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Abstract. Matrix factorization, when the matrix has missing values, has become one
of the leading techniques for recommender systems. To handle web-scale datasets with
millions of users and billions of ratings, scalability becomes an important issue. Alter-
nating Least Squares (ALS) and Stochastic Gradient Descent (SGD) are two popular
approaches to compute matrix factorization, and there has been a recent flurry of ac-
tivity to parallelize these algorithms. However, due to the cubic time complexity in
the target rank, ALS is not scalable to large-scale datasets. On the other hand, SGD
conducts efficient updates but usually suffers from slow convergence that is sensitive to
the parameters. Coordinate descent, a classical optimization approach, has been used
for many other large-scale problems, but its application to matrix factorization for
recommender systems has not been thoroughly explored. In this paper, we show that
coordinate descent based methods have a more efficient update rule compared to ALS,
and have faster and more stable convergence than SGD. We study different update
sequences and propose the CCD++ algorithm, which updates rank-one factors one by
one. In addition, CCD++ can be easily parallelized on both multi-core and distributed
systems. We empirically show that CCD++ is much faster than ALS and SGD in both
settings. As an example, with a synthetic dataset containing 14.6 billion ratings, on
a distributed memory cluster with 64 processors, to deliver the desired test RMSE,
CCD++ is 49 times faster than SGD and 20 times faster than ALS. When the number
of processors is increased to 256, CCD++ takes only 16 seconds and is still 40 times
faster than SGD and 20 times faster than ALS.
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1. Introduction

In a recommender system, we want to learn a model from past incomplete rating
data such that each user’s preference over all items can be estimated with the
model. Matrix factorization was empirically shown to be a better model than
traditional nearest-neighbor based approaches in the Netflix Prize competition
and KDD Cup 2011 [1]. Since then there has been a great deal of work dedicated
to the design of fast and scalable methods for large-scale matrix factorization
problems [2, 3, 4].

Let A ∈ Rm×n be the rating matrix in a recommender system, where m
and n are the number of users and items, respectively. The matrix factorization
problem for recommender systems is

min
W∈Rm×k

H∈Rn×k

∑
(i,j)∈Ω

(Aij −wT
i hj)2 + λ

(
‖W‖2F + ‖H‖2F

)
, (1)

where Ω is the set of indices for observed ratings; λ is the regularization pa-
rameter; ‖ · ‖F denotes the Frobenius norm; wT

i and hTj are the ith and the
jth row vectors of the matrices W and H, respectively. The goal of problem
(1) is to approximate the incomplete matrix A by WHT , where W and H are
rank-k matrices. Note that the well-known rank-k approximation by Singular
Value Decomposition (SVD) cannot be directly applied to (1) as A is not fully
observed.

Regarding problem (1), we can interpret wi and hj as the length-k feature
vectors for user i and item j. The interaction/similarity between the ith user
and the jth item is measured by wT

i hj . As a result, solving problem (1) can be
regarded as a procedure to find a “good” representation for each user and item
such that the interaction between them can well approximate the real rating
scores.

In recent recommender system competitions, we observe that alternating least
squares (ALS) and stochastic gradient descent (SGD) have attracted much at-
tention and are widely used for matrix factorization [2, 5]. ALS alternatively
switches between updating W and updating H while fixing the other factor. Al-
though the time complexity per iteration is O(|Ω|k2 + (m+n)k3), [2] shows that
ALS is well suited for parallelization. It is then not a coincidence that ALS is
the only parallel matrix factorization implementation for collaborative filtering
in Apache Mahout.1

As mentioned in [3], SGD has become one of the most popular methods for
matrix factorization in recommender systems due to its efficiency and simple
implementation. The time complexity per iteration of SGD is O(|Ω|k), which is
lower than ALS. However, as compared to ALS, SGD needs more iterations to
obtain a good enough model, and its performance is sensitive to the choice of
the learning rate. Furthermore, unlike ALS, parallelization of SGD is challenging,
and a variety of schemes have been proposed to parallelize it [6, 7, 8, 9, 10].

This paper aims to design an efficient and easily parallelizable method for
matrix factorization in large-scale recommender systems. Recently, [11] and [12]
have showed that coordinate descent methods are effective for nonnegative ma-
trix factorization (NMF). This motivates us to investigate coordinate descent

1 http://mahout.apache.org/
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Table 1. Comparison between CCD++ and other state-of-the-art methods for matrix factor-
ization

ALS SGD CCD++

Time complexity per iteration O(|Ω|k2 + (m+ n)k3) O(|Ω|k) O(|Ω|k)
Convergence behavior Stable Sensitive to parameters Stable
Scalability on distributed systems Not scalable Scalable Scalable

approaches for (1). In this paper, we propose a coordinate descent based method,
CCD++, which has fast running time and can be easily parallelized to handle
data of various scales. Table 1 shows a comparison between the state-of-the-art
approaches and our proposed algorithm CCD++. The main contributions of this
paper are:

– We propose a scalable and efficient coordinate descent based matrix factoriza-
tion method CCD++. The time complexity per iteration of CCD++ is lower
than that of ALS, and it achieves faster convergence than SGD.

– We show that CCD++ can be easily applied to problems of various scales on
both shared-memory multi-core and distributed systems.

Notation. The following notation is used throughout the paper. We denote
matrices by uppercase letters and vectors by bold-faced lowercase letters. Aij
denotes the (i, j) entry of the matrix A. We use Ωi to denote the column indices
of observed ratings in the ith row, and Ω̄j to denote the row indices of observed
ratings in the jth column. We denote the ith row of W by wT

i , and the tth column
of W by w̄t ∈ Rm:

W =


...

wT
i
...

 = [· · · w̄t · · ·] .

Thus, both wit (i.e., the tth element of wi) and w̄ti (i.e., the ith element of w̄t)
denote the same entry, Wit. For H, we use similar notation hj and h̄t.

The rest of the paper is organized as follows. An introduction to ALS and
SGD is given in Section 2. We then present our coordinate descent approaches
in Section 3. In Section 4, we present strategies to parallelize CCD++ and con-
duct scalability analysis under different parallel computing environments. We
then present experimental results in Section 5. Finally, we show an extension of
CCD++ to handle L1-regularization in Section 6 and conclude in Section 7.

2. Related Work

As mentioned in [3], the two standard approaches to approximate the solution of
problem (1) are ALS and SGD. In this section we briefly introduce these methods
and discuss recent parallelization approaches.
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2.1. Alternating Least Squares

Problem (1) is intrinsically a non-convex problem; however, when fixing either W
orH, (1) becomes a quadratic problem with a globally optimal solution. Based on
this idea, ALS alternately switches between optimizing W while keeping H fixed,
and optimizing H while keeping W fixed. Thus, ALS monotonically decreases
the objective function value in (1) until convergence.

Under this alternating optimization scheme, (1) can be further separated
into many independent least squares subproblems. Specifically, if we fix H and
minimize over W , the optimal w∗i can be obtained independently of other rows
of W by solving the regularized least squares subproblem:

minwi

∑
j∈Ωi

(Aij −wT
i hj)2 + λ‖wi‖2, (2)

which leads to the closed form solution

w∗i = (HT
Ωi
HΩi

+ λI)−1HTai, (3)

where HT
Ωi

is the sub-matrix with columns {hj : j ∈ Ωi}, and aTi is the ith row of
A with missing entries filled by zeros. To compute each w∗i , ALS needs O(|Ωi|k2)
time to form the k × k matrix HT

Ωi
HΩi

and additional O(k3) time to solve the
least squares problem. Thus, the time complexity of a full ALS iteration (i.e.,
updating W and H once) is O(|Ω|k2 + (m+ n)k3).

