(j, t) ∼ hjtwt. Each time a pair (j, t) is sampled, we increase the count for the j-th item by
one. By the end of the sampling process, the spectrum of the counts forms an estimation of n inner
product values. Due to the nature of the sampling approach, it can only handle the situation where all
the candidate vectors and query vectors are nonnegative.
Diamond-MSIPS, a diamond sampling scheme proposed in [3], is an extension of Sample-MIPS
to handle the maximum squared inner product search problem (MSIPS) where the goal is to identify
candidate vectors with largest values of (h>j w)2. However, the solutions to MSIPS can be very
different from the solutions to MIPS in general. For example, if all the inner product values are
negative, the ordering for MSIPS is the exactly reverse ordering induced by MIPS. Here we can see
that the applicability of both Sample-MIPS and Diamond-MSIPS to MIPS is very limited.

2

Budgeted MIPS
The core idea behind the fast approximate MIPS approaches is to trade the search quality for the
shorter query latency: the shorter the search latency, the lower the search quality. In most existing fast
MIPS approaches, the trade-off depends on the approach-specific parameters such as the depth of the
PCA tree in PCA-MIPS or the number of hash functions in LSH-MIPS. Such specific parameters
are usually required to construct approach-specific data structures before any query is given, which
means that the trade-off is somewhat fixed for all the queries. Thus, the computation cost for a
given query is fixed. However, in many real-world scenarios, each query might have a different
computational budget, which raises the question: Can we design a MIPS approach supporting the
dynamic adjustment of the trade-off in the query phase?

Essential Components for Fast MIPS
Before any query request:
• Query-Independent Data Structure Construction: A pre-processing procedure is performed on the

entire candidate sets to construct an approach-specific data structure D to store information about
H: the LSH hash tables, space partition trees (e.g., KD-tree or PCA-tree), or cluster centroids.

For each query request:
• Query-dependent Pre-processing: In some approaches, a query dependent pre-processing is needed.

For example, a vector augmentation is required in all MIPS-to-NNS approaches. In addition, [2]
also requires another normalization. TP is used to denote the time complexity of this stage.

• Candidate Screening: In this stage, based on the pre-constructed data structure D, an efficient
procedure is performed to filter candidates such that only a subset of candidates C(w) ⊂ H is
selected. In a naive linear approach, no screening procedure is performed, so C(w) simply contains
all the n candidates. For a tree-based structure, C(w) contains all the candidates stored in the leaf
node of the query vector. In a sampling-based MIPS approach, an efficient sampling scheme is
designed to generate highly possible candidates to form C(w). TS denotes the computational cost
of the screening stage.

• Candidate Ranking: An exact ranking is performed on the selected candidates in C(w) ob-
tained from the screening stage. This involves the computation of |C(w)| inner products
and the sorting procedure among these |C(w)| values. The overall time complexity TR =
O(|C(w)|k + |C(w)| log|C(w)|).

The per-query computational cost: TQ = TP + TS + TR. (1)

It is clear that the candidate screening stage is the key component for a fast MIPS approach. In
terms of the search quality, the performance highly depends on whether the screening procedure can
identify highly possible candidates. Regarding the query latency, the efficiency highly depends on the
size of C(w) and how fast to generate C(w). The major difference among various MIPS approaches
is the choice of the data structure D and the screening procedure.

Budgeted MIPS: Problem Definition
Budgeted MIPS is an extension of the standard approximate MIPS problem with a computational
budget: how to generate top-ranked candidates under a given budget on the number of inner products
one can perform. Note that the cost for the candidate ranking (TR) is inevitable in the per-query
cost (1). A viable approach for budgeted MIPS must include a screening procedure which satisfies
the following requirements:
• the flexibility to control the size of C(w) in the candidate screening stage such that |C(w)| ≤ B,

where B is a given budget, and
• an efficient screening procedure to obtain C(w) in O(Bk) time such thatTQ = O(Bk+B logB).

As mentioned earlier, most recently proposed MIPS-to-NNS approaches algorithms apply various
search space partition data structures or techniques (e.g., LSH, KD-tree, or PCA-tree) designed for
NNS to index the candidatesH in the query-independent pre-processing stage. As the construction
of D is query independent, both the search performance and the computation cost are somewhat
fixed when the construction is done. For example, the performance of a PCA-MIPS depends on
the depth of the PCA-tree. Given a query vector w, there is no control to the size of C(w) in the
candidate generating phase. LSH-based approaches also have the similar issue. There might be some
ad-hoc treatments to adjust C(w), it is not clear how to generalize PCA-MIPS and LSH-MIPS in a
principled way to handle the situation with a computational budget: how to reduce the size of C(w)
under a limited budget and how to improve the performance when a larger budget is given.

3

Unlike other NNS-based algorithms, the design of Sample-MIPS naturally enables it to support
budgeted MIPS for a nonnegative candidate matrix H and a nonnegative query w. The more the
number of samples, the lower the variance of the estimated frequency spectrum. Clearly, Sample-
MIPS has the flexibility to control the size of C(w), and thus is a viable approach for the budgeted
MIPS problem. However, Sample-MIPS works only on the situation with non-negativeH and w.
Diamond-MSIPS has the similar issue.

Greedy-MIPS
We carefully study the structure of MIPS and develop a simple but novel algorithm called Greedy-
MIPS, which handles budgeted MIPS by design. Unlike the recent MIPS-to-NNS approaches,
Greedy-MIPS is an approach without any reduction to a NNS problem. Moreover, Greedy-MIPS is
a viable approach for the budgeted MIPS problem without the non-negativity limitation inherited in
the sampling approaches.
The key component for a fast MIPS approach is the algorithm used in the candidate screening phase.
In budgeted MIPS, for any given budget B and query w, an ideal procedure for the candidate
screening phase costs O(Bk) time to generate C(w) which contains the B items with the largest B
inner product values over the n candidates in H. The requirement on the time complexity O(Bk)
implies that the procedure is independent from n = |H|, the number of candidates inH. One might
wonder whether such an ideal procedure exists or not. In fact, designing such an ideal procedure with
the requirement to generate the largest B items in O(Bk) time is even more challenging than the
original budgeted MIPS problem.
Definition 1. The rank of an item x among a set of items X =

{
x1, . . . , x|X |

}
is defined as

rank(x | X) :=
∑|X |

j=1
I[xj ≥ x], (2)

where I[·] is the indicator function. A ranking induced by X is a function π(·) : X → {1, . . . , |X |}
such that π(xj) = rank(xj | X) ∀xj ∈ X .
One way to store a ranking π(·) induced by X is by a sorted index array s[r] of size |X | such that

π(xs[1]) ≤ π(xs[2]) ≤ · · · ≤ π(xs[|X |]).

