
Abelian: A Compiler for Graph Analytics on
Distributed, Heterogeneous Platforms

Gurbinder Gill1, Roshan Dathathri1, Loc Hoang1, Andrew Lenharth1, and Keshav
Pingali1

The University of Texas at Austin, TX 78712, USA
{gill,roshan,loc}@cs.utexas.edu,

andrewl@lenharth.org,pingali@cs.utexas.edu

Abstract. The trend towards processor heterogeneity and distributed-memory
has significantly increased the complexity of parallel programming. In addition,
the mix of applications that need to run on parallel platforms today is very diverse,
and includes graph applications that typically have irregular memory accesses and
unpredictable control-flow. To simplify the programming of graph applications
on such platforms, we have implemented a compiler called Abelian that trans-
lates shared-memory descriptions of graph algorithms written in the Galois pro-
gramming model into efficient code for distributed-memory platforms with het-
erogeneous processors. The compiler manages inter-device synchronization and
communication while leveraging state-of-the-art compilers for generating device-
specific code. The experimental results show that the novel communication opti-
mizations in the Abelian compiler reduce the volume of communication by 23×,
enabling the code produced by Abelian to match the performance of handwritten
distributed CPU and GPU programs that use the same runtime. The programs
produced by Abelian for distributed CPUs are roughly 2.4× faster than those
in the Gemini system, a third-party distributed CPU-only system, demonstrat-
ing that Abelian can manage heterogeneity and distributed-memory successfully
while generating high-performance code.

Keywords: Graph analytics ·Heterogeneous computing ·Distributed computing
· Compilers · High performance computing.

1 Introduction

Graph analytics systems must handle very large data-sets with billions of nodes and
trillions of edges [16]. Graphs of this size are too big to fit into the memory of a single
machine, so one approach is to use distributed-memory clusters consisting of multicore
processors. Writing efficient distributed-memory programs can be difficult, so a num-
ber of frameworks and libraries such as Pregel [18], PowerGraph [12], and Gemini [33],
have been developed to ease the burden of writing graph analytics applications for such
machines. New trends in processor architecture have made this programming problem
much more difficult. To reduce energy consumption, computer manufacturers are turn-
ing to heterogeneous processor architectures in which each machine has a multicore
processor and GPUs or FPGAs. To exploit such platforms, we must tackle the twin chal-
lenges of processor heterogeneity and distributed-memory computing. Frameworks like

2 G. Gill et al.

Lux [15] and Gluon [10] permit graph analytics applications writers to use distributed
GPUs, but they require writing platform-specific programs that are not portable.

Ideally, we would have a compiler that takes single-source, high-level specifica-
tions of graph analytics algorithms and automatically translates them into distributed,
heterogeneous implementations while optimizing them for diverse processor architec-
tures. This paper describes such a compiler, called Abelian. Application programs are
generalized vertex programs written in the Galois programming model, which provides
programming patterns and data structures to support graph applications [20]. Section 2
describes this programming model in more detail. The Abelian compiler, described in
Section 3, targets the Gluon runtime [10], which implements bulk-synchronous execu-
tion. Unlike other systems in this space, this runtime supports a number of graph par-
titioning policies including edge-cuts and vertex-cuts, and the programmer can choose
any of these policies. The compiler exploits domain-knowledge to generate distributed
code, inserting optimized communication code. Back-end compilers generate optimized
code for NUMA multi-cores and GPUs from the output of Abelian.

The experimental results presented in Section 4 show that the communication opti-
mizations in Abelian reduce communication volume by 23×, enabling Abelian-generated
implementations to match the performance of hand-tuned distributed-CPU and distributed-
GPU programs on the same platform. In addition, the distributed-CPU implementations
produced by Abelian yield a geometric mean speedup of 2.4× over those in the stand-
alone distributed-CPU system Gemini [33] on the same hardware. This shows that the
flexibility of Abelian in compiling a high-level, shared-memory, single address space
specification for heterogeneous and distributed-memory architectures does not come at
the cost of performance, even when compared to integrated, homogeneous systems.

2 Programming model

The Abelian compiler supports a generalized vertex programming model [12, 18, 33]
that is a restriction of the Galois programming model [20, 24]. Nodes and edges of the
graph have labels that are updated iteratively by the program until some quiescence
condition is reached. Updating of labels is performed by applying operators to active
nodes in the graph; this is called an activity. A push-style operator uses the label of
the active node to conditionally update the labels of immediate neighbors of that node
while a pull-style operator reads the labels of the immediate neighbors and conditionally
updates the label of the active node.

Abelian supports more general operators than other systems in this space. In partic-
ular, an operator is allowed to update the labels of both the active node and its immedi-
ate neighbors, which is useful for applications like matrix completion using stochastic
gradient descent. In addition, Abelian does not require updates to node labels to be
reduction operations. For example, k-core decomposition evaluated in Section 4 uses
subtraction on node labels.

In addition to the operator, the programmer must specify how active nodes are found
in the graph [19]. The simplest approach is to execute the program in rounds and ap-
ply the operator to every node in each round. The order in which nodes are visited
is unspecified, and the implementation is free to choose whatever order is convenient.

Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms 3

These topology-driven algorithms [24] terminate when a global quiescence condition
is reached. The Bellman-Ford algorithm for single-source shortest-path (sssp) is an ex-
ample.

