
A Study of Graph Analytics for Massive Datasets on Distributed Multi-GPUs

Vishwesh Jatala
The University of Texas at Austin

Austin, Texas, USA
vishwesh.jatala@austin.utexas.edu

Roshan Dathathri
The University of Texas at Austin

Austin, Texas, USA
roshan@cs.utexas.edu

Gurbinder Gill
The University of Texas at Austin

Austin, Texas, USA
gill@cs.utexas.edu

Loc Hoang
The University of Texas at Austin

Austin, Texas, USA
loc@cs.utexas.edu

V. Krishna Nandivada
IIT Madras

Chennai, Tamil Nadu, India
nvk@iitm.ac.in

Keshav Pingali
The University of Texas at Austin

Austin, Texas, USA
pingali@cs.utexas.edu

Abstract—There are relatively few studies of distributed
GPU graph analytics systems in the literature and they are
limited in scope since they deal with small data-sets, consider
only a few applications, and do not consider the interplay be-
tween partitioning policies and optimizations for computation
and communication.

In this paper, we present the first detailed analysis of graph
analytics applications for massive real-world datasets on a
distributed multi-GPU platform and the first analysis of strong
scaling of smaller real-world datasets. We use D-IrGL, the
state-of-the-art distributed GPU graph analytical framework,
in our study. Our evaluation shows that (1) the Cartesian
vertex-cut partitioning policy is critical to scale computation
out on GPUs even at a small scale, (2) static load imbalance
is a key factor in performance since memory is limited on
GPUs, (3) device-host communication is a significant portion
of execution time and should be optimized to gain performance,
and (4) asynchronous execution is not always better than bulk-
synchronous execution.

Keywords-Graphics Processing Units, Graph Processing, Dis-
tributed Systems, Performance.

I. INTRODUCTION

A number of frameworks have been proposed to simplify
the implementation of graph algorithms on GPUs. They
can be categorized broadly into two groups: (i) frameworks
for single-host multi-GPU systems, such as Gunrock [1]
and Groute [2], and (ii) frameworks for multi-host multi-
GPU systems, such as Lux [3] and D-IrGL [4], [5]. These
systems must address a common set of challenges such as
partitioning of graphs among GPUs, implementing efficient
communication among GPUs, and ensuring efficient com-
putation on each GPU.

A recent study [6] has analyzed breadth-first search on
distributed GPUs using synthetic graphs. However, it is not
clear how the results of the study can be extended to real-
world graphs and other applications. In particular, studies
on distributed CPUs [7], [8] have shown that (1) unlike
synthetic power-law graphs, large real-world graphs have a
relatively high diameter, so good performance on synthetic
graphs does not always translate to good performance on

real-world graphs, (2) different applications may perform
very differently, and (3) performance is very sensitive to the
policy used to partition the graph. No study of these issues
has been performed on distributed GPUs. In addition, there
are several computation and communication optimizations
that have been shown to be useful for distributed CPUs [4],
[5], but their interplay on distributed GPUs has not been
studied, especially for different partitioning policies.

In this paper, we present the first detailed analysis of
graph analytics applications for massive real-world datasets
on a distributed multi-GPU platform. For the study, we
use the state-of-the-art distributed GPU graph analytical
framework, D-IrGL [4], [5]. D-IrGL is built using the
Gluon communication substrate [4] and the IrGL compiler
framework [9]. D-IrGL provides a variety of partitioning
policies using a partitioner called CuSP [8]. It supports both
bulk-synchronous and bulk-asynchronous [5] execution. We
analyze a number of applications in D-IrGL using different
graph partitioning policies, namely edge-balanced edge-cut
(IEC/OEC) [3], hybrid vertex-cut (HVC) [10], and Cartesian
vertex-cut (CVC) [11]. We analyze the performance of
these applications in D-IrGL using different computation
and communication optimizations. We also evaluate applica-
tions using Lux, the only other distributed graph analytical
framework on GPUs, and analyze performance differences
between Lux and D-IrGL.

Our study offers key lessons for designers and users of
graph analytical frameworks for multiple GPUs as well as
designers of graph partitioning policies.