In terms of parallelization, [2] points out that ALS can be easily parallelized
in a row-by-row manner as each row of W or H can be updated independently.
However, in a distributed system, when W or H exceeds the memory capacity of
a computation node, the parallelization of ALS becomes more challenging. More
details are discussed in Section 4.3.

2.2. Stochastic Gradient Descent

Stochastic gradient descent (SGD) is widely used in many machine learning
problems [13], and it has also been shown to be effective for matrix factorization
[3]. In SGD, for each update, a rating (i, j) is randomly selected from Ω, and the
corresponding variables wi and hj are updated by

wi ← wi − η
(

λ

|Ωi|
wi −Rijhj

)
,

hj ← hj − η
(

λ

|Ω̄j |
hj −Rijwi

)
,

where Rij = Aij −wT
i hj , and η is the learning rate. For each rating Aij , SGD

needs O(k) operations to update wi and hj . If we define |Ω| consecutive updates
as one iteration of SGD, the time complexity per SGD iteration is thus only
O(|Ω|k). As compared to ALS, SGD appears to be faster in terms of the time
complexity for one iteration, but typically it needs more iterations than ALS to
achieve a good enough model.

However, conducting several SGD updates in parallel directly might raise an
overwriting issue as the updates for the ratings in the same row or the same



Parallel Matrix Factorization for Recommender Systems 5

Fig. 1. Comparison between ALS, DSGD, and HogWild on the movielens10m dataset with
k = 40 on a 8-core machine (-s1 and -s2 stand for different initial learning rates).

column of A involve the same variables. Moreover, traditional convergence anal-
ysis of standard SGD mainly depends on its sequential update property. These
issues make parallelization of SGD a challenging task. Recently, several update
schemes to parallelize SGD have been proposed. For example, “delayed updates”
are proposed in [6] and [14], while [9] uses a bootstrap aggregation scheme. A
lock-free approach called HogWild is investigated in [10], in which the overwrit-
ing issue is ignored based on the intuition that the probability of updating the
same row of W or H is small when A is sparse. The authors of [10] also show that
HogWild is more efficient than the “delayed update” approach in [6]. For matrix
factorization, [7] and [8] propose Distributed SGD (DSGD)2 which partitions A
into blocks and updates a set of independent blocks in parallel at the same time.
Thus, DSGD can be regarded as an exact SGD implementation with a specific
ordering of updates.

Another issue with SGD is that the convergence is highly sensitive to the
learning rate η. In practice, the initial choice and adaptation strategy for η
are crucial issues when applying SGD to matrix factorization problems. As the
learning rate issue is beyond the scope of this paper, here we only briefly discuss
how the learning rate is adjusted in HogWild and DSGD. In HogWild [10], η is
reduced by multiplying a constant β ∈ (0, 1) at each iteration. In DSGD, [7] pro-
poses using the “bold driver” scheme, in which, at each iteration, η is increased
by a small proportion (5% is used in [7]) when the function value decreases; when

2 In [8], the name “Jellyfish” is used
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the value increases, η is drastically decreased by a large proportion (50% is used
in [7]).

2.3. Experimental Comparison

Next, we compare various parallel matrix factorization approaches: ALS,3 DSGD,4
and HogWild5 on the movielens10m dataset with k = 40 and λ = 0.1 (more de-
tails on the dataset are given later in Table 2 of Section 5). Here we conduct the
comparison on an 8-core machine (see Section 5.2 for the detailed description of
the experimental environment). All 8 cores are utilized for each method.6 Figure
1 shows the comparison; “-s1” and “-s2” denote two choices of the initial η.7 The
reader might notice that the performance difference between ALS and DSGD is
not as large as in [7]. The reason is that the parallel platform used in our com-
parison is different from that used in [7], which is a modified Hadoop distributed
system.

In Figure 1, we first observe that the performance of both DSGD and Hog-
Wild is sensitive to the choice of η. In contrast, ALS, a parameter-free approach,
is more stable, albeit it has higher time complexity per iteration than SGD. Next,
we can see that DSGD converges slightly faster than HogWild with both initial
η’s. Given the fact that the computation time per iteration of DSGD is similar to
that of HogWild (as DSGD is also a lock-free scheme), we believe that there are
two possible explanations: 1) the “bold driver” approach used in DSGD is more
stable than the exponential decay approach used in HogWild; 2) the variable
overwriting might slow down convergence of HogWild.

3. Coordinate Descent Approaches

Coordinate descent is a classic and well-studied optimization technique [15, Sec-
tion 2.7]. Recently it has been successfully applied to various large-scale problems
such as linear SVMs [16], maximum entropy models [17], NMF problems [11, 12],
and sparse inverse covariance estimation [18]. The basic idea of coordinate de-
scent is to update a single variable at a time while keeping others fixed. There
are two key components in coordinate descent methods: one is the update rule
used to solve each one-variable subproblem, and the other is the update sequence
of variables.

In this section, we apply coordinate descent to attempt to solve (1). We first
form the one-variable subproblem and derive the update rule. Based on the rule,
we investigate two sequences to update variables: item/user-wise and feature-
wise.

3 Intel MKL is used in our implementation of ALS.
4 We implement a multi-core version of DSGD according to [7].
5 HogWild is downloaded from http://research.cs.wisc.edu/hazy/victor/Hogwild/ and
modified to start from the same initial point as ALS and DSGD.
6 In HogWild, seven cores are used for SGD updates, and one core is used for random shuffle.
7 for -s1, initial η = 0.001; for -s2, initial η = 0.05.
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3.1. The Update Rule

If only one variable wit is allowed to change to z while fixing all other variables,
we need to solve the following one-variable subproblem:

min
z

f(z) =
∑
j∈Ωi

(
Aij − (wT

i hj − withjt)− zhjt
)2

+ λz2. (4)

As f(z) is a univariate quadratic function, the unique solution z∗ to (4) can
be easily found:

z∗ =

∑
j∈Ωi

(Aij −wT
i hj + withjt)hjt

λ+
∑
j∈Ωi

h2
jt

. (5)

Direct computation of z∗ via (5) from scratch takes O(|Ωi|k) time. For large k,
we can accelerate the computation by maintaining the residual matrix R,

Rij ≡ Aij −wT
i hj , ∀(i, j) ∈ Ω.

In terms of Rij , the optimal z∗ can be computed by:

z∗ =

∑
j∈Ωi

(Rij + withjt)hjt
λ+

∑
j∈Ωi

h2
jt

. (6)

When R is available, computing z∗ by (6) only costs O(|Ωi|) time. After z∗ is
obtained, wit and Rij , ∀j ∈ Ωi, can also be updated in O(|Ωi|) time via

Rij ← Rij − (z∗ − wit)hjt, ∀j ∈ Ωi, (7)
wit ← z∗. (8)

Note that (7) requires O(|Ωi|) operations. Therefore, if we maintain the residual
matrix R, the time complexity of each single variable update is reduced from
O(|Ωi|k) to O(|Ωi|). Similarly, the update rules for each variable in H, hjt for
instance, can be derived as

Rij ← Rij − (s∗ − hjt)wit, ∀i ∈ Ω̄j , (9)
hjt ← s∗, (10)

where s∗ can be computed by either:

s∗ =

∑
i∈Ω̄j

(Aij −wT
i hj + withjt)wit

λ+
∑
i∈Ω̄j

w2
it

, (11)

or

s∗ =

∑
i∈Ω̄j

(Rij + withjt)wit
λ+

∑
i∈Ω̄j

w2
it

. (12)

With update rules (7)-(10), we are able to apply any update sequence over
variables in W and H. We now investigate two main sequences: item/user-wise
and feature-wise update sequences.