We can see that s[r] stores the index to the item x with π(x) = r.
To design an efficient candidate screening procedure, we study the operations required for MIPS: In
the simple linear MIPS approach, nk multiplication operations are required to obtain n inner product
values

{
h>1 w, . . . ,h

>
nw
}

. We define an implicit matrix Z ∈ Rn×k as Z = H diag(w), where
diag(w) ∈ Rk×k is a matrix with w as it diagonal. The (j, t) entry of Z denotes the multiplication
operation zjt = hjtwt and zj = diag(w)hj denotes the j-th row of Z. In Figure 1, we use Z> to
demonstrate the implicit matrix. Note that Z is query dependant, i.e., the values of Z depend on the
query vector w, and n inner product values can be obtained by taking the column-wise summation of
Z>. In particular, for each j we have h>j w =

∑k
t=1 zjt, j = 1, . . . , n. Thus, the ranking induced

by the n inner product values can be characterized by the marginal ranking π(j|w) defined on the
implicit matrix Z as follows:

π(j|w) := rank

(
k∑

t=1

zjt

∣∣∣∣∣

{
k∑

t=1

z1t, · · · ,
k∑

t=1

znt

})
= rank

(
h>j w |

{
h>1 w, . . . ,h

>
nw
})
. (3)

As mentioned earlier, it is hard to design an ideal candidate screening procedure generating C(w)
based on the marginal ranking. Because the main goal for the candidate screening phase is to
quickly identify candidates which are highly possible to be top-ranked items, it suffices to have
an efficient procedure generating C(w) by an approximation ranking. Here we propose a greedy
heuristic ranking:

π̄(j|w) := rank
(

maxk
t=1 zjt

∣∣ {maxk
t=1 z1t, · · · ,maxk

t=1 znt
})
, (4)

which is obtained by replacing the summation terms in (3) by max operators. The intuition behind
this heuristic is that the largest element of zj multiplied by k is an upper bound of h>j w:

h>j w =

k∑

t=1

zjt ≤ kmax{zjt : t = 1, . . . , k}. (5)

Thus, π̄(j|w), which is induced by such an upper bound of h>j w, could be a reasonable approximation
ranking for the marginal ranking π(j|w).

4

π(j, t|w)

Z> = diag(w)H> : zjt = hjtwt,∀j, t

z11 z21 z31 z41 z51 z61 z71

z12 z22 z32 z42 z52 z62 z72

z13 z23 z33 z43 z53 z63 z73+

z11 z21 z31 z41 z51 z61 z71

z12 z22 z32 z42 z52 z62 z72

z13 z23 z33 z43 z53 z63 z73

πt(j|w)

h1
>w h2

>w h3
>w h4

>w h5
>w h6

>w h7
>w

π(j|w)

Figure 1: nk multiplications in a naive linear MIPS
approach. π(j, t|w): joint ranking. πt(j|w): con-
ditional ranking. π(j|w): marginal ranking.

Next we design an efficient procedure which
generates C(w) according to the ranking π̄(j|w)
defined in (4). First, based on the relative order-
ings of {zjt}, we consider the joint ranking and
the conditional ranking defined as follows:
• Joint ranking: π(j, t|w) is the exact ranking

over the nk entries of Z.

π(j, t|w) := rank(zjt | {z11, . . . , znk}).
• Conditional ranking: πt(j|w) is the exact

ranking over the n entires of the t-th row of
Z>.

πt(j|w) := rank(zjt | {z1t, . . . , znt}).
See Figure 1 for an illustration for both rankings. Similar to the marginal ranking, both joint and
conditional rankings are query dependent.
Observe that, in (4), for each j, only a single maximum entry of Z, maxk

t=1 zjt, is considered to
obtain the ranking π̄(j|w). To generate C(w) based on π̄(j|w), we can iterate (j, t) entries of Z in
a greedy sequence such that (j1, t1) is visited before (j2, t2) if zj1t1 > zj2t2 , which is exactly the
sequence corresponding to the joint ranking π(j, t|w). Each time an entry (j, t) is visited, we can
include the index j into C(w) if j /∈ C(w). In Theorem 1, we show that the sequence to include a
newly observed j into C(w) is exactly the sequence induced by the ranking π̄(j|w) defined in (4).
Theorem 1. For all j1 and j2 such that π̄(j1|w) < π̄(j2|w), j1 will be included into C(w) before
j2 if we iterate (j, t) pairs following the sequence induced by the joint ranking π(j, t|w). A proof
can be found in Section D.1.

At first glance, generating (j, t) in the sequence according to the joint ranking π(j, t|w) might require
the access to all the nk entries of Z and cost O(nk) time. In fact, based on Property 1 of conditional
rankings, we can design an efficient variant of the k-way merge algorithm [8] to generate (j, t) pairs
in the desired sequence iteratively.
Property 1. Given a fixed candidate matrix H , for any possible w with wt 6= 0, the conditional
ranking πt(j|w) is either πt+(j) or πt−(j), where πt+(j) = rank(hjt | {h1t, . . . , hnt}), and

πt−(j) = rank(−hjt | {−h1t, . . . ,−hnt}). In particular, πt(j|w) =

{
πt+(j) if wt > 0,

πt−(j) if wt < 0.

Property 1 enables us to characterize a query dependent conditional ranking πt(j|w) by two query
independent rankings πt+(j) and πt−(j). Thus, for each t, we can construct and store a sorted index
array st[r], r = 1, . . . , n such that

πt+(st[1]) ≤ πt+(st[2]) ≤ · · · ≤ πt+(st[n]), (6)

πt−(st[1]) ≥ πt−(st[2]) ≥ · · · ≥ πt−(st[n]). (7)

Thus, in the phase of query-independent data structure construction of Greedy-MIPS, we compute
and store k query-independent rankings πt+(·) by k sorted index arrays of length n: st[r], r =
1, . . . , n, t = 1, . . . , k. The entire construction costs O(kn log n) time and O(kn) space.
Next we describe the details of the proposed Greedy-MIPS algorithm for a given query w and a
budget B. Greedy-MIPS utilizes the idea of the k-way merge algorithm to visit (j, t) entries of Z
according to the joint ranking π(j, t|w). Designed to merge k sorted sublists into a single sorted
list, the k-way merge algorithm uses 1) k pointers, one for each sorted sublist, and 2) a binary tree
structure (either a heap or a selection tree) containing the elements pointed by these k pointers to
obtain the next element to be appended into the sorted list [8].