An alternative strategy is to track active nodes in the graph and apply the operator
only to those nodes, which potentially creates new active nodes. These data-driven al-
gorithms [24] terminate when there are no more active nodes in the graph. As before,
the order in which active nodes are to be processed is left unspecified, and the imple-
mentation is free to choose whatever order is convenient. Chaotic relaxation sssp uses
this style of execution. Tracking of active nodes can be implemented by maintaining
a work-list of active nodes. Alternatively, this can be implemented by marking active
nodes in the graph and making sweeps over the graph, applying the operator only to
marked nodes; we call this approach filtering. Fine-grain synchronization in marking
and unmarking nodes can be avoided by using Jacobi-style iteration with two flags, say
current and next, on each node; in a round, active nodes whose current flag is set are
processed, and if a node becomes active in that round, its next flag is set using an ordi-
nary write operation. The roles of these flags are exchanged at the end of each round.
In our programming model, data-driven algorithms are written using work-lists, but the
compiler transforms the code to use a filtering implementation. The correctness of this
transformation is ensured by the fact that active nodes can be processed in any order.

Implementation: This programming model is implemented in C++ using the Galois
library [20]. Figure 1 shows a program for push-style data-driven algorithm of pagerank.
A work-list is used to track active nodes. The Galois::for each in line 30 populates the
work-list initially with all nodes in the graph and then iterates over it until the work-list
is empty. The operator computes the update to the pagerank of the active node, and
it pushes this update to all neighbors of the active node. If the residual at a neighbor
exceeds some user-specified threshold, that neighbor becomes active and is pushed to
the work-list.

The semantics of the Galois::for each iterator permit work-list elements to be pro-
cessed in any order. In a parallel implementation of the iterator, each operator applica-
tion must appear to have been executed atomically. To ensure this, the application pro-
grammer must use data structures provided in the Galois library which include graphs,
work-lists, and accumulators. This permits the runtime to manage updates to distributed
data structures on heterogeneous devices and allows the compiler to treat data structures
as objects with known semantics, which enables program optimization and generation
of parallel code from implicitly parallel programs as described in Section 3.

Restrictions on operators: Like in other programming models for graph analyt-
ics [12, 33, 26, 15] and compilers for data-parallel languages [30, 27, 3], operators can-
not perform I/O operations. They also cannot perform explicit dynamic memory allo-
cation since some devices (like GPUs) have limited support for this in their runtimes.
The library data structures can perform dynamic storage allocation, but this is done
transparently to the programmer.

4 G. Gill et al.

1 s t r u c t NodeData{
2 / / d a t a on each node
3 u n s i g n e d i n t nou t ; / / out−d e g r e e
4 f l o a t r ank ;
5 s t d : : atomic<f l o a t> r e s ; / / r e s i d u a l
6 } ;
7

8 s t r u c t PageRank {
9 Graph∗ g ;

10 PageRank (Graph∗ g) : g (g) {}
11 vo id o p e r a t o r () (GNode s r c ,
12 W o r k l i s t& wl) {
13 a u t o& sd = g−>g e t D a t a (s r c) ;
14 a u t o r e s o l d =sd . r e s . exchange (0) ;
15 / / a p p l y r e s i d u a l t o s e l f
16 sd . r ank += r e s o l d ;
17 a u t o d e l t a = r e s o l d ∗ a l p h a / sd . nou t ;
18 f o r (a u t o e : g−>g e t E d g e s (s r c)) {
19 GNode d s t = g−>ge tEdgeDs t (e) ;
20 a u t o& dd = g−>g e t D a t a (d s t) ;
21 / / u p d a t e r e s i d u a l o f d e s t
22 dd . r e s += d e l t a ;
23 i f (dd . r e s > t o l e r a n c e) {
24 wl . push (d s t) ;
25 }
26 }
27 }
28 } ;
29

30 Ga lo i s : : f o r e a c h (g , PageRank{g}) ;

Fig. 1. Pagerank source program

1 s t r u c t A d d c o n t r i b {
2 t y p e d e f f l o a t ValTy ;
3 s t a t i c ValTy e x t r a c t (NodeData& node){
4 r e t u r n node . c o n t r i b ;
5 }
6 s t a t i c boo l r e d u c e (NodeData& node ,
7 ValTy y) {
8 add (node . c o n t r i b , y) ;
9 r e t u r n t r u e ;

10 }
11 s t a t i c vo id r e s e t (NodeData& node) {
12 node . c o n t r i b = 0 ;
13 }
14 } ;
15

16 s t r u c t B c a s t c o n t r i b {
17 t y p e d e f f l o a t ValTy ;
18 s t a t i c ValTy e x t r a c t (NodeData& node){
19 r e t u r n node . c o n t r i b ;
20 }
21 s t a t i c vo id s e t V a l (NodeData& node ,
22 ValTy y) {
23 node . c o n t r i b = y ;
24 }
25 } ;

Fig. 2. Compiler-generated synchronization
structures for field contrib in pagerank

1 s t r u c t NodeData {
2 / / d a t a on each node
3 u n s i g n e d i n t nou t ; / / out−d e g r e e
4 f l o a t r ank ;
5 f l o a t r e s ; / / r e s i d u a l
6 / / c o m p i l e r added f i e l d
7 s t d : : atomic<f l o a t> c o n t r i b ;
8 } ;
9 Dis tr ibutedAccumulator work done ;