3.2. Item/User-wise Update: CCD

First, we consider the item/user-wise update sequence, which updates the vari-
ables corresponding to either an item or a user at a time.
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ALS can be viewed as a method which adopts this update sequence. As
mentioned in Section 2.1, ALS switches the updating between W and H. To
update W when fixing H or vice versa, ALS solves many k-variable least squares
subproblems. Each subproblem corresponds to either an item or a user. That is,
ALS cyclically updates variables with the following sequence:

W︷ ︸︸ ︷
w1, . . . ,wm,

H︷ ︸︸ ︷
h1, . . . ,hn .

In ALS, the update rule in (3) involves forming a k × k Hessian matrix
and solving a least squares problem which takes O(k3) time. However, it is not
necessary to solve all subproblems (2) exactly in the early stages of the algorithm.
Thus, [19] proposed a cyclic coordinate descent method (CCD), which is similar
to ALS with respect to the update sequence. The only difference lies in the
update rules. In CCD, wi is updated by applying (8) over all elements of wi

(i.e., wi1, . . . , wik) once. The entire update sequence of one iteration in CCD is

W︷ ︸︸ ︷
w11, . . . , w1k︸ ︷︷ ︸

w1

, . . . , wm1, . . . , wmk︸ ︷︷ ︸
wm

,

H︷ ︸︸ ︷
h11, . . . , h1k︸ ︷︷ ︸

h1

, . . . , hn1, . . . , hnk︸ ︷︷ ︸
hn

. (13)

Algorithm 1 describes the CCD procedure with T iterations. Note that if we
set the initial W to 0, then the initial residual matrix R is exactly equal to A,
so no extra effort is needed to initialize R.

As mentioned in Section 3.1, the update cost for each variable in W and
H, taking wit and hjt for instance, is just O(|Ωi|) or O(|Ω̄j |). If we define one
iteration in CCD as updating all variables in W and H once, the time complexity
per iteration for CCD is thus

O

∑
i

|Ωi|+
∑
j

|Ω̄j |

 k

 = O(|Ω|k).

We can see that an iteration of CCD is faster than an iteration of ALS when
k > 1, because ALS requires O(|Ω|k2 + (m + n)k3) time at each iteration. Of
course, each iteration of ALS makes more progress; however, at early stages of
this algorithm, it is not clear that this extra progress helps.

Instead of cyclically updating through wi1, . . . , wik, one may think of a greedy
update sequence that sequentially updates the variable that decreases the objec-
tive function the most. In [12], a greedy update sequence is applied to solve the
NMF problem in an efficient manner by utilizing the property that all subprob-
lems in NMF share the same Hessian. However, unlike NMF, each subproblem
(2) of problem (1) has a potentially different Hessian as Ωi1 6= Ωi2 for i1 6= i2 in
general. Thus, if the greedy coordinate descent (GCD) method proposed in [12]
is applied to solve (1), m different Hessians are required to update W , and n Hes-
sians are required to update H. The computation of Hessian for wi and hj needs
O(|Ωi|k2) and O(|Ω̄j |k2) to compute, respectively. The total time complexity of
GCD to update W and H once is thus O(|Ω|k2) operations per iteration, which
is the same complexity as ALS.
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Algorithm 1 CCD Algorithm xx
Input: A, W , H, λ, k, T

1: Initialize W = 0 and R = A.
2: for iter = 1, 2, . . . , T do
3: for i = 1, 2, . . . ,m do . Update W .
4: for t = 1, 2, . . . , k do
5: Obtain z∗ using (6).
6: Update R and wit using (7) and (8).
7: end for
8: end for
9: for j = 1, 2, . . . , n do . Update H.

10: for t = 1, 2, . . . , k do
11: Obtain s∗ using (12).
12: Update R and hjt using (9) and (10).
13: end for
14: end for
15: end for

Algorithm 2 CCD++ Algorithm
Input: A, W , H, λ, k, T

1: Initialize W = 0 and R = A.
2: for iter = 1, 2, . . . do
3: for t = 1, 2, . . . , k do
4: Construct R̂ by (16).
5: for inneriter = 1, 2, . . . , T do . T CCD iterations for (17).
6: Update u by (18).
7: Update v by (19).
8: end for
9: Update (w̄t, h̄t) and R by (20) and (21).

10: end for
11: end for

3.3. Feature-wise Update: CCD++

The factorization WHT can be represented as a summation of k outer products:

A ≈WHT =
k∑
t=1

w̄th̄
T
t , (14)

where w̄t ∈ Rm is the tth column of W , and h̄t ∈ Rn is the tth column of H.
From the perspective of the latent feature space, w̄t and h̄t correspond to the
tth latent feature.

This leads us to our next coordinate descent method, CCD++. At each time,
we select a specific feature t and conduct the update

(w̄t, h̄t)← (u∗,v∗),

where (u∗,v∗) is obtained by solving the following subproblem:

min
u∈Rm,v∈Rn

∑
(i,j)∈Ω

(
Rij + w̄tih̄tj − uivj

)2 + λ(‖u‖2 + ‖v‖2), (15)
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where Rij = Aij −wT
i hj is the residual entry for (i, j). If we define

R̂ij = Rij + w̄tih̄tj , ∀(i, j) ∈ Ω, (16)

(15) can be rewritten as:

min
u∈Rm,v∈Rn

∑
(i,j)∈Ω

(R̂ij − uivj)2 + λ(‖u‖2 + ‖v‖2), (17)

which is exactly the rank-one matrix factorization problem (1) for the matrix
R̂. Thus we can apply CCD to (17) to obtain an approximation by alternatively
updating u and updating v. When the current model (W,H) is close to an
optimal solution to (1), (w̄t, h̄t) should be also very close to an optimal solution
to (17). Thus, the current (w̄t, h̄t) can be a good initialization for (u,v). The
update sequence for u and v is

u1, u2, . . . , um, v1, v2, . . . , vn.

When the rank is equal to one, (5) and (6) have the same complexity. Thus,
during the CCD iterations to update ui and vj , z∗ and s∗ can be directly obtained
by (5) and (11) without additional residual maintenance. The update rules for
u and v at each CCD iteration become as follows:

ui ←
∑
j∈Ωi

R̂ijvj

λ+
∑
j∈Ωi

v2
j

, i = 1, . . . ,m, (18)

vj ←
∑
i∈Ω̄j

R̂ijuj

λ+
∑
i∈Ω̄j

u2
i

, j = 1, . . . , n. (19)

After obtaining (u∗,v∗), we can update (w̄t, h̄t) and R by

(w̄t, h̄t)← (u∗,v∗). (20)

Rij ← R̂ij − u∗i v∗j , ∀(i, j) ∈ Ω, (21)

The update sequence for each outer iteration of CCD++ is

w̄1, h̄1, . . . , w̄t, h̄t, . . . , w̄k, h̄k. (22)

We summarize CCD++ in Algorithm 2. A similar procedure with the feature-
wise update sequence is also used in [20] to avoid the over-fitting issue in recom-
mender systems.