Query-dependent Pre-processing
We divide nk entries of (j, t) into k groups. The t-th group contains n entries: {(j, t) : j = 1, . . . , n}.
Here we need an iterator playing a similar role as the pointer which can iterate index j ∈ {1, . . . , n}
in the sorted sequence induced by the conditional ranking πt(·|w). Utilizing Property 1, the t-th
pre-computed sorted arrays st[r], r = 1, . . . , n can be used to construct such an iterator, called
CondIter, which supports current() to access the currently pointed index j and getNext() to

5

Algorithm 1 CondIter: an iterator over j ∈
{1, . . . , n} based on the conditional ranking πt(j|w).
This code assumes that the k sorted index arrays
st[r], r=1, . . . , n, t=1, . . . , k are available.
class CondIter:

def constructor(dim_idx, query_val):

t, w, ptr ← dim_idx, query_val, 1

def current():

return
{
st[ptr] if w > 0,

st[n− ptr + 1] otherwise.
def hasNext(): return (ptr < n)
def getNext():

ptr← ptr + 1 and return current()

Algorithm 2 Query-dependent pre-
processing procedure in Greedy-MIPS.
• Input: query w ∈ Rk

• For t = 1, . . . , k

- iters[t]← CondIter(t, wt)
- z ← hjtwt,

where j = iters[t].current()
- Q.push((z, t))

• Output:
- iters[t], t ≤ k: iterators for πt(·|w).
- Q: a max-heap of{

(z, t) | z =
n

max
j=1

zjt, ∀t ≤ k
}

.

advance the iterator. In Algorithm 1, we describe a pseudo code for CondIter, which utilizes the
facts (6) and (7) such that both the construction and the index access cost O(1) space and O(1) time.
For each t, we use iters[t] to denote the CondIter for the t-th conditional ranking πt(j|w).
Regarding the binary tree structure used in Greedy-MIPS, we consider a max-heap Q of (z, t)
pairs. z ∈ R is the compared key used to maintain the heap property of Q, and t ∈ {1, . . . , k}
is an integer to denote the index to a entry group. Each (z, t) ∈ Q denotes the (j, t) entry of Z
where j = iters[t].current() and z = zjt = hjtwt. Note that there are most k elements in the
max-heap at any time. Thus, we can implement Q by a binary heap such that 1) Q.top() returns the
maximum pair (z, t) in O(1) time; 2) Q.pop() deletes the maximum pair of Q in O(log k) time; and
3) Q.push((z, t)) inserts a new pair in O(log k) time. Note that the entire Greedy-MIPS can also be
implemented using a selection tree among the k entries pointed by the k iterators. See Section B in
the supplementary material for more details.
In the query-dependent pre-processing phase, we need to construct iters[t], t = 1, . . . , k,
one for each conditional ranking πt(j|w), and a max-heap Q which is initialized to contain{

(z, t) | z = maxn
j=1 zjt, t ≤ k

}
. A detailed procedure is described in Algorithm 2 which costs

O(k log k) time and O(k) space.

Candidate Screening
The core idea of Greedy-MIPS is to iteratively traverse (j, t) entries of Z in a greedy sequence and
collect newly observed indices j into C(w) until |C(w)| = B. In particular, if r = π(j, t|w), then
(j, t) entry is visited at the r-th iterate. Similar to the k-way merge algorithm, we describe a detailed
procedure in Algorithm 3, which utilizes the CondIter in Algorithm 1 to perform the screening.
Recall both requirements of a viable candidate screening procedure for budgeted MIPS: 1) the
flexibility to control the size |C(w)| ≤ B; and 2) an efficient procedure runs in O(Bk). First, it is
clear that Algorithm 3 has the flexibility to control the size of C(w) by the exiting condition of the
outer while-loop. Next, to analyze the overall time complexity of Algorithm 3, we need to know the
number of the zjt entries the algorithm iterates before C(w) = B. Theorem 2 gives an upper bound
on this number of iterations.
Theorem 2. There are at least B distinct indices j in the first Bk entries (j, t) in terms of the joint
ranking π(j, t|w) for any w; that is,

|{j | ∀(j, t) such that π(j, t|w) ≤ Bk}| ≥ B. (8)
A detailed proof can be found in Section D of the supplementary material. Note that there are
some O(log k) time operations within both the outer and inner while loops such as Q.push((z, t))
and Q.pop()). As the goal of the screening procedure is to identify j indices only, we can skip the
Q.push

((
zjt, t

))
for an entry (j, t) with the j having been included in C(w). As a results, we can

guarantee that Q.pop() is executed at most B+ k− 1 times when |C(w)| = B. The extra k− 1 times
occurs in the situation that

iters[1].current() = · · · = iters[k].current()

at the beginning of the entire screening procedure.

6

Algorithm 3 An improved candidate screening proce-
dure in Greedy-MIPS. The time complexity is O(Bk).
• Input:

- H, w, and the computational budget B
- Q and iters[t]: output of Algorithm 2
- C(w): an empty list
- visited[j] = 0, ∀j ≤ n: a zero-initialized array.
• While |C(w)| < B:

- (z, t)← Q.pop() · · ·O(log k)
- j ← iters[t].current()
- If visited[j] = 0:

* append j into C(w) and visited[j]← 1
- While iters[t].hasNext():

* j ← iters[t].getNext()
* if visited[j] = 0:

— z ← hjtwt and Q.push((z, t)) · · ·O(log k)
— break

• visited[j]← 0,∀j ∈ C(w) · · ·O(B)
• Output: C(w) = {j | π̄(j|w) ≤ B}

To check weather a index j in the cur-
rent C(w) in O(1) time, we use an aux-
iliary zero-initialized array of length n:
visited[j], j = 1, . . . , n to denote
whether an index j has been included in
C(w) or not. As C(w) contains at most B
indices, only B elements of this auxiliary
array will be modified during the screening
procedure. Furthermore, the auxiliary ar-
ray can be reset to zero using O(B) time
in the end of Algorithm 3, so this auxil-
iary array can be utilized again for a dif-
ferent query vector w. Notice that Algo-
rithm 3 still iterates Bk entries of Z but
at most B + k − 1 entries will be pushed
into or pop from the max-heap Q. Thus, the
overall time complexity of Algorithm 3 is
O(Bk + (B + k) log k) = O(Bk), which
makes Greedy-MIPS a viable budgeted
MIPS approach.