10 . . . / / f i e l d−s p e c i f i c b i t v e c t o r , f l a g s
11 . . . / / f i e l d−s p e c i f i c sync s t r u c t u r e s
12 s t r u c t PageRank {
13 Graph∗ g ;
14 c o n s t f l o a t &l a l p h a , &l t o l e r a n c e ;
15 . . . / / copy c o n s t r u c t o r f o r members
16 vo id o p e r a t o r () (GNode s r c) {
17 a u t o& sd = g−>g e t D a t a (s r c) ;
18 i f (sd . r e s > l t o l e r a n c e) {
19 work done += 1 ; / / do n o t t e r m i n a t e
20 a u t o r e s o l d = sd . r e s ;
21 sd . r e s = 0 ;
22 sd . r ank += r e s o l d ;
23 B i t v e c r a n k . s e t (s r c) ;
24 a u t o d e l t a = r e s o l d ∗ l a l p h a / sd . nou t ;
25 f o r (a u t o e : g−>g e t E d g e s (s r c)) {
26 GNode d s t = g−>ge tEdgeDs t (e) ;
27 a u t o& dd = g−>g e t D a t a (d s t) ;
28 dd . c o n t r i b += d e l t a ;
29 B i t v e c c o n t r i b . s e t (d s t) ;
30 } } }
31 } ;
32 s t r u c t P a g e R a n k s p l i t O p {
33 Graph∗ g ;
34 P a g e R a n k s p l i t O p (Graph∗ g) : g (g) {}
35 vo id o p e r a t o r () (GNode s r c) {
36 a u t o& sd = g−>g e t D a t a (s r c) ;
37 sd . r e s += sd . c o n t r i b ;
38 B i t v e c r e s . s e t (s r c) ;
39 sd . c o n t r i b = 0 ;
40 }
41 } ;
42 . . . / / 1 s t round f o r a l l nodes i n

i n i t i a l work− l i s t
43 do { / / s u b s e q u e n t ro un ds : p r e d i c a t e−

based f i l t e r
44 work done . r e s e t () ; / / f o r t e r m i n a t i o n
45

46 . . . / / sync r e s i f r e q u i r e d : r e a d S r c
47 Ga lo i s : : d o a l l (g . g e t S o u r c e s () ,
48 PageRank{&g , a lpha , t o l e r a n c e }) ;
49 F l a g r a n k . s e t w r i t e S r c () ;
50 F l a g c o n t r i b . s e t r e d u c e D s t () ;
51

52 i f (F l a g c o n t r i b . i s r e d u c e D s t ()) {
53 graph . sync<r educeDs t , r e a d S r c ,
54 A d d c o n t r i b , B c a s t c o n t r i b>
55 (B i t v e c c o n t r i b) ; / / e x e c u t e d
56 F l a g c o n t r i b . r e s e t r e d u c e D s t () ;
57 } e l s e i f (F l a g c o n t r i b . i s r e d u c e S r c ()){
58 / / sync c o n t r i b : r e d u c e S r c , r e a d S r c
59 } e l s e { . . . } / / sync c o n t r i b i f r e q u i r e d
60 Ga lo i s : : d o a l l (g . g e t S o u r c e s () ,
61 P a g e R a n k s p l i t O p{&g}) ;
62 F l a g r e s . s e t w r i t e S r c () ;
63} w h i l e (work done . r e d u c e ()) ;

Fig. 3. Compiler-generated pagerank program

Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms 5

3 Abelian Compiler

Figure 4 is an overview of how input programs are compiled for execution on dis-
tributed, heterogeneous architectures. The Abelian compiler (implemented as a source-
to-source translation tool based on Clang’s libTooling) analyzes the patterns of data
accesses in operators, restructures programs for execution on distributed-memory ar-
chitectures, and inserts code for optimized communication. The output of the Abelian
compiler is a bulk-synchronous parallel C++ program with calls to the Gluon [10] com-
munication runtime (Figure 3). Gluon transparently handles the graph partitioning while
loading the input graph. The generated code is independent of the partitioning policy,
but the partitioning policy determines which portions of this code are executed. This
permits Gluon’s optimization that exploits structural invariants in partitioning without
recompiling the program. The Abelian compiler also generates IrGL [22] intermediate
representation kernels corresponding to each Galois::do all call in the C++ program and
inserts code in the C++ program to switch between calling the Galois::do all and the
corresponding IrGL kernel depending on the configuration chosen for the host (these
are not shown in Figure 3 for brevity). The C++ program and the IrGL intermediate
code are then compiled using device-specific compilers. The output executable is pa-
rameterized by the graph input, the partitioning policy, and the number of hosts and
their configuration (CPU or GPU). The user can thus experiment with a variety of par-
titioning strategies and heterogeneous devices with a single command-line switch.

3.1 Graph-data Access Analysis
Input

GraphData Access Analysis

Restructuring Computation

Inserting Communication

g++
IrGL

OpenCL

Gluon Runtime

LLVM AST

GPU code

Abelian
Compiler

CUDA

Gluon Runtime

CPU code
Sync

Device
Specific
Compilers C++

Galois

Fig. 4. System Overview

The access analysis pass analyzes the
fields accessed in an operator. The results
of this analysis are used to insert required
communication code. Field accesses are
classified as follows:

• Reduction: The field is read and up-
dated using a reduction operation in-
side an edge iterator within the oper-
ator (e.g., addition to residual in line
22 in Figure 1). This is a common
and important pattern in graph ana-
lytics applications.

• Read: The field is read, and it is not
part of a reduction (e.g., read from
nout in line 17 in Figure 1).

• Write: The field is written, and it is
not part of a reduction (e.g., write to
rank in line 16, Figure 1).

In addition, it is useful to abstract the context in which a field access is made.

• At source: The field is accessed at the source node of an edge.

6 G. Gill et al.

• At destination: The field is accessed at the destination node of an edge.
• At any: The field is accessed at a node independent of any edge or at both endpoints

of an edge.

3.2 Restructuring computation

The goal of computation restructuring is to bridge the semantic gap between the pro-
gramming model, which has a single address space, and the execution model, which
is distributed-memory and bulk-synchronous parallel. The semantics of Galois iterators
permit iterations to be executed in parallel as long as each iteration appears to exe-
cute atomically. This fine-grain, iteration-level parallelism must be converted to round-
based, bulk-synchronous parallelism by the Abelian compiler. This includes eliminating
global variables (similar to closure conversion in functional languages) by adding them
as members of the structure. This also requires two key transformations.