Each time when the tth feature is selected, CCD++ consists of the following
steps to update (w̄t, h̄t): constructing O(|Ω|) entries of R̂, conducting T CCD
iterations to solve (17), updating (w̄t, h̄t) by (20), and maintaining |Ω| residual
entries by (21). Since each CCD iteration in Algorithm 2 costs only O(|Ω|) op-
erations, the time complexity per iteration for CCD++, where all k features are
updated by T CCD iterations, is O(|Ω|kT ).

At first glance, the only difference between CCD++ and CCD appears to be
their different update sequence. However, such difference might affect the conver-
gence. A similar update sequence has also been considered for NMF problems,
and [21] observes that such a feature-wise update sequence leads to faster conver-
gence than other sequences on moderate-scale matrices. However, for large-scale
sparse NMF problems, when all entries are known, the residual matrix becomes
a m × n dense matrix, which is too large to maintain. Thus [11, 12] utilize the
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property that all subproblems share a single Hessian, where there are no miss-
ing values, to develop techniques that allow efficient variable updates without
maintenance of the residual.

Due to the large number of missing entries in A, problem (1) does not share
the above favorable property. However, as a result of the sparsity of observed
entries, the residual maintenance is affordable for problem (1) with a large-
scale A. Furthermore, the feature-wise update sequence might even bring faster
convergence as it does for NMF problems.

3.4. Exact Memory Storage and Operation Count

Based on the analysis in Sections 3.2 and 3.3, we know that, at each iteration,
CCD, and CCD++ share the same asymptotic time complexity, O(|Ω|k). To
clearly see the difference between these two methods, we do an exact count of
the number of floating operations (flops) for each method.

Rating Storage. An exact count of the number of operations depends on
how the residual matrix (R) of size m × n is stored in memory. The update
rules used in CCD and CCD++ require frequent access to entries of R. If both
observed and missing entries of R can be stored in a dense format, random
access to any entry Rij can be regarded as a constant time operation. However,
when m and n are large, computer memory is usually not enough to store all
m × n entries of R. As |Ω| � m × n in most real-word recommender systems,
storing only observed entries of R (i.e., Ω) in a sparse matrix format is a more
feasible way to handle large scale recommender systems. Two commonly used
formats for sparse matrices are considered: Compressed Row Storage (CRS) and
Compressed Column Storage (CCS). In CRS, observed entries of the same row
are stored adjacent to each other in the memory, while in CCS, observed entries
of the same column are stored adjacent to each other.

The update rules used in CCD and CCD++ access R in two different fashions.
Rules such as (6) and (7) in Algorithm 1 and (18) in Algorithm 2 need to access
observed entries of a particular row (i.e., Ωi) fast. In this situation, CRS provides
faster access than CCS as observed entries of the same row are located next to
each other. On the other hand, rules such as (12) and (9) in Algorithm 1 and (19)
in Algorithm 2 require fast accesses to observed entries of a particular column
(i.e., Ω̄j). CCS is thus more favorable for such rules.

In fact, if only one copy R is stored in either CCS or CRS format, the update
rules can no longer be computed in O(|Ωi|) or O(|Ω̄j |) time. For instance, assume
only a copy of R in CCS is available, locating the observed entries of a single
row (i.e., Rij ∀j ∈ Ωi) requires at least n operations. In the worst case, it might
even costs |Ω| operations to identify the locations of |Ωi| entries. Thus, there is
no way to compute rules such as (6) and (18) in O(Ωi) time. In contrast, if a
copy of R in CRS is also available, the time to access the observed entries of row
i is only |Ωi| operations. As a result, to efficiently access both rows and columns
in R, in both CCD and CCD++, two copies of R are maintained in the memory:
one is in CRS format, and the other is in CCS format.

Another concern is about the storage of R̂ in CCD++. Since R̂ exists only
when solving each subproblem (17), there is no need to allocate extra storage for
R̂. In fact, R̂ and R can share the same memory in the following implementation
of Algorithm 2:
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– For rule (16) in Line 4, reuse R to store R̂:

Rij ← Rij + w̄tih̄tj , ∀(i, j) ∈ Ω,

– For rules (18) and (19), use R to update u and v.
– For rule (21) in Line 9, use the following to update the real “residual”:

Rij ← Rij − w̄tih̄tj , ∀(i, j) ∈ Ω.

Operation Count. In CCD, the update rules (6) and (12) take about 6|Ωi|
and 6|Ω̄j | flops, respectively. For update rule (7), it takes about 3|Ωi| flops to
compute valuesRij , ∀(i, j) ∈ Ωi in CRS format and store those values to the copy
of the residual in CCS format. Similarly, update rule (9) takes about 3|Ω̄j |flops to
update the residual R. As a result, one CCD iteration, where (m+n)k variables
are updated, requires( m∑

i=1

(6 + 3)|Ωi|

)
+

 n∑
j=1

(6 + 3)|Ω̄j |

× k = 18|Ω|k flops. (23)

In CCD++, the construction of R̂ (16) and the residual (21) require 2× 2|Ω|
flops due to the two copies of R. The update rules (18) and (19) cost 4|Ωi| and
4|Ω̄j | flops, respectively. Therefore, one CCD++ iteration with T inner CCD
iterations, where (m+ n)kT variables are updated, takes4|Ω|+ T

 m∑
i=1

4|Ωi|+
n∑
j=1

4|Ω̄j |

+ 4|Ω|

× k = 8|Ω|k(T + 1) flops. (24)

Based on the above counting results, if T = 1, where the same number of
variables are updated in one iteration of both CCD and CCD++, CCD++ is
1.125 faster than CCD. If T > 1, the ratio between the flops required by CCD
and CCD++ to update the same number of variables, 9T

4(T+1) , can be even larger.

3.5. An Adaptive Technique to Accelerate CCD++

In this section, we investigate how to accelerate CCD++ by controlling T , the
number of inner CCD iterations for each subproblem (17). The approaches
[11, 21], which apply the feature-wise update sequence to solve NMF prob-
lems, consider only one iteration for each subproblem. However, CCD++ can
be slightly more efficient when T > 1 due to the benefit brought by the “delayed
residual update.” Note that R and R̂ are fixed during CCD iterations for each
rank-one approximation (17). Thus, the construction of R̂ (16) and the residual
update (21) are only conducted once for each subproblem. Based on the exact
operation counts in (24), to update (m+n)kT variables, (16) and (21) contribute
8|Ω|k flops, while (18) and (19) contribute 8|Ω|kT flops. Therefore, for CCD++,
the ratio of the computation effort spend on the residual maintenance over that
spent on real variable updating is 1

T . As a result, given the same number of
variable updates, CCD++ with T CCD iterations is

flops of T CCD++ iterations with 1 CCD iteration
flops of 1 CCD++ iterations with T CCD iterations

=
8|Ω|k(1 + 1)T
8|Ω|k(T + 1)

=
2T
T + 1



Parallel Matrix Factorization for Recommender Systems 13

times faster than CCD++ with only one CCD iteration. Moreover, the more
CCD iterations we use, the better the approximation to subproblem (17). Hence,
a direct approach to accelerate CCD++ is to increase T . On the other hand, a
large and fixed T might result in too much effort on a single subproblem.