• Cartesian vertex-cut (CVC) is critical to scale the com-
putation to a large number of GPUs. We observe that
CVC almost always outperforms the other partitioning
policies on 16 or more GPUs. This is in contrast to prior
studies on CPUs (with bulk-synchronous execution) [7],
which found that edge-cuts were typically better at such
small scale. This is important as single-host multi-GPU
machines are now being designed with 16 GPUs (such
as NVIDIA DGX2), but existing single-host multi-

GPU graph analytics frameworks other than D-IrGL
currently do not support vertex-cuts.

• Prior studies on CPUs [7] have found that static load
balancing metrics, such as the number of edges in each
partition, are not strongly correlated to dynamic load
balance since the number of active vertices changes
unpredictably from round to round. However, our study
shows that these static load metrics are important
for multi-GPU execution for a different reason: they
determine the amount of memory needed to store the
graph in GPU memory, and imbalanced partitions may
prevent the computation from running at all. Therefore
statically balanced partitions are important for multi-
GPU machines.

In addition, our study identifies several improvements that
can be made to D-IrGL.

• Communication between devices and hosts consumes a
significant portion of the execution time. Performance
can be improved by overlapping communication with
computation and by communicating directly between
devices (using NVIDIA GPUDirect).

• In a few cases, bulk-asynchronous execution performs
worse than bulk-synchronous execution. Performance
can be improved by dynamically throttling the degree
of asynchronous execution.

The rest of the paper is organized as follows. Section II
provides background on graph analytics and multi-GPU
architectures. Section III provides an overview of distributed
GPU graph analytics. Section IV describes our experimen-
tal methodology. Section V presents our evaluation and
analysis. Related work and conclusions are presented in
Sections VI and VII, respectively.

II. BACKGROUND

A. Graph Analytics

A graph G = (V,E) consists of a set of vertices V and
a set of edges E. Each vertex and/or edge in the graph is
associated with one or more labels representing the state of
the algorithm. For the graph analytical applications studied
in this paper, algorithms read and update the state in rounds.
Algorithm execution ends when some termination condition
is met, such as when a bound on the number of iterations
is reached or when no vertex label can be updated.

State updates can be represented abstractly as an opera-
tor [12]. Operators are applied to active vertices in the graph,
and an application reads and updates labels in a small region
in the neighborhood of the active vertex. Vertex programs
are programs in which an operator’s neighborhood consists
only of immediate neighbors of the active vertex. Push-style
vertex programs read a vertex’s label and update the labels of
the neighbors of that vertex, while pull-style vertex programs
read the neighbor’s labels and update the label of the active
vertex.

Host 1

PCIe Bus

NVIDIA
Tesla P100

GPU1

NVIDIA
Tesla P100

GPU2

Host 32

PCIe Bus

NVIDIA
Tesla P100

GPU63

NVIDIA
Tesla P100

GPU64

Intel Omni-Path
Interconnect

CPU

DRAM

.....Device
Memory

Device
Memory

Device
Memory

Device
Memory

CPU

DRAM

Figure 1: A typical multi-host multi-GPU setup.

B. Multi-GPU Architectures

Figure 1 illustrates the architecture of a typical multi-
GPU system spanning one or more hosts connected using
a network interface such as Intel Omni-Path or Mellanox
FDR Infiniband. Each CPU may be connected to one or more
GPUs using an interface such as a PCI Express bus. Depend-
ing on the network topology, GPUs within the same host can
communicate directly (e.g., with NVIDIA GPUDirect Peer
to Peer) or via the host. Similarly, GPUs from different hosts
can communicate directly (e.g., NVIDIA GPUDirect RDMA
technology) or via the hosts.

A typical GPU architecture consists of a set of stream-
ing multiprocessors (SMs) that maintain several on-chip
resources: registers, ALUs, shared memory, and L1 cache.
The GPU also maintains a global (device) memory and L2
cache which can be accessed by any SM.

To parallelize a program on a single GPU, a programmer
performs the following tasks: (1) allocate the memory on the
host using malloc or cudaMallocHost (to allocate in pinned
memory), (2) transfer the data from the host to the GPU
device using cudaMemcpy, (3) perform the computation on
GPU, and (4) transfer the data back from GPU to host
using cudaMemcpy. The region of the program that needs
to be parallelized on the GPU is specified using a function
called kernel. The kernel is invoked with a specific number
of thread blocks (also known as Cooperative Thread Array
(CTA)) and a specific number of threads in each thread
block. The number of thread blocks that reside on each
SM depends on the number of available resources and the
resource requirement of each thread block. The threads of
a thread block are grouped into sets of 32 threads called
a warp, and all the threads in a warp execute program
instructions in a SIMT manner.