Splitting operators When active nodes are processed in parallel on a shared-memory
machine, fine-grain synchronization may be needed for correct execution. This problem
appears in a different guise on distributed-memory machines: if the two active nodes are
on different hosts, proxies will be created on both hosts for the common neighbor, and
it is necessary to reconcile the values pushed to these proxies so that the semantics
of the program are respected. The bulk-synchronous execution model does not permit
fine-grain synchronization, so these kinds of problems must be solved, in general, by
breaking up the operator into phases if necessary and introducing sync calls between
phases. There are a number of cases to consider depending on the type of field access
as determined by the graph-data access analysis. We describe this for one such case.

In the PageRank source code in Figure 1, the residual field is read (line 14) to update
the rank field (line 16) and written (line 14 using exchange(0)) at the source, but it is
also reduced (line 22) at the destination. Since different hosts could update the residual,
the hosts reading it should have the reduced value. To handle this, the compiler splits
any operator that has such a dependence into multiple operators (a form of loop fission):
one with only Read and Write accesses to the field and another with only Reduction ac-
cesses, as shown in the PageRank and PageRank splitOp operators (lines 12-41)
respectively in Figure 3. This may involve introducing new fields to store the inter-
mediate values (e.g., contrib). The compiler also transforms some non-reduction
read-after-write operations (e.g., subtraction) to equivalent reduction operations (e.g.,
addition) in a similar way. After this transformation, sync calls are introduced between
the parallel phases, as described in Section 3.3.

Eliminating work-lists The Abelian compiler eliminates work-lists by using filtering,
as explained in Section 2: in a given round, all nodes in the graph are visited and the
operator is applied to nodes whose current flag is set. This flag is reset, and if a node
becomes active in that round, its next flag is set; the roles of the flags are exchanged at
the end of each round.

In some algorithms, the predicate used in the source program to push an active node
to the work-list can be used during filtering to check if the node is active. Extracting

Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms 7

this predicate involves a form of loop fission, and it avoids introducing flags and syn-
chronizing their accesses. For example, in Figure 1, the code in lines 23-24 adds active
nodes to the work-list. In the generated code, this is eliminated, and a new operator is
created to conditionally activate nodes as shown in line 18 in Figure 3. Another operator
is created to execute all nodes that would have been on the initial work-list (line 42).
Abelian can also directly take filter-based implementation of data-driven algorithms as
an input, in which case this transformation is not required. Termination is detected using
a distributed accumulator (lines 19 and 63) provided by Gluon.

3.3 Inserting communication

The final pass of the Abelian compiler inserts code for communication and synchroniza-
tion. A simple approach is the following: in each round, every mirror sends its value to
its master where these values are combined, and the result is broadcast back to all the
mirrors. This is essentially the gather-apply-scatter model used by most systems in this
space, and it can be implemented by inserting a Gluon [10] sync call after each opera-
tor for every field that might be updated by that operator. Compilers for heterogeneous
systems, such as Falcon [30], Dandelion [27], LiquidMetal [3], and DMLL [6], take a
similar approach since their granularity of synchronization is an object or field. This
coarse-grained approach can be seen as a more elaborate version of the write-broadcast
cache coherence protocol used in systems with hardware cache-coherence. Abelian im-
plements a different, fine-grained communication protocol to reduce the communication
volume: a host sends the value of a field to other hosts only if that field has been updated
in the previous rounds and if this value will be read in the current round. Static analy-
sis is not adequate to determine these properties, so instrumentation code is inserted to
track this dynamically. The actual communication is performed by the Gluon runtime,
and it is invoked by inserting sync calls into the code.

Fine-grained communication In graph analytics applications, each round typically
updates the field of only a small subset of graph nodes. A device-local, field-specific
bit-vector is used to track updates to nodes’ fields that participate in communication.
The analysis pass determines points in the operator where these fields might be updated,
and the compiler inserts instrumentation code at those points to also update the node’s
bit in the bit-vector for that field (lines 23, 29, 38 in Figure 3). The Gluon sync interface
permits this bit-vector to be passed to the runtime system, which uses it to avoid sending
node values that have not been updated in the current round.

On-demand communication Using the bit-vector ensures only updated values are
communicated, but it does not permit Gluon’s communication optimization that ex-
ploits structural invariants in partitioning policies [10]. To do so, the domain-specific
knowledge of abstract write and read locations for the last reduction access(es) and
next read access of the field must be specified, respectively. If it is unspecified or impre-
cise, Gluon may conservatively perform some redundant synchronization. The Abelian
compiler can only precisely identify the abstract locations of fields accessed within an
operator and cannot be precise about the future accesses. Therefore, after an operator, it

8 G. Gill et al.

inserts code that sets or invalidates the sync-state invalidation flags for fields that could
be written in the operator using its write location (lines 49, 50, 62 in Figure 3). Before
an operator, it inserts the synchronization structures, as shown in Figure 2 (equivalent
GPU functions generated for a vector of nodes are omitted for brevity), and the commu-
nication code for fields that could be read in the operator (lines 46, 52-59 in Figure 3).
The code checks the field-specific sync-state flags and calls the Gluon sync routine with
the precise write and read locations if the flag is invalidated.

3.4 Device-specific compilers

The Abelian compiler outputs C++ code that can be compiled using existing compil-
ers like g++ to execute on shared-memory NUMA multicores using the Galois run-
time [20]. A naive translation of this C++ code to CUDA or OpenCL is not likely
to yield high-performance code because it will not exploit SIMD execution. We instead
use the IrGL [22] compiler, which produces highly optimized CUDA and OpenCL code
from an intermediate representation that is intended for graph applications. This com-
piler exploits nested parallelism, which is important when processing scale-free graphs.
To interface with the IrGL compiler, the Abelian compiler generates IrGL intermediate
code, translating data layout of fields from arrays of structures to structures of arrays.