We propose a technique to adaptively determine when to stop CCD iterations
based on the relative function value reduction at each CCD iteration. At each
outer iteration of CCD++, we maintain the maximal function value reduction
from past CCD iterations, dmax. Once the function value reduction at the current
CCD iteration is less than εdmax for some small positive ratio ε, such as 10−3,
we stop CCD iterations, update the residual by (21), and switch to the next
subproblem. It is not hard to see that the function value reduction at each
CCD iteration for subproblem (17) can be efficiently obtained by accumulating
reductions from the update of each single variable. For example, updating ui to
the optimal u∗i of

min
ui

f(ui) =
∑
j∈Ωi

(R̂ij − uivj)2 + λu2
i ,

decreases the function by

f(ui)− f(u∗i ) = (u∗i − ui)2

λ+
∑
j∈Ωi

v2
j

 ,

where the second term is exactly the denominator of the update rule (18). As a
result, the function value reduction can be obtained without extra effort.

Next we show an empirical comparison between CCD and CCD++, where we
include four settings with the netflix dataset on a machine with enough memory:

– CCD: item/user-wise CCD,
– CCD++T1: CCD++ with fixed T = 1,
– CCD++T5: CCD++ with fixed T = 5,
– CCD++F: CCD++ with our adaptive approach to control T based on the

function value reduction (ε = 10−3 is used).

In Figure 2, we clearly observe that the feature-wise update approach CCD++,
even when T = 1, is faster than CCD, which confirms our analysis above and the
observation for NMF in [21]. We also observe that larger T improves CCD++
in the early stages, though it also results in too much effort during some periods
(e.g., the period from 100s to 180s in Figure 2). Such periods suggest that an
early termination might help. We also notice that our technique to adaptively
control T can slightly shorten such periods and improve the performance.

4. Parallelization of CCD++

With the exponential growth of dyadic data on the web, scalability becomes an is-
sue when applying state-of-the-art matrix factorization approaches to large-scale
recommender systems. Recently, there has been growing interest in addressing
the scalability problem by using parallel and distributed computing. Both CCD
and CCD++ can be easily parallelized. Due to the similarity with ALS, CCD
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Fig. 2. Comparison between CCD and CCD++ on netflix dataset. Clearly, CCD++, the
feature-wise update approach, is seen to have faster convergence than CCD, the item/user-
wise update approach.

can be parallelized in the same way as ALS in [7]. For CCD++, we propose two
versions: one version for multi-core shared memory systems and the other for
distributed systems.

It is important to select an appropriate parallel environment based on the
scale of the recommender system. Specifically, when the matrices A, W , and H
can be loaded in the main memory of a single machine, and we consider a dis-
tributed system as the parallel environment, the communication among machines
might dominate the entire procedure. In this case, a multi-core shared memory
system is a better parallel environment. However, when the data/variables ex-
ceed the memory capacity of a single machine, a distributed system, in which
data/variables are distributed across different machines, is required to handle
problems of this scale. In the following sections, we demonstrate how to paral-
lelize CCD++ under both these parallel environments.

4.1. CCD++ on Multi-core Systems

In this section we discuss the parallelization of CCD++ under a multi-core shared
memory setting. If the matrices A, W , and H fit in a single machine, CCD++
can achieve significant speedup by utilizing all cores available on the machine.

The key component in CCD++ that requires parallelization is the compu-
tation to solve subproblem (17). In CCD++, the approximate solution to the
subproblem is obtained by updating u and v alternately. When v is fixed, from
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(18), each variable ui can be updated independently. Therefore, the update to u
can be divided into m independent jobs which can be handled by different cores
in parallel.

Given a machine with p cores, we define S = {S1, . . . , Sp} as a partition
of row indices of W , {1, . . . ,m}. We decompose u into p vectors u1,u2, . . . ,up,
where ur is the sub-vector of u corresponding to Sr. A simple strategy is to make
equal-sized partitions (i.e., |S1| = |S2| = · · · = |Sp| = m/p). The workload on
the rth core to update ur equals

∑
i∈Sr

4|Ωi|, which is not the same for all cores.
As a result, this strategy leads to load imbalance, which reduces core utilization.
An ideal partition can be obtained by solving

min
S

(
p

max
r=1

∑
i∈Sr

|Ωi|

)
−

(
p

min
r=1

∑
i∈Sr

|Ωi|

)
,

which is a known NP-hard problem. Hence, for multi-core parallelization, instead
of being assigned to a fixed core, we assign jobs dynamically based on the avail-
ability of each core. When a core finishes a small job, it can always start a new job
without waiting for other cores. Such dynamic assignment usually achieves good
load balance on multi-core machines. Most multi-core libraries (e.g., OpenMP8

and Intel TBB9) provide a simple interface to conduct this dynamic job assign-
ment. Thus, from now, partition Sr will refer to the indices assigned to the rth

core as a result of this dynamic assignment. Such an approach can be also applied
to update v and the residual R.

We now provide the details. At the beginning for each subproblem, each core
c constructs R̂ by

R̂ij ← Rij + w̄tih̄tj , ∀(i, j) ∈ ΩSr
, (25)

where ΩSr
=
⋃
i∈Sr
{(i, j) : j ∈ Ωi}. Each core r then

updates ui ←
∑
j∈Ωi

R̂ijvj

λ+
∑
j∈Ωi

v2
j

∀i ∈ Sr. (26)

Updating H can be parallelized in the same way with G = {G1, . . . , Gp}, which
is a partition of row indices of H, {1, . . . , n}. Similarly, each core r

updates vj ←
∑
i∈Ω̄j

R̂ijui

λ+
∑
i∈Ωi

u2
i

∀j ∈ Gr. (27)

As all cores on the machine share a common memory space, no communication
is required for each core to access the latest u and v. After obtaining (u∗,v∗),
we can also update the residual R and (w̄r

t , h̄
r
t ) in parallel by assigning core r

to perform the update:

(w̄r
t , h̄

r
t )← (ur,vr). (28)

Rij ← R̂ij − w̄tih̄tj , ∀(i, j) ∈ ΩSr
, (29)

We summarize our parallel CCD++ approach in Algorithm 3.

8 http://openmp.org/
9 http://threadingbuildingblocks.org/
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Algorithm 3 Parallel CCD++ on multi-core systems
Input: A, W , H, λ, k, T

1: Initialize W = 0 and R = A.
2: for iter = 1, 2, . . . , do
3: for t = 1, 2, . . . , k do
4: Parallel: core r constructs R̂ using (25).
5: for inneriter = 1, 2, . . . , T do
6: Parallel: core r updates ur using (26).
7: Parallel: core r updates vr using (27).
8: end for
9: Parallel: core r updates w̄r

t and h̄
r
t using (28).

10: Parallel: core r updates R using (29).
11: end for
12: end for

Algorithm 4 Parallel CCD++ on distributed systems
Input: A, W , H, λ, k, T

1: Initialize W = 0 and R = A.
2: for iter = 1, 2, . . . do
3: for t = 1, 2, . . . , k do
4: Broadcast: machine r broadcasts w̄r

t and h̄
r
t .

5: Parallel: machine r constructs R̂ using (30).
6: for inneriter = 1, 2, . . . T do
7: Parallel: machine r updates ur using (26).
8: Broadcast: machine r broadcasts ur.
9: Parallel: machine r updates vr using (27).

10: Broadcast: machine r broadcasts vr.
11: end for
12: Parallel: machine r updates w̄r

t , h̄
r
t using (28).

13: Parallel: machine r updates R using (31).
14: end for
15: end for

4.2. CCD++ on Distributed Systems

In this section, we investigate the parallelization of CCD++ when the matrices
A, W , and H exceed the memory capacity of a singe machine. To avoid fre-
quent access from disk, we consider handling these matrices with a distributed
system, which connects several machines with their own computing resources
(e.g., CPUs and memory) via a network. The algorithm to parallelize CCD++
on a distributed system is similar to the multi-core version of parallel CCD++
introduced in Algorithm 3. The common idea is to enable each machine/core to
solve subproblem (17) and update a subset of variables and residual in parallel.