Connection to Sampling Approaches
Sample-MIPS, as mentioned earlier, is essentially a sampling algorithm with replacement scheme to
draw entries of Z such that (j, t) is sampled with the probability proportional to zjt. Thus, Sample-
MIPS can be thought as a traversal of (j, t) entries using in a stratified random sequence determined
by a distribution of the values of {zjt}, while the core idea of Greedy-MIPS is to iterate (j, t) entries
of Z in a greedy sequence induced by the ordering of {zjt}.
Next, we discuss the differences of Greedy-MIPS from Sample-MIPS and Diamond-MSIPS.
Sample-MIPS can be applied to the situation where bothH and w are nonnegative because of the
nature of sampling scheme. In contrast, Greedy-MIPS can work on any MIPS problems as only the
ordering of {zjt} matters in Greedy-MIPS. Instead of h>j w, Diamond-MSIPS is designed for the
MSIPS problem which is to identify candidates with largest (h>j w)2 or |h>j w| values. In fact, for
nonnegative MIPS problems, the diamond sampling is equivalent to Sample-MIPS. Moreover, for
MSIPS problems with negative entries, when the number of samples is set to be the budget B,2 the
Diamond-MSIPS is equivalent to apply Sample-MIPS to sample (j, t) entries with the probability
p(j, t) ∝ |zjt|. Thus, the applicability of the existing sampling-based approaches remains limited for
general MIPS problems.

Theoretical Guarantee
Greedy-MIPS is an algorithm based on a greedy heuristic ranking (4). Similar to the analysis of
Quicksort, we study the average complexity of Greedy-MIPS by assuming a distribution of the input
dataset. For simplicity, our analysis is performed on a stochastic implicit matrix Z instead of w. Each
entry in Z is assumed to follow a uniform distribution uniform(a, b). We establish Theorem 3 to
prove that the number of entries (j, t) iterated by Greedy-MIPS to include the index to the largest
candidate is sublinear to n = |H| with a high probability when n is large enough.
Theorem 3. Assume that all the entries zjt are drawn from a uniform distribution uniform(a, b).
Let j∗ be the index to the largest candidate (i.e., π(j∗|Z) = 1). With high probability, we have
π̄(j∗|Z) ≤ O(k log(n)n

1
k). A detailed proof can be found in the supplementary material.

Notice that theoretical guarantees for approximate MIPS is challenging even for randomized algo-
rithms. For example, the analysis for Diamond-MSIPS in [3] requires nonnegative assumptions and
only works on MSIPS (max-squared-inner-product search) problems instead of MIPS problems.

Experimental Results
In this section, we perform extensive empirical comparisons to compare Greedy-MIPS with other
state-of-the-art fast MIPS approaches on both real-world and synthetic datasets: We use netflix and
yahoo-music as our real-world recommender system datasets. There are 17, 770 and 624, 961 items
in netflix and yahoo-music, respectively. In particular, we obtain the user embeddings {wi} ∈ Rk

2This setting is used in the experiments in [3].

7

Figure 2: MIPS comparison on netflix and yahoo-music.

Figure 3: MIPS comparison on synthetic datasets with n ∈ 2{17,18,19,20} and k = 128. The datasets
used to generate results are created with each entry drawn from a normal distribution.

Figure 4: MIPS Comparison on synthetic datasets with n = 218 and k ∈ 2{2,5,7,10}. The datasets
used to generate results on are created with each entry drawn from a normal distribution.

and item embeddings hj ∈ Rk by the standard low-rank matrix factorization [4] with k ∈ {50, 200}.
We also generate synthetic datasets with various n = 2{17,18,19,20} and k = 2{2,5,7,10}. For each
synthetic dataset, both candidate vector hj and query w vector are drawn from the normal distribution.

Experimental Settings
To have fair comparisons, all the compared approaches are implemented in C++.
• Greedy-MIPS: our proposed approach in Section 4.
• PCA-MIPS: the approach proposed in [2]. We vary the depth of PCA tree to control the trade-off.
• LSH-MIPS: the approach proposed in [12, 14]. We use the nearest neighbor transform function

proposed in [2, 12] and use the random projection scheme as the LSH function as suggested in
[12]. We also implement the standard amplification procedure with an OR-construction of b hyper
LSH hash functions. Each hyper LSH function is a result of an AND-construction of a random
projections. We vary values (a, b) to control the trade-off.

• Diamond-MSIPS: the sampling scheme proposed in [3] for the maximum squared inner product
search. As it shows better performance than LSH-MIPS in [3] in terms of MIPS problems, we
also include Diamond-MSIPS into our comparison.

• Naive-MIPS: the baseline approach which applies a linear search to identify the exact top-K
candidates.

Evaluation Criteria. For each dataset, the actual top-20 items for each query are regarded as the
ground truth. We report the average performance on a randomly selected 2,000 query vectors. To
evaluate the search quality, we use the precision on the top-P prediction (prec@P), obtained by
selecting top-P items from C(w) returned by the candidate screening procedure. Results with P = 5
is shown in the paper, while more results with various P are in the supplementary material. To
evaluate the search efficiency, we report the relative speedups over the Naive-MIPS approach:

speedup =
prediction time required by Naive-MIPS
prediction time by a compared approach

.

8

Remarks on Budgeted MIPS versus Non-Budgeted MIPS. As mentioned in Section 3, PCA-
MIPS and LSH-MIPS cannot handle MIPS with a budget. Both the search computation cost and
the search quality are fixed when the corresponding data structure is constructed. As a result, to
understand the trade-off between search efficiency and search quality for these two approaches, we
can only try various values for its parameters (such as the depth for PCA tree and the amplification
parameters (a, b) for LSH). For each combination of parameters, we need to re-run the entire
query-independent pre-processing procedure to construct a new data structure.
Remarks on data structure construction. Note that the time complexity for the construction
for Greedy-MIPS is O(kn log n), which is on par to O(kn) for Diamond-MSIPS, and faster
than O(knab) for LSH-MIPS and O(k2n) for PCA-MIPS. As an example, the construction for
Greedy-MIPS only takes around 10 seconds on yahoo-music with n = 624, 961 and k = 200.