4 Experimental results

To evaluate the performance of programs generated by the Abelian compiler, we stud-
ied a number of graph analytical applications: betweenness centrality (bc), breadth-
first search (bfs), connected components (cc), k-core decomposition (kcore), pagerank
(pr), single-source shortest path (sssp), and matrix completion using stochastic gradi-
ent descent (sgd). We specify the programs in Galois C++: pull-style topology-driven
algorithm for pr, push-and-pull-style topology-driven algorithm for sgd, and push-style
work-list-driven algorithms for the rest. The Abelian compiler analyzes the program,
restructures the operators, and synthesizes precise communication. Unless otherwise
noted, all optimizations are applied in our evaluation, including eliminating work-lists.
The programs work with different partitioning policies. In our evaluation, we choose
incoming edge-cut for pr, cartesian vertex-cut for sgd, and outgoing edge-cut for all
other benchmarks. We have empirically found these policies to work well in practice;
an exhaustive search to find the best policy is outside the scope of this work.

Table 1. Inputs and their key properties
clueweb12 [25] kron30 [17] rmat28 [7] amazon [13]

|V | 978M 1073M 268M 31M
|E| 42,574M 10,791M 4,295M 82.5M
|E|/|V | 44 16 16 2.7
max Dout 7,447 3.2M 4M 44557
max Din 75M 3.2M 0.3M 25366

Table 1 shows
the input graphs
we used along with
their properties. All
the CPU experi-
ments were done
on the Texas Ad-
vanced Computing
Center’s [2] Stampede [28] KNL Cluster. For GPU experiments, the Bridges [21] su-
percomputer at the Pittsburgh Supercomputing Center [1, 29] was used. Table 2 shows

Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms 9

the configuration of these clusters used in our experiments. In all our experiments, we
choose the max-degree node as the source for bc, bfs, and sssp. For kcore, we solve for
k = 100. We present the mean execution time of 3 runs, excluding graph partitioning
time. We run pr and sgd for 100 and 50 iterations, respectively; all other algorithms
are run until convergence.

Table 2. Cluster configurations

Stampede (CPU) Bridges (GPU)

NIC Omni-path Omni-path
Machine Intel Xeon Phi KNL 4 NVIDIA Tesla K80s
No. of hosts 32 16
Each host 272 threads 1 Tesla K80
Memory 96GB DDR4 128GB DDR5
Compiler g++ 7.1 g++ 5.3

Table 3. Bridges: execution time (in
seconds) on 16 GPUs for rmat28

D-IrGL Abelian
bc 9.6 9.6
bfs 1.1 1.2
cc 2.6 2.7
kcore 1.5 1.5
pr 32.9 30.5
sssp 2.5 2.5

4.1 Comparison with the state-of-the-art

We compare the performance of Abelian compiler-generated programs with handwrit-
ten D-Galois programs for CPU-only systems [10] and handwritten D-IrGL programs
for GPU-only systems [10]. D-Galois and D-IrGL programs have explicit synchroniza-
tion specified by the programmer; in contrast, synchronization in programs produced by
the Abelian compiler is introduced automatically by the compiler. However, all these
programs use Gluon [10], a communication substrate that optimizes communication
at runtime by exploiting structural and temporal invariants in partitioning (Gluon uses
LCI [9] for message transport between hosts). In addition, D-Galois and Abelian use
the same Galois [20] computation operators on the CPU while D-IrGL and Abelian use
the same IrGL [22] computation kernels on the GPU. Therefore, differences in perfor-
mance between Abelian-generated code and D-Galois/D-IrGL code arise mainly from
differences in how synchronization code is inserted by the Abelian compiler.

Table 4. Stampede: execution time (in seconds) (H: hosts)

Gemini D-Galois Abelian

8H 32H 8H 32H 8H 32H

bc clueweb12 - - OOM 430.4 OOM 437.6
kron30 - - 41.3 27.0 39.7 27.3

bfs clueweb12 OOM 69.9 11.6 9.1 12.0 10.1
kron30 5.1 7.1 5.1 4.0 5.2 4.2

cc clueweb12 39.3 38.8 OOM 16.5 OOM 18.3
kron30 15.8 14.8 7.6 4.6 7.7 4.0

kcore clueweb12 - - OOM 290.4 OOM 289.1
kron30 - - 4.4 3.0 4.5 3.0

pr clueweb12 OOM 257.9 395.1 248.0 402.1 277.4
kron30 245.1 232.4 278.1 221.9 281.0 232.5

sssp clueweb12 OOM 128.3 OOM 14.3 OOM 15.8
kron30 14.0 14.9 9.4 8.2 9.3 8.2

sgd amazon - - 1570.2 701.6 1570.2 696.2

We also compare Abelian-
generated programs with distri-
buted-CPU programs written
in the Gemini framework [33]
(Gemini does not have kcore
and sgd; bc in Gemini uses
bfs while that in Abelian uses
sssp, so it is omitted). Gem-
ini has explicit communication
messages in the programming
model, and it provides a third-
party baseline for our study.

Table 3 and Table 4 show
the distributed-GPU and distri-
buted-CPU results. Abelian pro-
grams match the performance of D-Galois and D-IrGL programs; the difference is not

10 G. Gill et al.

more than 12%. Gemini is 15% faster than Abelian for pr with kron30 on 8 hosts. In
all other cases, Abelian matches or outperforms Gemini. The geometric mean speedup
of Abelian over Gemini on 32 KNL hosts is 2.4×. These results show that Abelian
is able to compile a high-level, shared-memory, single address space specification into
efficient implementations that either match or beat the state-of-the-art graph analytics
platform. Although the Abelian compiler produces code for heterogeneous devices, we
do not report numbers for distributed CPU+GPU execution because the 4 GPUs on a
node on Bridges outperform the CPU by a significant margin.