When W and H are too large to fit in memory of a single machine, we have to
divide them into smaller components and distribute them to different machines.
There are many ways to divide W and H. In the distributed version of parallel
CCD++, assuming that the distributed system is composed of p machines, we
consider p-way row partitions for W and H: S = {S1, . . . , Sp} is a partition of
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the row indices of W ; G = {G1, . . . , Gp} is a partition of the row indices of H.
We further denote the sub-matrices corresponding to Sr and Gr by W r and Hr,
respectively. In the distributed version of CCD++, machine r is responsible for
the storage and the update of W r and Hr. Note that the dynamic approach to
assign jobs in Section 4.1 cannot be applied here because not all variables and
ratings are available on all machines. Partitions S and G should be determined
prior to any computation.

Typically, the memory required to store the residual R is much larger than
for W and H, thus we should avoid communication of R. Here we describe an
arrangement of R on a distributed system such that all updates in CCD++
can be done without any communication of the residual. As mentioned above,
machine r is in charge of updating variables in W r and Hr. From the update
rules of CCD++, we can see that values Rij , ∀(i, j) ∈ ΩSr

, are required to
update variables in W r, while values Rij , ∀(i, j) ∈ Ω̄Gr , are required to update
Hr, where ΩSr

=
⋃
i∈Sr
{(i, j) : j ∈ Ωi}, and Ω̄Gr

=
⋃
j∈Gr
{(i, j) : i ∈ Ω̄j}.

Thus, the following entries of R should be easily accessible from machine r:

Ωr = ΩSr
∪ Ω̄Gr

= {(i, j) : i ∈ Sr or j ∈ Gr}.
Thus, only entries Rij , ∀(i, j) ∈ Ωr, are stored in machine r. Specifically, entries
corresponding to ΩSr

are stored in CRS format, and entries corresponding to
Ω̄Gr

are stored in CCS format. Thus, the entire R has two copies stored on
the distributed system. Assuming that the latest Rij ’s corresponding to Ωr are
available on machine r, the entire w̄t and h̄t are still required to construct the
R̂ in subproblem (17). As a result, we need to broadcast w̄t and h̄t in the
distributed version of CCD++ such that a complete copy of the latest w̄t and
h̄t is locally available on each machine to compute R̂:

R̂ij ← Rij + w̄tih̄tj ∀(i, j) ∈ Ωr. (30)

During T CCD iterations, machine r needs to broadcast the latest copy of ur to
other machines before updating vr and broadcast the latest vr before updating
ur.

After T alternating iterations, each machine r has a complete copy of (u∗,v∗),
which can be used to update (w̄r

t , h̄
t
t) by (28). The residual R can also be updated

without extra communication by

Rij ← R̂ij + w̄tih̄tj ∀(i, j) ∈ Ωr, (31)

as (w̄r
t , h̄

r
t ) is also locally available on each machine r.

The distributed version of CCD++ is described in Algorithm 4. In sum-
mary, in distributed CCD++, each machine r only stores W r and Hr and
residual matrices RSr: and R:Gr

. In an ideal case, where |Sr| = m/p, |Gr| =
n/p,

∑
i∈Sr
|Ωi| = |Ω|/p, and

∑
j∈Gr

|Ω̄j | = |Ω|/p, the memory consumption on
each machine is mk/p variables of W , nk/p variables of H, and 2|Ω|/p entries of
R. As all communication in Algorithm follows the same scenario: each machine
r broadcasts the |Sr| (or |Gr|) local variables to other machines and gathers
the remaining m− |Sr| (or n− |Gr|) latest variables from other machines. Such
communication can be achieved efficiently by an AllGather operation, which is a
collective operation defined in the Message Passing Interface (MPI) standard.10

10 http://www.mcs.anl.gov/research/projects/mpi/
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With a recursive-doubling algorithm, AllGather operations can be done in

α log p+
p− 1
p

Mβ, (32)

where M is the message size in bytes, α is the startup time per message, inde-
pendent of the message size, and β is transfer time per byte [22]. Based on Eq.
(32), the total communication time of Algorithm 4 per iteration is(

α log p+
8(m+ n)(p− 1)β

p

)
k(T + 1),

where we assume that each entry of W and H is a double-precision floating-point
number.

4.3. Scalability Analysis of Other Methods

As mentioned in Section 2.1, ALS can be easily parallelized when entire W and H
can fit in the main memory of one computer. However, it is hard to be scaled up to
very large-scale recommender systems when W or H cannot fit in the memory of
a single machine. When ALS updates wi, HΩi is required to compute the Hessian
matrix (HT

Ωi
HΩi +λI) in Eq. (3). In parallel ALS, even though each machine only

updates a subset of rows of W or H at a time, [2] proposes that each machine
should gather the entire latest H or W before the updates. However, when W or
H is beyond the memory capacity of a single machine, it is not feasible to gather
entire W or H and store them in the memory before the updates. Thus, each time
when some rows of H or W are not available locally but are required to form the
Hessian, the machine has to initiate communication with other machines to fetch
those rows from them. Such complicated communication could severely reduce
the efficiency of ALS. Furthermore, the higher time complexity per iteration of
ALS is unfavorable when dealing with large W and H. Thus, ALS is not scalable
to handle recommender systems with very large W and H.

Recently, [7] proposed a distributed SGD approach, DSGD, which partitions
A into blocks and conducts SGD updates with a particular ordering. Similar to
our approach, DSGD stores W , H, and A in a distributed manner such that
each machine only needs to store (n+m)k/p variables and |Ω|/p rating entries.
Each communication scenario in DSGD is that each machine sends m/p (or n/p)
variables to a particular machine, which can be done by a SendReceive operation.
As a result, the communication time per iteration of DSGD is αp+8mkβ. Thus,
both DSGD and CCD++ can handle recommender systems with very large W
and H.

5. Experimental Results

In this section, we compare CCD++, ALS, and SGD in large-scale datasets
under serial, multi-core and distributed platforms. For CCD++, we use the im-
plementation with our adaptive technique based on function value reduction. We
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Table 2. The statistics and parameters for each dataset

dataset movielens1m movielens10m netflix yahoo-music synthetic-u synthetic-p

m 6,040 71,567 2,649,429 1,000,990 3,000,000 20,000,000
n 3,952 65,133 17,770 624,961 3,000,000 1,000,000
|Ω| 900,189 9,301,274 99,072,112 252,800,275 8,999,991,830 14,661,239,286
|ΩTest| 100,020 698,780 1,408,395 4,003,960 90,001,535 105,754,418
k 40 40 40 100 10 30
λ 0.1 0.1 0.05 1 0.001 0.001

(a) movielens1m: Time versus RMSE. (b) movielens10m: Time versus RMSE.

(c) netflix: Time versus RMSE. (d) yahoo-music: Time versus RMSE.

Fig. 3. RMSE versus computation time on a serial setting for different methods (time is in
seconds). Due to non-convexity of the problem, different methods may converge to different
values.

implement ALS with the Intel Math Kernel Library.11 Based on the observation
in Section 2, we choose DSGD as an example of the parallel SGD methods be-
cause of its faster and more stable convergence than other variants. In this paper,
all algorithms are implemented in C++ to make a fair comparison. Similar to
[2], all of our implementations use the weighted λ-regularization.12

11 Our C implementation is 6x faster than the MATLAB version provided by [2].

12 λ

(∑
i
|Ωi|‖wi‖2 +

∑
j
|Ω̄j |‖hj‖2

)
is used to replace the regularization term in (1).
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(a) movielens1m: Time versus RMSE. (b) movielens10m: Time versus RMSE.