III. GRAPH ANALYTICS FOR DISTRIBUTED GPUS

In this section, we first give an overview of distributed
GPU graph analytics (Section III-A) and their distributed ex-
ecution model (Section III-B). We briefly describe the poli-
cies and heuristics in partitioning the graph (Section III-C).
We then briefly describe communication among those GPUs

(Section III-D) and computation optimization techniques on
each GPU (Section III-E).

A. Overview

To process a graph on multiple GPUs, the graph is
partitioned among GPUs. Vertices can be partitioned among
GPUs, in which case communication is required to access
the labels of remote vertices. Alternatively, a partitioner can
partition edges and create vertex proxies on each GPU for
the endpoints of the edges mapped to it. As a result, multiple
proxies could exist for the same vertex; the average number
of proxies per vertex is called the replication factor. For
each vertex in the original graph, one proxy is anointed
as the master proxy, and the other proxies are said to be
mirror proxies. Intuitively, master proxies are responsible for
computing the canonical values of vertex labels and com-
municating them to mirror proxies, which act like cached
copies of data from master proxies.

Each GPU processes the active vertices in its partition.
Graph algorithms are resilient to stale reads, so proxy labels
can be synchronized eventually rather than at every write as
is done in cache-coherent architectures. Multi-GPU graph
analytical frameworks transparently handle graph partition-
ing and communication among the GPUs and incorporate
techniques to optimize computation on each GPU. Differ-
ences among frameworks arise in the ways in which they
implement these functionalities. There are several single-
host multi-GPU graph analytical frameworks (restricted to
multiple GPUs on a single machine) like Gunrock [1] and
Groute [2]. However, as far as we know, there are only
two multi-host multi-GPU graph analytical frameworks: D-
IrGL [4], [5] and Lux [3]. In this study, we evaluate and
analyze both D-IrGL and Lux.

B. Distributed Execution Model

In multi-GPU implementations, communication is re-
quired to synchronize the state of the graph. This can be
done bulk-synchronously or asynchronously.

Bulk-synchronous parallel (BSP) execution is divided into
rounds. Each BSP round has a computation phase followed
by a communication phase. In the computation phase, each
GPU operates on its partition of the graph and updates the
labels on its local proxies. At the end of the phase of local
computation, a communication phase occurs in which these
updates are communicated to the GPUs that need them. Most
multi-GPU systems, including Lux, use BSP-style execution.

In asynchronous parallel execution, there is no notion of
global rounds; instead, each GPU performs computation and
communication independently. In this paper, we focus on
an asynchronous model called bulk-asynchronous parallel
(BASP) [5] execution. Execution occurs in local rounds,
and in each local round, each GPU alternates between
computation on its partition of the graph and sending or
receiving messages from other GPUs. There is no global

M
a
s
t
e
r
	
V
e
r
t
i
c
e
s

Destination	Vertices

2

5

1

1

3

2

4

2

2

4

1

1

3

4 43

1

1

3

3

2

2

4

4

1

1

3

3

2

2

4

4

5

5

7

7

6

6

8

8

5

7

7

6

6

8

8

5

5

7

7

6

6

8

8

5

5

7

7

6

6

8

8

3

1

2

3

4

5

6

7

8

S
o
u
r
c
e
	
V
e
r
t
i
c
e
s

Figure 2: Cartesian Vertex-Cut (CVC) for 8 devices [7].

synchronization or coordination among the GPUs. D-IrGL
supports both BASP and BSP execution and uses BASP by
default if the benchmark can be run asynchronously.

C. Graph Partitioning

Partitioning policies are generally divided into edge-cut
and vertex-cut policies. An incoming (or outgoing) edge-cut
assigns all incoming (or outgoing) edges of a vertex to the
same partition. The assignment of a vertex to a partition may
vary among edge-cuts. For example, an edge-balanced edge-
cut [3] assigns vertices to balance the number of edges across
partitions, while more complex edge-cuts such as XtraPulp’s
edge-cut [13] assign vertices based on neighborhood locality
and load balance. We use the term IEC (or OEC) to refer
to edge-balanced incoming (or outgoing) edge-cut in this
paper. Unlike an edge-cut, a vertex-cut has no restriction on
which partition an edge is assigned to. Many policies exist
for vertex cuts, such as the hybrid vertex-cut (HVC) [10]
and the Cartesian vertex-cut (CVC) [11], [4], which is a 2D
cut of the adjacency matrix of the graph (see Figure 2).