4.2 Impact of communication optimizations

We analyze the performance impact of the communication optimizations in Abelian
(Section 3.3) by comparing three levels of communication optimization.
1. Unoptimized (UO): the Gluon sync call is inserted for a field after an operator if it

could be updated in that operator. The bit-vector as well as the abstract write and
read locations are left unspecified, so all elements in the field are synchronized.
Existing compilers for heterogeneous systems like Falcon [30], Dandelion [27],
and Liquid Metal [3] do similar field-specific, coarse-grained synchronization.

2. Fine-grained communication optimization (FG): the compiler instruments the code
to use a bit-vector that dynamically tracks updates to fields. The Gluon sync call
used is the same as in UO, but it only synchronizes the elements in the field that
have been updated using the bit-vector. This is similar to existing graph analytical
frameworks [12, 8, 33] that synchronize only the updated elements.

3. Fine-grained and on-demand communication optimization (FO): this (default of
Abelian compiler) uses on-demand communication along with fine-grained opti-
mization. It instruments invalidation flags to track fields that have been updated
and inserts Gluon sync calls before an operator for fields that could be read in the
operator, thereby precisely identifying both the abstract write and read locations.
This enables Gluon’s communication optimization that exploits structural invari-
ants in partitioning policies.

We compare these three communication optimization variants with hand-tuned (HT)
programs written in D-Galois and D-IrGL on distributed CPUs and distributed GPUs
respectively. In these programs, the programmer (with global control-flow knowledge)
specified the precise communication using Gluon sync calls.

Figure 5 and Figure 6 present the comparison results on 32 KNL hosts of Stampede
and 16 GPU devices of Bridges respectively. Each bar in the figures shows the execution
time (maximum across hosts). We measure the maximum computation time across hosts
in each round and take their sum, which is the total computation time (top). The rest of
the execution time is non-overlapped communication time (bottom). We also measure
the total communication volume across all rounds, shown in text on the bars.

The trends are clear in the figure. Each optimization reduces communication vol-
ume and time, improving execution time further. FG significantly reduces communica-
tion volume and time over UO, with the exception of pr. FG performs atomic updates to
the bit-vector, which could be overhead when the updates are dense, like in pr. FO opti-
mizes the communication volume and time further to match the performance of HT. FO
reduces communication volume by 23× over UO, yielding a geometric mean execution

Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms 11

31
86

.8
G

B
14

.2
G

B
10

G
B

10
G

B

21
6G

B
2.

1G
B

1.
5G

B
1.

5G
B

22
9.

9G
B

25
.6

G
B

12
.5

G
B

12
.5

G
B

69
56

.6
G

B
16

.6
G

B
2.

2G
B

2.
2G

B

93
9.

5G
B

22
0.

5G
B

22
0.

5G
B

22
0.

5G
B

23
0G

B
9.

1G
B

6.
8G

B
6.

8G
B

bc bfs cc kcore pr sssp

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

0

10

20

30

40

50

0

100

200

300

0

500

1000

1500

0

10

20

30

40

50

0

10

20

30

40

50

0

500

1000

1500

T
im

e
(s

ec
)

time Computation Non−overlapped Communication

11
89

.6
G

B
10

6.
2G

B
75

.5
G

B
75

.5
G

B

15
8.

6G
B

19
.8

G
B

10
.8

G
B

10
.8

G
B

19
8G

B
33

G
B

21
.4

G
B

21
.4

G
B

16
9.

7G
B

28
.4

G
B

6.
8G

B
6.

8G
B

19
82

.7
G

B
96

4.
7G

B
95

9.
9G

B
96

4.
7G

B 21
8.

1G
B

37
.7

G
B

25
.9

G
B

25
.9

G
B

bc bfs cc kcore pr sssp

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

0

10

20

30

0

100

200

300

0

5

10

15

0

5

10

15

20

0

5

10

15

20

0

50

100

150

200

T
im

e
(s

ec
)

time Computation Non−overlapped Communication

Fig. 5. 32 KNL hosts on Stampede: clueweb12 (left) and kron30 (right). Different variants are:
UnOpt (UO), Fine-Grained opt (FG), Fine-grained+On-demand opt (FO), Hand-Tuned(HT)

41
5.

7G
B

26
4.

3G
B

23
.8

G
B

23
.8

G
B

45
.5

G
B

9.
9G

B
3.

5G
B

3.
5G

B

15
0.

1G
B

17
.6

G
B

8.
4G

B
8.

4G
B

78
.6

G
B

61
.3

G
B

1.
8G

B
1.

8G
B

30
8.

7G
B

30
7.

1G
B

14
1.

2G
B

14
1.

6G
B

25
3.

3G
B

18
.6

G
B

7.
9G

B
7.

9G
B

bc bfs cc kcore pr sssp

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

0

2

4

6

0

10

20

30

40

0.0

2.5

5.0

7.5

10.0

0

1

2

3

4

0

1

2

3

4

0

10

20

30

T
im

e
(s

ec
)

time Computation Non−overlapped Communication

Fig. 6. 16 GPU devices on Bridges: rmat28

61
.3

G
B

74
.3

G
B

69
.3

G
B

17
93

8.
9G

B

18
.1

G
B

17
.9

G
B

19
.8

G
B

50
81

.6
G

B

14
.2

G
B

10
G

B
10

G
B

31
86

.8
G

B

cvc hvc ec

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

U
O

F
G

F
O

H
T

0

500

1000

1500

0

1000

2000

0

1000

2000

3000

T
im

e
(s

ec
)

time Computation Non−overlapped Communication

Fig. 7. 32 KNL hosts on Stampede: parti-
tionings for bc on clueweb12

time speedup of 3.4×. Fine-grained and on-demand communication optimizations (FO)
are thus essential to match the performance of HT on both CPUs and GPUs.