(c) netflix: Time versus RMSE. (d) yahoo-music: Time versus RMSE.

Fig. 4. RMSE versus computation time on an 8-core system for different methods (time is in
seconds). Due to non-convexity of the problem, different methods may converge to different
values.

Datasets. We consider four public datasets for the experiment: movielens1m,
movielens10m, netflix, and yahoo-music. These datasets are extensively used in the
literature to test the performance of matrix factorization algorithms [7, 3, 23].
The original training/test split is used for reproducibility.

To conduct experiments in a distributed environment, we follow the procedure
used to create the Jumbo dataset in [10] to generate the synthetic-u dataset, a
3M by 3M sparse matrix with rank 10. We first build the ground truth W and H
with each variable uniformly distributed over the interval [0, 1). We then sample
about 9 billion entries uniformly at random from WHT and add a small amount
of noise to obtain our training set. We sample about 90 million other entries
without noise as the test set.

Since the observed entries in real-world datasets usually follow power-law
distributions, we further construct a dataset synthetic-p with the unbalanced size
20M by 1M and rank 30. The power-law distributed observed set Ω is generated
using the Chung-Lu-Vu (CLV) model proposed in [24]. More specifically, we first
sample the degree sequence a1, · · · , am for all the rows following the power-law
distribution p(x) ∝ x−c with c = −1.316 (the parameter c is selected to control
the number of nonzeros). We then generate another degree sequence b1, · · · , bn
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for all the columns by the same power law distribution and normalize it to ensure∑n
j=1 bj =

∑m
i=1 ai. Finally, each edge (i, j) is sampled with probability aibj∑

k
bk

.

The values of the observed entries are generated in the same way as in synthetic-
u. For training/test split, we randomly select about 1% observed entries as test
set and the rest observed entries as the training set.

For each dataset, the regularization parameter λ is chosen from
{1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} with the lowest test RMSE. The parameter k
of both synthetic datasets are set according to the ground truth, and for real
datasets we choose k from {20, 40, 60, 80, 100} with the lowest test RMSE. See
Table 2 for more information about the statistics and parameters used for each
dataset.

5.1. Experiments on a Single Machine Serial Setting

We first compare CCD++ with ALS and DSGD in a serial setting.
Experimental platform. As mentioned in Section 2.3, we use an 8-core In-

tel Xeon X5570 processor with 32KB L1-cache, 256KB L2-cache, 8MB L3-cache,
and enough memory for the comparison. We only use 1 core for the serial setting
in this section, while we will use multiple cores in the multi-core experiments
(Section 5.2).

Results on training time. Figure 3 shows the comparison of the running
time versus RMSE for the four real-world datasets in a serial setting, and we
observe that CCD++ is faster than ALS and DSGD.

5.2. Experiments on a Multi-core Environment

In this section, we compare the multi-core version of CCD++ with other methods
on a multi-core shared-memory environment.

Experimental platform. We use the same environment as in Section 5.1.
The processor has 8 cores, and the OpenMP library is used for multi-core par-
allelization.

Results on training time. We ensure that eight cores are fully utilized for
each method. Figure 4 shows the comparison of the running time versus RMSE
for the four real-world datasets. We observe that the performance of CCD++ is
generally better than parallel ALS and DSGD for each dataset.

Results on speedup. Another important measurement in parallel comput-
ing is the speedup – how much faster a parallel algorithm is when we increase
the number of cores. To test the speedup, we run each parallel method on yahoo-
music with various numbers of cores, from 1 to 8, and measure the running time
for one iteration. Although we have shown in Section 2.3 that with regard to con-
vergence DSGD has better performance than HogWild, it remains interesting to
see how HogWild performs in terms of speedup. Thus, we also include HogWild
into the comparison. The results are shown in Figure 5. Based on the slope of the
curves, we observe that CCD++ and ALS have better speedup than both SGD
approaches (DSGD and HogWild). This can be explained by the cache-miss rate
for each method. Due to the fact that CCD++ and ALS access variables in con-
tiguous memory spaces, both of them enjoy better locality. In contrast, due to
the randomness, two consecutive updates in SGD usually access non-contiguous
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variables in W and H, which increases the cache-miss rate. Given the fixed size
of the cache, time spent in loading data from memory to cache becomes the
bottleneck for DSGD and HogWild to achieve better speedup when the number
of cores increases.

5.3. Experiments on a Distributed Environment

In this section, we conduct experiments to show that distributed CCD++ is
faster than DSGD and ALS for handling large-scale data on a distributed system.

Experimental platform. The following experiments are conducted on a
large-scale parallel platform at the Texas Advanced Computing Center (TACC),
Stampede13. Each computing node in Stampede is an Intel Xeon E5-2680 2.7GHz
CPU machine with 32 GB memory and communicates by FDR 56 Gbit/s cable.
For a fair comparison, we implement a distributed version with MPI in C++ for
all the methods. The reason we do not use Hadoop is that almost all operations
in Hadoop need to access data and variables from disks, which is quite slow
and thus not suitable for iterative methods. It is reported in [25] that ALS
implemented with MPI is 40 to 60 times faster than its Hadoop implementation
in the Mahout project. We also tried to run the ALS code provided as part of
the GraphLab library14 but in our experiments the GraphLab code (which has
an asynchronous implementation of ALS) did not converge. Hence, we developed
our own implementation of ALS, using which we report all ALS results.

Results on yahoo-music. First we show comparisons on the yahoo-music
dataset, which is the largest real-world dataset we used in this paper. Figure 6
shows the result with 4 computing nodes – we can make similar observations as
in Figure 4.

Results on synthetic datasets. When data is large enough, the benefit of
distributed environments is obvious.

For the scalability comparison, we vary the number of computing nodes, rang-
ing from 32 to 256, and compare the time and speedup for three algorithms on
the synthetic-u and synthetic-p datasets. As discussed in Section 4, ALS requires
larger memory on each machine. In our setting it requires more than 32GB mem-
ory when using 32 nodes on synthetic-p dataset, so we run each algorithm with
at least 64 nodes for this dataset. Here we calculate the training time as the time
taken to achieve 0.01 test RMSE on synthetic-u and 0.02 test RMSE on synthetic-
p respectively. The results are shown in Figure 7a and 8a. We can see clearly that
CCD++ is more than 8 times faster than both DSGD and ALS on synthetic-u
and synthetic-p datasets with the number of computing nodes varying from 32 to
256. We also show the speedup of ALS, DSGD, and CCD++ on both datasets
in Figure 7b and 8b. Note that since the data cannot be loaded in memory of
a single machine, the speedup using p machines is Tp/T32 on synthetic-u and
Tp/T64 on synthetic-p respectively, where Tp is the time taken on p machines. We
observe that DSGD achieves super linear speedup on both datasets. For example,
on synthetic-u dataset, the training time for DSGD is 2768 seconds using 32 ma-
chines and 218 seconds using 256 machines, so it achieves 2768/218 ≈ 12.7 times

13 http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide\
#compenv
14 We downloaded version 2.1.4679 from https://code.google.com/p/graphlabapi/
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Fig. 5. Speedup comparison among four algorithms with the yahoo-music dataset on a shared-
memory multi-core machine. CCD++ and ALS have better speedups than DSGD and HogWild
because of better locality.

speedup with only 8 times the number of machines. This super linear speedup is
due to the caching effect. In DSGD, each machine stores one block of W and one
block of H. When the number of machines is large enough, these blocks can fit
into the L2-cache, which leads to dramatic reduction in the memory access time.
On the other hand, when the number of machines is not large enough, these
blocks cannot fit into cache. Thus DSGD, which accesses entries in the block at
random, suffers from frequent cache misses. In contrast, for CCD++ and ALS,
the cache miss is not that severe even when the block of W and H cannot fit
into cache since the memory is accessed sequentially in both methods.