Experimental Results
Results on Real-World Data sets. Comparison results for netflix and yahoo-music are shown
in Figure 2. The first, second, and third columns present the results with k = 50 and k = 200,
respectively. It is clearly observed that given a fixed speedup, Greedy-MIPS yields predictions with
much higher search quality. In particular, on the yahoo-music data set with k = 200, Greedy-MIPS
runs 200x faster than Naive-MIPS and yields search results with p@5 = 70%, while none of PCA-
MIPS, LSH-MIPS, and Diamond-MSIPS can achieve a p@5 > 10% while maintaining the similar
200x speedups.
Results on Synthetic Data Sets. We also perform comparisons on synthetic datasets. The com-
parison with various n ∈ 2{17,18,19,20} is shown in Figure 3, while the comparison with various
k ∈ 2{2,5,7,10} is shown in Figure 4. We observe that the performance gap between Greedy-MIPS
over other approaches remains when n increases, while the gap becomes smaller when k increases.
However, Greedy-MIPS still outperforms other approaches significantly.

Conclusions and Future Work
In this paper, we develop a novel Greedy-MIPS algorithm, which has the flexibility to handle
budgeted MIPS, and yields surprisingly superior performance compared to state-of-the-art approaches.
The current implementation focuses on MIPS with dense vectors, while in the future we plan to
implement our algorithm also for high dimensional sparse vectors. We also establish a theoretical
guarantee for Greedy-MIPS based on the assumption that data are generated from a random
distribution. How to relax the assumption or how to design a nondeterministic pre-processing step for
Greedy-MIPS to satisfy the assumption are interesting future directions of this work.

Acknowledgements
This research was supported by NSF grants CCF-1320746, IIS-1546452 and CCF-1564000. CJH
was supported by NSF grant RI-1719097.

References
[1] Alex Auvolat, Sarath Chandar, Pascal Vincent, Hugo Larochelle, and Yoshua Bengio. Clus-

tering is efficient for approximate maximum inner product search, 2016. arXiv preprint
arXiv:1507.05910.

[2] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein,
Nir Nice, and Ulrich Paquet. Speeding up the xbox recommender system using a euclidean trans-
formation for inner-product spaces. In Proceedings of the 8th ACM Conference on Recommender
Systems, pages 257–264, 2014.

[3] Grey Ballard, Seshadhri Comandur, Tamara Kolda, and Ali Pinar. Diamond sampling for
approximate maximum all-pairs dot-product (MAD) search. In Proceedings of the IEEE
International Conference on Data Mining, 2015.

[4] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A learning-rate schedule
for stochastic gradient methods to matrix factorization. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), 2015.

[5] Edith Cohen and David D. Lewis. Approximating matrix multiplication for pattern recognition
tasks. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 682–691, 1997.

9

[6] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM Conference on Recommender Systems, 2016.

[7] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The Yahoo! music
dataset and KDD-Cup’11. In JMLR Workshop and Conference Proceedings: Proceedings of
KDD Cup 2011 Competition, volume 18, pages 3–18, 2012.

[8] Donald E. Knuth. The Art of Cmoputer Programming, Volumne 3: Sorting and Searching.
Addison-Wesley, 2nd edition, 1998.

[9] Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. Efficient retrieval of recommendations in
a matrix factorization framework. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM ’12, pages 535–544, 2012.

[10] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. IEEE Computer, 42:30–37, 2009.

[11] Stephen Mussmann and Stefano Ermon. Learning and inference via maximum inner product
search. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning, 2016.

[12] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product
search. In Proceedings of the International Conference on Machine Learning, pages 1926–1934,
2015.

[13] Parikshit Ram and Alexander G. Gray. Maximum inner-product search using cone trees. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 931–939, 2012.

[14] Anshumali Shrivastava and Ping Li. Asymmetric lsh (ALSH) for sublinear time maximum inner
product search (MIPS). In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2321–2329,
2014.

[15] Anshumali Shrivastava and Ping Li. Improved asymmetric locality senstive hashing lsh (ALSH)
for maximum inner product search (MIPS). In Proceedings of the Thirty-First Conference on
Uncertainty in Artificial Intelligence (UAI), pages 812–821, 2015.

[16] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation: learning to
rank with joint word-image embeddings. Mach. Learn., 81(1):21–35, October 2010.

[17] Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon. Large-scale multi-label
learning with missing labels. In Proceedings of the International Conference on Machine
Learning, pages 593–601, 2014.

10

Supplementary Material:
A Greedy Approach for Budgeted Maximum Inner Products Search

More Details about Existing Approaches for Fast MIPS
Approaches with Nearest Neighbor Search Reduction
We briefly introduce the concept of the reduction proposed in [2]. First, we consider the relationship
between the Euclidean distance and the inner product:

‖w − hj1‖2 = ‖w‖2 + ‖hj1‖2 − 2w>hj1

‖w − hj2‖2 = ‖w‖2 + ‖hj2‖2 − 2w>hj2 .

When all the candidate vectors hj share the same length; that is,

‖h1‖ = ‖h2‖ = · · · = ‖hn‖,
the MIPS problem is exactly the same as the NNS problem because

‖w − hj1‖ > ‖w − hj2‖ ⇐⇒ w>hj1 < w>hj2 (9)

when ‖hj1‖ = ‖hj2‖. However, when ‖hj1‖ 6= ‖hj2‖, (9) no longer holds. See Figure 5(a) for an
example where not all the candidate vectors have the same length. We can see that h1 is the candidate
vector yielding the maximum inner product with w, while h2 is the nearest neighbor candidate.
To handle the situation where candidates have different lengths, [2] proposes the following transform
to reduce the original MIPS problem withH and w in a k dimensional space to a new NNS problem
with Ĥ =

{
ĥ1, . . . , ĥn

}
and ŵ in a k + 1 dimensional space:

ŵ = [w; 0]
>
,

ĥj =

[
hj ;

√
M − ‖hj‖2

]>
, ∀j = 1, . . . , n, (10)

where M is the maximum squared length over the entire candidate setH:

M = max
j=1,...,n

‖hj‖2.

First, we can see that with the above transform,
∥∥∥ĥj

∥∥∥
2

= M for all j:
∥∥∥ĥj

∥∥∥
2

= ‖hj‖2 +M − ‖hj‖2 = M, ∀j.

Then, for any j1 6= j2, we have
∥∥∥ŵ − ĥj1

∥∥∥ <
∥∥∥ŵ − ĥj2

∥∥∥

⇐⇒M + ‖w‖2 − 2w>hj1 < M + ‖w‖2 − 2w>hj2

⇐⇒ w>hj1 > w>hj2 .