Abelian compiler-generated programs can support different partitioning policies,
and we study whether they can fully exploit Gluon’s partition-aware optimizations like
HT. Figure 7 presents the comparison results for bc on clueweb12 using different parti-
tioning policies namely, cartesian vertex cut [5] (cvc), hybrid vertex-cut [8] (hvc), and
outgoing edge cut (ec). This shows that FO matches the performance of HT, although
FG does not. This shows that the compiler can capture sufficient domain-specific knowl-
edge to aid the Gluon runtime in performing partition-aware optimizations.

5 Related work

Distributed graph processing systems: Many frameworks [18, 12, 31, 8, 33, 15, 10] exist
which provide a runtime to simplify writing distributed graph analytics algorithms. Like
Abelian, these systems use a vertex programming model and bulk-synchronous parallel
(BSP) execution. Abelian is the first compiler that synthesizes the required commu-
nication. Our evaluation shows that the programs generated by the Abelian compiler
that use the Gluon [10] runtime match hand-tuned programs in the Gluon system and

12 G. Gill et al.

outperform those in the Gemini [33] system.
Single-host heterogeneous graph processing systems: There are several frameworks

for graph processing on a single GPU [22], multiple GPUs [4, 23, 32] and multiple
GPUs with a CPU [11]. All of these are restricted to a single physical node that con-
nects all devices unlike our system, and consequently, they cannot handle graphs as
large as the ones our system can. Abelian leverages the throughput optimizations in
the IrGL [22] compiler that are essential for performance on power-law graphs. Un-
like IrGL, which compiles an intermediate-level program representation to CUDA, the
Abelian compiler not only generates this from a high-level C++ program but also syn-
thesizes synchronization code to execute the compiled code on multiple devices in mul-
tiple hosts.

Compilers for distributed or heterogeneous architectures: Liquid Metal [3] com-
piles the Lime language to heterogeneous CPUs, GPUs, and FPGAs. Dandelion [27]
compiles high-level LINQ programs to distributed heterogeneous systems. Green-Marl [14]
is a DSL that is compiled to Pregel. Brown et al. [6] compile a data-parallel intermedi-
ate language DMLL to multicores, clusters, and GPUs. Upadhyay et al. [30] compile a
domain-specific language, Falcon, to Giraph code for CPU clusters and MPI+OpenCL
code for GPU clusters, but it does not do GPU-specific computation restructurings like
nested parallelism which Abelian compiler does using IrGL. In all these compilers,
the granularity of communication is an object or field, whereas Abelian identifies fine-
grained elements of a label-array and communicates them precisely using the Gluon
runtime. Moreover, none of the existing compilers use domain-specific analysis and
computation restructurings for graph analytical applications like Abelian.

6 Conclusions

Abelian is the first graph analytics compiler that can produce high-performance, dis-
tributed, heterogeneous implementations from high-level, shared-memory, single ad-
dress space specification of graph algorithms. It splits operators and eliminates work-
lists to make the programs bulk-synchronous. The fine-grained, on-demand commu-
nication optimizations in Abelian yield a speedup of 3.4× over field-specific, coarse-
grained communication code generated by existing compilers. This enables the gen-
erated implementations to match the performance of hand-tuned implementations for
distributed CPUs and distributed GPUs in the state-of-the-art Gluon system using the
same computation engines on the same hardware. The distributed-CPU implementa-
tions produced by Abelian also yield a geometric mean speedup of 2.4× over programs
in the distributed CPU-only system Gemini on the same hardware. This shows that the
Abelian compiler can manage heterogeneity and distributed-memory successfully while
generating high-performance code, even in comparison to homogeneous systems.

Acknowledgments

This research was supported by NSF grants 1337217, 1337281, 1406355, 1618425,
1725322 and by DARPA contracts FA8750-16-2-0004 and FA8650-15-C-7563. This
work used XSEDE grant ACI-1548562 through allocation TG-CIE170005. We used

Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms 13

the Bridges system, supported by NSF award number ACI-1445606 at the Pittsburgh
Supercomputing Center, and the Stampede system at the Texas Advanced Computing
Center at The University of Texas at Austin.

References

1. Pittsburgh Supercomputing Center (PSC) (2018), https://www.psc.edu/
2. Texas Advanced Computing Center (TACC), The University of Texas at Austin (2018),

https://www.tacc.utexas.edu/
3. Auerbach, J., Bacon, D.F., Burcea, I., Cheng, P., Fink, S.J., Rabbah, R.,

Shukla, S.: A compiler and runtime for heterogeneous computing. DAC (2012).
https://doi.org/10.1145/2228360.2228411, http://doi.acm.org/10.1145/2228360.2228411

4. Ben-Nun, T., Sutton, M., Pai, S., Pingali, K.: Groute: An asynchronous
multi-gpu programming model for irregular computations. PPoPP (2017).
https://doi.org/10.1145/3018743.3018756, http://doi.acm.org/10.1145/3018743.3018756

5. Boman, E.G., Devine, K.D., Rajamanickam, S.: Scalable matrix computations on large scale-
free graphs using 2d graph partitioning. In: 2013 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). pp. 1–12 (Nov 2013).
https://doi.org/10.1145/2503210.2503293

6. Brown, K.J., Lee, H., Rompf, T., Sujeeth, A.K., De Sa, C., Aberger, C., Oluko-
tun, K.: Have abstraction and eat performance, too: Optimized heterogeneous com-
puting with parallel patterns. CGO (2016). https://doi.org/10.1145/2854038.2854042,
http://doi.acm.org/10.1145/2854038.2854042