Though the speedups are smaller than in a multi-core setting, CCD++ takes
the least time to achieve the desired RMSE. This shows that CCD++ is not only
fast but also scalable for large-scale matrix factorization on distributed systems.

6. Extension to L1-regularization

Besides L2-regularization, L1-regularization is used in many applications to ob-
tain a sparse model, such as linear classification [26]. Replacing the L2-regularization
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Fig. 6. Comparison among CCD++, ALS, and DSGD with the yahoo-music dataset on a MPI
distributed system with 4 computing nodes.

(a) Number of computation nodes versus training
time.

(b) Number of computation nodes versus
speedup.

Fig. 7. Comparison among CCD++, ALS and DSGD on the synthetic-u dataset (9 billion
ratings) on a MPI distributed system with varying number of computing nodes. The vertical
axis in the left panel is the time for each method to achieve 0.01 test RMSE, while the right
panel shows the speedup for each method. Note that, as discussed in Section 5.3, speedup is
Tp/T32, where Tp is the time taken on p machines.
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(a) Number of computation nodes versus training
time.

(b) Number of computation nodes versus
speedup.

Fig. 8. Comparison among CCD++, ALS and DSGD on the synthetic-p dataset (14.6 billion
ratings) on a MPI distributed system with varying number of computing nodes. The vertical
axis in the left panel is the time for each method to achieve 0.02 test RMSE, while the right
panel shows the speedup for each method. Note that, as discussed in Section 5.3, speedup is
Tp/T64, where Tp is the time taken on p machines.

in (1), we have the following L1-regularized problem:

min
W∈Rm×k

H∈Rn×k

∑
(i,j)∈Ω

(Aij −wT
i hj)2 + λ

 m∑
i

‖wi‖1 +
n∑
j

‖hj‖1

 , (33)

which tends to yield a more sparse W and H.

6.1. Modification for Each Method

In this section, we explore how CCD, CCD++, ALS, and SGD can be modified
to solve (33).

CCD and CCD++. When we apply coordinate descent methods to (33),
the one-variable subproblem becomes

min
z

f(z) = f0(z) + λ|z|, (34)

where f0(z) =
∑
j∈Ωi

(Rij + withjt)− zhjt)2
. As f0(z) is a quadratic function,

the solution z∗ to (34) can be uniquely obtained by the following soft thresholding
operation:

z∗ =
− sgn(g) max (|g| − λ, 0)

d
, (35)

where

g = f ′0(0) = −2
∑
j∈Ωi

(Rij + withjt)hjt, and

d = f ′′0 (0) = 2
∑
j∈Ωi

h2
jt.
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Table 3. The best test RMSE for each model (the lower, the better). We run both CCD++
and DSGD with a large number of iterations to obtain the best test RMSE for each model.

movielens10m yahoo-music

L1-regularization 0.9381 24.49
L2-regularization 0.9035 21.92

Similar to the situation with L2-regularization, by maintaining the residual ma-
trix R, the time complexity for each single variable update can be reduced to
O(|Ωi|). Thus, CCD and CCD++ can be applied to solve (33) efficiently.

ALS. When we apply ALS to (33), the second term in each subproblem (2)
is replaced by a non-smooth term λ‖wi‖1. The resulting problem does not have
a closed form solution. As a result, an iterative method is required to solve the
subproblem. If coordinate descent is applied to solve this problem, ALS and CCD
become exactly the same algorithm.

SGD. When SGD is applied to solve the non-smooth problem, the gradient
in the update rule has to be replaced by the sub-gradient, thus the update rule
corresponding the (i, j) rating becomes

wit =

wit − η
(

sgn(wit) λ
|Ωi| − 2Rijhj

)
if wit 6= 0

wit − η
(
− sgn(2Rijhj) max(|2Rijhj | − λ

|Ωi| , 0)
)

if wit = 0

hjt =

hjt − η
(

sgn(hjt) λ
|Ω̄i|
− 2Rijwi

)
if hjt 6= 0

hjt − η
(
− sgn(2Rijwi) max(|2Rijwi| − λ

|Ω̄i|
, 0)
)

if hjt = 0,

where Rij = Aij −wT
i hj . The time complexity for each update is the same as

the one with L2-regularization. Similarly, the same trick in DSGD and HogWild
can be used to parallelize SGD with L1-regularization as well.

Figure 9 presents the comparison of the multi-core version of parallel CCD++
and DSGD with L1-regularization on two datasets: movielens10m and yahoo-
music. In this comparison, we use the same experimental settings and platform
in Section 4.1.

6.2. Experimental Results

First, we compare the solution of L2-regularized matrix factorization problem
(1) versus the L1-regularized one (33) in Table 3. Although L1-regularized form
achieves worse test RMSE comparing to L2-regularized form, it can successfully
yield sparse models W and H, which is important for interpretation in many
applications.

We then compare the convergence speed of CCD++ and DSGD for solving
the L1-regularized problem (33). Figure 9a and 9c present the results of the
objective function values versus computation time. In both figures, we clearly
observe that CCD++ has faster convergence than DSGD, which demonstrates
the superiority of CCD++ to solve (33). Meanwhile, Figure 9b and 9d show the
results of the test RMSE versus computation time. Similar to L2-regularized case,
CCD++ achieves better test RMSE than DSGD for both datasets. However,
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(a) movielens10m: Time versus Obj. (b) movielens10m: Time versus RMSE.

(c) yahoo-music: Time versus Obj. (d) yahoo-music: Time versus RMSE.

Fig. 9. The results of RMSE and objective function value versus computation time(in seconds)
for different methods on the matrix factorization problem with L1-regularization. Due to non-
convexity of the problem, different methods may converge to different values.

(33) is designed to obtain better sparsity of W and H instead of improving the
generalization error of the model. As a result, the test RMSE might be sacrificed
for a more sparse W and H. This can explain the increase of test RMSE in some
parts of the curves in both datasets.

7. Conclusions

In this paper, we have shown that the coordinate descent method is efficient and
scalable for solving large-scale matrix factorization problems in recommender
systems. The proposed method CCD++ not only has lower time complexity per
iteration than ALS, but also achieves faster and more stable convergence than
SGD in practice. We also explore different update sequences and show that the
feature-wise update sequence (CCD++) gives better performance. Moreover, we
show that CCD++ can be easily parallelized in both multi-core and distributed
environments and thus can handle large-scale datasets where both ratings and
variables cannot fit in the memory of a single machine. Empirical results demon-
strate the superiority of CCD++ under both parallel environments. For instance,
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running with a large-scale synthetic dataset (14.6 billion ratings) on a distributed
memory cluster, CCD++ is 49 times faster to achieve the desired test accuracy
than DSGD when we use 64 processors, and when we use 256 processors, CCD++
is 40 times faster than DSGD and 20 times faster than ALS.
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