With the above relationship, the original k-dimensional MIPS problem is equivalent to the transformed
k + 1 dimensional NNS problem. In Figure 5(b), we show the transformed NNS problem for the
original MIPS problem presented in Figure 5(a).
In [15], another MIPS-to-NNS reduction has been proposed. The high level idea is to apply a
transformation toH such that all the candidate vectors roughly have the same length by appending
additional k̄ dimensions. In the procedure by [15], all the hj vectors are assumed (or scaled) to have
‖hj‖ ≤ U, ∀j, where U < 1 is a positive constant. Then the following transform is applied to reduce
the original k-dimensional MIPS problem to a new NNS problem with (k + k̄)-dimensional vectors
Ĥ and ŵ defined as:

ŵ = [w;0k̄]
>

ĥj =
[
hj ; 1/2− ‖hj‖2

1

; 1/2− ‖hj‖2
2

; . . . ; 1/2− ‖hj‖2
k̄
]>
, (11)

11

where 0k̄ is a zero vector of dimension k̄. Because U < 1, [15] shows that with the transform

(11), we have
∥∥∥ĥj

∥∥∥
2

= k̄/4 + ‖hj‖2
k̄+1

, with the second term vanishing as k̄ →∞. Thus, all the

candidates ĥj approximately have the same length. We can see the idea behind (11) is similar to (10):
transformingH to Ĥ such that all the candidates have the same length. Note that (10) achieves this
goal exactly while (11) achieves this goal approximately. Both transforms show a similar empirical
performance in [12].
There are many choices to solve the transformed NNS problem after the MIPS-to-NN reduction
has been applied. In [12, 14, 15], various locality sensitive hashing schemes have been considered.
In [2], a PCA-tree based approach is proposed, and shows better performance than LSH-based
approaches, which is consistent to the empirical observations in [1] and our experimental results
shown in Section 5. In [1], a simple K-means clustering algorithm is proposed to handled the
transformed NNS problem.

Sampling-based Approaches
The idea of the sampling-based MIPS approach is first proposed in [5] as an approach to perform
approximate matrix-matrix multiplications. Its applicability on MIPS problems is studied very
recently [3]. The idea behind a sampling-based approach called Sample-MIPS, is about to design an
efficient sampling procedure such that the j-th candidate is selected with probability p(j):

p(j) ∼ h>j w.

In particular, Sample-MIPS is an efficient scheme to sample (j, t) ∈ [n]× [k] with the probability
p(j, t):

p(j, t) ∼ hjtwt.

Each time a pair (j, t) is sampled, we increase the count for the j-th item by one. By the end of the
sampling process, the spectrum of the counts forms an estimation of n inner product values. Due to
the nature of the sampling approach, it can only handle the situation where all the candidate vectors
and query vectors are nonnegative.
Diamond-MSIPS, a diamond sampling scheme proposed in [3], is an extension of Sample-MIPS
to handle the maximum squared inner product search problem (MSIPS) where the goal is to identify
candidate vectors with largest values of

(
h>j w

)2
. If both w andH are nonnegative or h>j w ≥ 0, ∀j,

MSIPS can be used to generate the solutions for MIPS. However, the solutions to MSIPS can be
very different from the solutions to MIPS in general. For example, if all the inner product values are
negative, the ordering for MSIPS is the exactly reverse ordering induced by MIPS. Here we can see
that the applicability of both Sample-MIPS and Diamond-MSIPS to MIPS is very limited.

More Details about Greedy-MIPS
A Motivating Example for Greedy-MIPS
We demonstrate that an ideal approach exists for budgeted MIPS when k = 1. It is not hard to
observe that Property 2 holds for any givenH = {h1, . . . , hn | hj ∈ R}:
Property 2. For any nonzero query w ∈ R and any budget B > 0, there are only two possible
results for that top B inner products between w andH:

w > 0⇒ Largest B elements inH,
w < 0⇒ Smallest B elements inH.

This property leads to the following simple approach, which is an ideal procedure for the budgeted
MIPS problem when k = 1:
• Query-independent data structure: a sorted list of indices ofH: s[r], r = 1, . . . , n such that s[r]

stores the index to the r-th largest candidate. That is

hs[1] ≥ hs[2] ≥ · · · ≥ hs[n],
• Candidate screening phase: for any given w 6= 0 and B > 0, return

{
first B elements: {s[1], . . . , s[B]} if w > 0,

last B elements: {s[n], . . . , s[n− B + 1]} if w < 0

as the indices of the exact largest-B candidates.

12

x2 + y2 = M

x

y

w h1
h2

h3

(a) Original MIPS inR2.

x2 + y2 = M, z = 0

{
x2 + y2 + z2 = M,

z =

√
M − ‖h2‖2

x

y

z

ŵ ĥ1

ĥ2

ĥ3

(b) Reduced NNS inR3.

Figure 5: MIPS-to-NN reduction. In 5(a), all the candidate vectors {hj} and the query vector w are
in R2. h2 is the nearest neighbor of w, while h1 is the vector yielding the maximum value of the
inner product with w. In 5(b), the reduction proposed in [2] is applied to w and {hj}: ŵ = [w; 0]>

and ĥj = [hj ;
√
M − ‖hj‖2]>, ∀j, where M = maxj ‖hj‖2. All the transformed vectors are in

the 3-dimensional sphere with radius
√
M . As a result, the nearest neighbor of ŵ in this transformed

3-dimensional NNS problem, ĥ1, corresponds to the vector h1 which yields the maximum inner
product value with w in the original 2-dimensional MIPS problem.

Note that for this simple scenario (k = 1), neither the query dependent pre-processing nor the
candidate ranking is needed. Thus, the overall time complexity per query is TQ = O(B). We can see
that Property 2 is the key to the correctness of the above procedure. Nevertheless, it is not clear how
to generalize Property 2 for MIPS problems with k ≥ 2. Fortunately, we can directly utilize the fact
that Property 2 holds for k = 1 to design an efficient greedy procedure for the candidate screening
when k ≥ 2.

Greedy-MIPS with a Selection Tree
As there are at most k pairs in the max-heap Q, one from each iters[t], the max-heap can be replaced
by a selection tree to achieve a slightly faster implementation as suggested in [8]. In Algorithm 4,
we give a pseudo code for the selection tree with a O(k) time constructor, a O(1) time maximum
element look-up, and a O(log k) time updater. To apply the section tree for our Greedy-MIPS, we
only need to the following modifications:
• In Algorithm 2, remove Q.push((z, t)) from the for-loop and construct Q by Q ←
SelectionTree(w, k, iters).

• In Algorithm 3, replace Q.pop() by Q.top() and replace Q.push((z, t)) by Q.updateValue(t, z).