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A Recursive Model for Graph Mining, pp.
442–446 (2004). https://doi.org/10.1137/1.9781611972740.43

8. Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: Differentiated graph computation and
partitioning on skewed graphs. EuroSys (2015). https://doi.org/10.1145/2741948.2741970,
http://doi.acm.org/10.1145/2741948.2741970

9. Dang, H.V., Dathathri, R., Gill, G., Brooks, A., Dryden, N., Lenharth, A., Hoang, L., Pingali,
K., Snir, M.: A lightweight communication runtime for distributed graph analytics. IPDPS
(2018)

10. Dathathri, R., Gill, G., Hoang, L., Dang, H.V., Brooks, A., Dryden, N., Snir, M., Pingali, K.:
Gluon: A communication optimizing framework for distributed heterogeneous graph analyt-
ics. PLDI (2018)

11. Gharaibeh, A., Beltrão Costa, L., Santos-Neto, E., Ripeanu, M.: A yoke of oxen and a thou-
sand chickens for heavy lifting graph processing. PACT (2012)

12. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph:
Distributed graph-parallel computation on natural graphs. OSDI (2012),
http://dl.acm.org/citation.cfm?id=2387880.2387883

13. He, R., McAuley, J.: Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering. WWW (2016). https://doi.org/10.1145/2872427.2883037,
https://doi.org/10.1145/2872427.2883037

14. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy
and efficient graph analysis. ASPLOS (2012). https://doi.org/10.1145/2150976.2151013,
http://doi.acm.org/10.1145/2150976.2151013

15. Jia, Z., Kwon, Y., Shipman, G., McCormick, P., Erez, M., Aiken, A.: A dis-
tributed multi-gpu system for fast graph processing. Proc. VLDB Endow. (Nov 2017).
https://doi.org/10.14778/3157794.3157799, https://doi.org/10.14778/3157794.3157799

14 G. Gill et al.

16. Lenharth, A., Nguyen, D., Pingali, K.: Parallel graph analytics. Commun. ACM 59(5), 78–87
(Apr 2016). https://doi.org/10.1145/2901919, http://doi.acm.org/10.1145/2901919

17. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker
graphs: An approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (Mar 2010),
http://dl.acm.org/citation.cfm?id=1756006.1756039

18. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. SIGMOD (2010).
https://doi.org/10.1145/1807167.1807184, http://doi.acm.org/10.1145/1807167.1807184

19. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus Topology-driven Irregular Com-
putations on GPUs. In: Proceedings of the 27th IEEE International Parallel and Distributed
Processing Symposium. IPDPS ’13, Springer-Verlag, London, UK (2013)

20. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. SOSP
(2013), http://doi.acm.org/10.1145/2517349.2522739

21. Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: A uniquely flexible HPC
resource for new communities and data analytics. In: Proceedings of the 2015 XSEDE Con-
ference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure. pp. 30:1–30:8.
XSEDE ’15, ACM, New York, NY, USA (2015). https://doi.org/10.1145/2792745.2792775,
http://doi.acm.org/10.1145/2792745.2792775

22. Pai, S., Pingali, K.: A compiler for throughput optimization of graph algorithms on GPUs.
In: OOPSLA (2016)

23. Pan, Y., Wang, Y., Wu, Y., Yang, C., Owens, J.D.: Multi-gpu graph analytics. IPDPS (May
2017). https://doi.org/10.1109/IPDPS.2017.117

24. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem, R., Lee, T.H.,
Lenharth, A., Manevich, R., Méndez-Lojo, M., Prountzos, D., Sui, X.: The TAO of paral-
lelism in algorithms. In: Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation. pp. 12–25. PLDI ’11 (2011), http://doi.acm.org/10.1145/1993498.1993501

25. Project, T.L.: The clueweb12 dataset (2013), http://lemurproject.org/clueweb12/
26. Prountzos, D., Manevich, R., Pingali, K.: Synthesizing parallel graph programs via auto-

mated planning. In: Programming Language Design and Implementation. PLDI’15 (2015)
27. Rossbach, C.J., Yu, Y., Currey, J., Martin, J.P., Fetterly, D.: Dandelion: A compiler and run-

time for heterogeneous systems. SOSP (2013). https://doi.org/10.1145/2517349.2522715,
http://doi.acm.org/10.1145/2517349.2522715

28. Stanzione, D., Barth, B., Gaffney, N., Gaither, K., Hempel, C., Minyard, T., Mehringer,
S., Wernert, E., Tufo, H., Panda, D., Teller, P.: Stampede 2: The evolution of
an XSEDE supercomputer. In: Proceedings of the Practice and Experience in Ad-
vanced Research Computing 2017 on Sustainability, Success and Impact. pp. 15:1–15:8.
PEARC17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3093338.3093385,
http://doi.acm.org/10.1145/3093338.3093385

29. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V.,
Lathrop, S., Lifka, D., Peterson, G.D., et al.: XSEDE: accelerating scientific discovery. Com-
puting in Science & Engineering 16(5), 62–74 (2014)

30. Upadhyay, N., Patel, P., Cheramangalath, U., Srikant, Y.N.: Large scale graph processing in
a distributed environment. In: Euro-Par 2017 Parallel Processing Workshops (2018)

31. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: A resilient distributed graph
system on spark. GRADES (2013)

32. Zhong, J., He, B.: Medusa: Simplified graph processing on gpus. IEEE TPDS (2014).
https://doi.org/10.1109/TPDS.2013.111

33. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: A computation-centric distributed graph
processing system. OSDI (2016), http://dl.acm.org/citation.cfm?id=3026877.3026901