13

7

6.9−1

4
−1

5
−2

6
−3

7
−4

1
−5

2
−6

3
−7

6
7

7
6

1
5

2
4

3
3

4
2

5
1

1
69

2
59

3
49

4
39

5
29

6
19

7
9

w1

w2

w3

(a) At the beginning : C(w) = []

6.9

6−1

4
−1

5
−2

6
−3

7
−4

1
−5

2
−6

3
−7

6
7

7
6

1
5

2
4

3
3

4
2

5
1

1
69

2
59

3
49

4
39

5
29

6
19

7
9

w1

w2

w3

(b) End of iteration-1: C(w) = [6]

6

5.9−1

4
−1

5
−2

6
−3

7
−4

1
−5

2
−6

3
−7

6
7

7
6

1
5

2
4

3
3

4
2

5
1

1
69

2
59

3
49

4
39

5
29

6
19

7
9

w1

w2

w3

(c) End of iteration-2: C(w) = [6,1]

5.9

4−1

4
−1

5
−2

6
−3

7
−4

1
−5

2
−6

3
−7

6
7

7
6

1
5

2
4

3
3

4
2

5
1

1
69

2
59

3
49

4
39

5
29

6
19

7
9

w1

w2

w3

(d) End of iteration-3: C(w) = [6, 1,7]

Figure 6: Illustration of Algorithm 3 with w = [1, 1, 0.1]> and B = 3. The left plot for each
sub-figure shows the heap structure in the max-heap Q: the value in each rectangle denotes z, and
each index t is shown in a different color (red for 1, green for 2, and blue for 3). The sorted index
arrays are shown in the upper part of circles on the right plot for each sub-figure; for example,
s1[4] = 7, s2[1] = 6, and s3[5] = 5. The value in lower part of circles is the corresponding hjt;
for example, h71 = −4, h62 = 7, and h53 = 29. Three downward triangles denote the current
position of iters[t], t = 1, 2, 3. Figure 6(a) shows the status for each data data structure at the
beginning of Algorithm 3. Three pairs are pushed into Q: (−1 = h41w1, 1), (7 = h71w2, 2), and
(6.9 = h13w3, 3). Figures 6(b)-6(c) show the status in the end of the first and the second iterations
of the outer while-loop in Algorithm 3. In Figure 6(c), we show that at the third iteration, after
(z, t) = (6, 2)← Q.pop() is executed and 7 = iters[2].current() is appended into C(w), we need
to advance iters[2] twice because the index j = 1 has been included in C(w). Note that for this
example h1 is the candidate with the largest inner product value with w.

More Experimental Results

Figure 7: MIPS comparison on netflix and yahoo-music in terms of precision@1.

Figure 8: MIPS comparison on synthetic datasets with n ∈ 2{17,18,19,20} and k = 128 in terms of
precision@1. The datasets used to generate results are created with each entry drawn from a normal
distribution.

14

Algorithm 4 A pseudo code of a selection tree used for Greedy-MIPS.
class SelectionTree:

def constructor(w, k, iters) : · · ·O(k)

K̄ ← min
{

2i | 2i ≥ k
}

for i = 1, . . . , 2K̄:
buf[i]← (−∞, 0)

for t = 1, . . . , k:
j ← iters[t].current()
buf[K̄ + t]← (hjtwt, t)

for i = K̄, . . . , 1:
if buf[2i].first > buf[2i+ 1].first:

buf[i]← buf[2i]
else:

buf[i]← buf[2i+ 1]
def top(): return buf[1] · · ·O(1)
def updateValue(t, z): · · ·O(log k)
i← K̄ + t
buf[i]← (z, t)
while i > 1:

i← bi/2c
if buf[2i].first > buf[2i+ 1].first:

buf[i]← buf[2i]
else:

buf[i]← buf[2i+ 1]

Figure 9: MIPS Comparison on synthetic datasets with n = 218 and k ∈ 2{2,5,7,10} in terms of
precision@1. The datasets used to generate results on are created with each entry drawn from a
normal distribution.

Figure 10: MIPS comparison on netflix and yahoo-music in terms of precision@10.

15

Figure 11: MIPS comparison on synthetic datasets with n ∈ 2{17,18,19,20} and k = 128 in terms of
precision@10. The datasets used to generate results are created with each entry drawn from a normal
distribution.

Figure 12: MIPS Comparison on synthetic datasets with n = 218 and k ∈ 2{2,5,7,10} in terms of
precision@10. The datasets used to generate results on are created with each entry drawn from a
normal distribution.

Proofs of Theorems
Proof of Theorem 1
Proof. Let t1 = arg maxk

t=1 zj1t and t2 = arg maxk
t=1 zj2t. By the definition of t1, we have

π(j1, t1|w) < π(j1, t|w), ∀t 6= t1. Thus, (j1, t1) will be first entry among {(j1, 1), . . . , (j1, k)} to
be visited in the sequence corresponding to the joint ranking π(j, t|w). Similarly, (j2, t2) will be the
first visited entry among {(j2, 1,), . . . , (j2, k)}. We also have

π̄(j1|w) < π̄(j2|w)

⇒zj1t1 > zj2t2
⇒π(j1, t1|w) < π(j2, t2|w).

Thus, j1 will be included into C(w) before j2.

Proof of Theorem 2
Proof. By grouping these first Bk entries by the index t and applying the pigeonhole principle, we
know that there exists a group G such that it contains at least B entries. Because each entry in the
same group has a distinct j index, we know that the group G contains at least B distinct indices
j.

Proof of Theorem 3
Assumption 1. Z ∈ Rn×k satisfies zi,j ∼ U [a, b]. Since we can replace each zi,j by (zi,j −
a+b

2)/(b− a) without affecting our algorithm, we assume a = 0, b = 1 w.l.o.g.

Claim 1. The probability of picking up the correct candidate with one query is equivalent to:
pn,k = Pr(z1,1 ≥ zi,j ,∀i ∈ [n],∀j ∈ [k]

∣∣z1,1 ≥ z1,j ,∀j ∈ [k],&
∑k

j=1 z1,j ≥
∑k

j=1 zi,j ,∀i ∈
[n]) = Pr(π(1|z) = 1|π1(1|z) = 1, π̄(1|z) = 1).

Since our algorithm Greedy-MIPS only cares about the order of zij , i.e., πj(i|z), we could assume
w.o.l.g that π1(1|z) = 1, which means z11 is the largest value in matrix Z. Therefore we get the
claim.

16

Claim 2. For any a ∈ [0, 1],
∫ a

0

· · ·
∫ a

0︸ ︷︷ ︸
x1+···xk≥(k−1)a

(ka− x1 − · · · − xk)mdxk · · · dx1

=
am+1

m+ 1
(

k∑

i=0

(−a)i

Πk+1
j=2 (m+ j)

) ∼ am + 1

m+ 1

Proof of Claim 2. Denote st =
∑t

i=1 xi, t = 1, 2, · · · k, .
∫ a

0

· · ·
∫ a

0︸ ︷︷ ︸
sk≥(k−1)a

(ka− sk)mdxk · · · dx1

=

∫ a

0

∫ a

a−x1

· · ·
∫ a

(k−1)a−sk−1

(ka− sk)mdxk · · · dx1

=
1

m+ 1

(
am+1 −

−
∫ a

0

· · ·
∫ a

0︸ ︷︷ ︸
sk−1≥(k−2)a

((k − 1)a− sk−1)m+1dxk−1 · · · dx1

)

= · · ·
=

1

m+ 1
am+1 − 1

(m+ 1)(m+ 2)
am+2 + · · ·

−(−a)m+k 1

(m+ 1) · · · (m+ k)

=
am+1

m+ 1

(
1 +

k∑

i=1

(−a)i

Πi+1
j=2(m+ j)

)

∼ am + 1

m+ 1

In the last step, since m ≥ 1, a ≤ 1,
∣∣∣∣∣

k∑

i=1

(−a)i

Πi+1
j=2(m+ j)

)

∣∣∣∣∣ <
k∑

i=2

(−1)i

i!
< 1/e.

Therefore
am+1

m+ 1
(1 +

k∑

i=1

(−a)i

Πi+1
j=2(m+ j)

) ∈ am+1

m+ 1
[1− 1

e
, 1 +

1

e
]

Theorem 4. With Assumption 1, Greedy-MIPS picks up the correct candidate withinO(k log(n)n
1
k)

queries with high probability.

This theorem is equivalent to Theorem 3.

Proof of Theorem 4. Denote Ei as successfully picking up the correct candidate in i-th query, and
Ēi is its negate event. Notice Pr(Ei|Ē1, · · · Ēi−1) ≥ Pr(Ei) ≥ O(1

kn
−1/k). Therefore Pr(E1 ∪

E2 ∪ · · · ∪ Ei) ≥ 1− (1− pk,n)i Therefore Pr(Ē1 ∩ Ē2 · · · ∩ Ēi) ≤ (1− pn,k)i ≤ e−ipk,n .

There exists constant c, when i = c log n
pn,k

= c log nkn−
1
k ,

Pr(Success in i queries) ≥ 1−O(
1

n
).

17

Lemma 1. pn,k ≥ O(1
k

Γ(1+ 1
k)Γ(n)

Γ(n+ 1
k)

) ∼ 1
kn
−1/k as n→∞.

Proof.

pn,k = Pr(π1(1|z) = 1|π(1|z) = 1&π̄(1|z) = 1)

=
Pr(π1(1|z) = 1&π(1|z) = 1&π̄(1|z) = 1)

Pr(π(1|z) = 1&π̄(1|z) = 1)

, where Pr(π(1|z) = 1&π̄(1|z) = 1) = 1
kn , since π(1|z) = 1) and π̄(1|z) are two independent

events with probability 1
n and 1

k respectively.

Define l =
∑k

j=1 z1,j , l̄ = l − z1,1.

Pr(An,k, Bn,k)

=

∫ 1

0

· · ·
∫ z1,1

0

∫ z1,1

0

· · ·
∫ z1,1

0︸ ︷︷ ︸∑
j z2,j≤l

1dz2,k · · · dz2,1

n−1

dz1,k · · · dz1,1

>

∫ 1

0

· · ·
∫ z1,1

0︸ ︷︷ ︸
l≥(k−1)z1,1

z

k
1,1 −

∫ z1,1

0

· · ·
∫ z1,1

0︸ ︷︷ ︸∑
j z2,j≥l

1dz2,k · · · d2,1

n−1

dz1,k · · · dz1,1

=

∫ 1

0

· · ·
∫ z1,1

0︸ ︷︷ ︸
l≥(k−1)z1,1

[
zk1,1 −

(kz1,1 − l)k
k!

]n−1

dz1,k · · · dz1,1

=

∫ 1

0

∫ z1,1

0

· · ·
∫ z1,1

0︸ ︷︷ ︸
l̄≥(k−2)z1,1

n−1∑

i=0

z
k(n−1−i)
1,1 (−1)i

((k − 1)z1,1 − l̄)ki
(k!)i

×
(
n− 1

i

)
dz1,k · · · dz1,1

=

∫ 1

0

n−1∑

i=0

z
k(n−1−i)
1,1

(−1)i

(k!)i

(
n− 1

i

)
(

k−1∑

j=0

zj1,1

Πj+1
p=2(ki+ p)

)dz1,1

∼
n−1∑

i=0

(−1)i

(ki+ 1)(kn− k + 2)

(
n− 1

i

)
(k!)−i

The last two equations are from Claim 2.

Therefore pn,k ∼
∑n−1

i=0
(−1)i

ki+1

(
n−1
i

)
(k!)−i

Let fn(x) =
∑n

i=0(−1)ixki
(
n
i

)
1

ki+1 . Therefore pn,k = fn−1((k!)−1/k).
Then since

∂

∂x

(
xfn(x)

)
=

n∑

i=0

(−1)ixki
(
n

i

)
= (1− xk)n

Therefore pn,k ∼
∫ (k!)−1/k

0
(1 − xk)n−1dx Notice (k!)−1/k ≤ (kk)−1/k = 1/k, therefore

∫ (k!)−1/k

0
(1− xk)n−1dx ≥

∫ 1/k

0
(1− xk)n−1dx ≥ 1/k

∫ 1

0
(1− xk)n−1dx ∼ Γ(1+ 1

k)Γ(n)

Γ(n+ 1
k)

18

	Introduction
	Existing Approaches for Fast MIPS
	Budgeted MIPS
	Essential Components for Fast MIPS
	Budgeted MIPS: Problem Definition

	Greedy-MIPS
	Query-dependent Pre-processing
	Candidate Screening
	Connection to Sampling Approaches
	Theoretical Guarantee

	Experimental Results
	Experimental Settings
	Experimental Results

	Conclusions and Future Work
	More Details about Existing Approaches for Fast MIPS
	Approaches with Nearest Neighbor Search Reduction
	Sampling-based Approaches

	More Details about Greedy-MIPS
	A Motivating Example for Greedy-MIPS
	Greedy-MIPS with a Selection Tree

	More Experimental Results
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