Both computation and communication may be affected by
the choice of partitioning policy. Computation is affected by
the differences in the partitions on each host: for example,
one host may have to do more work than other hosts. In BSP-
style execution like in Lux, where all hosts must occasionally
synchronize before continuing computation, these straggler
hosts can bottleneck execution. In BASP-style execution
supported by D-IrGL, the impact of stragglers on execution
time may be reduced. Communication is affected by the
required synchronization of proxy vertices across all hosts.
The distribution of master and mirror proxies can signifi-
cantly impact the communication time.

D-IrGL is the only multi-GPU graph analytical framework
that supports arbitrary partitioning policies, including vertex-
cuts. All other frameworks whether single-host or multi-host
support only edge-cuts; in particular, Lux [3] supports only
IEC. In this study, we will analyze Lux with IEC and D-
IrGL with OEC, IEC, HVC, and CVC.

D. Communication Optimizations

To communicate between two devices, all existing multi-
GPU frameworks transfer the message from the sending
GPU to the sender host’s to the receiver’s host, which finally
transfers it to the receiver GPU; in other words, the hosts act
as a router for the device. Communication can be optimized
in several ways. For example, Lux takes advantage of pinned
memory to communicate updates among GPUs on the same
machine. We will briefly describe two other optimizations.

1) Partition-Specific Optimizations: A reduction from
mirror to master proxies followed by a broadcast from
master to mirror proxies on all hosts is sufficient to syn-
chronize proxies regardless of the partitioning policy used,
but it is possible to optimize the required communication by
leveraging knowledge of what the computation requires as
well as the structural invariants of a partitioning policy [4].
To illustrate this, consider a graph application that only reads
data from the source of an edge and only writes data to
a destination of an edge. If data only needs to be read at
a source of an edge, then only proxies that have outgoing
edges need to have the most up-to-date value from master.
Therefore, if a partitioning policy assigns all outgoing edges
of a vertex to the master proxy (i.e., outgoing edge-cut),
there is no need to broadcast the master proxy’s value to
mirror proxies as mirror proxies do not read the value: it
suffices to reduce written values from mirror proxies to the
master as only the master proxy needs to read it.

Structured vertex-cuts such as CVC can leverage their
invariants to avoid all-to-all reduce and broadcast as well. To
understand this, consider the adjacency matrix of the graph.
Figure 2 illustrates CVC [7]. In CVC, the rows (outgoing
edges) are first partitioned in a blocked fashion (labeled
“masters” in Figure 2). The columns (incoming edges) are
blocked the same way as rows. The matrix is then placed into
a grid: in this example, it is a 4×2 grid (for 8 hosts). Finally,
within each grid row, the blocks are distributed in a cyclic
fashion to the hosts that are in that grid row. For example, the
first grid row contains hosts 1 and 2, so blocks are distributed
between the two in that grid row. This partitioning places
mirror proxies with outgoing edges on the same grid row as
its master proxy (conversely, a mirror proxy with incoming
edges is on the same grid column as its master proxy). Since
all proxies with outgoing edges are along the grid row, it
suffices to broadcast only to hosts in the grid row (only
proxies with outgoing edges need the updated value from
the master), and since all proxies with incoming edges are
along the grid column, it suffices to reduce only with hosts
in the grid column (only proxies with incoming edges will
have updates to be reduced to the master). This removes
all-to-all communication [7].

D-IrGL transparently optimizes communication based on
the structural invariants in the policy while also supporting
arbitrary policies. As all other frameworks support only

edge-cuts, they optimize communication for that specific
structural invariant.

2) Update-Driven Optimization: Different proxies are
updated in different rounds as the set of active vertices
changes dynamically. For example, no proxies of a vertex
may be updated in a given round, so no synchronization
needs to occur among those proxies in that round. D-
IrGL tracks updates to proxies and only synchronizes the
updated values, while eliding translating between global
and local addresses of the proxies during communication1.
Tracking updates to proxies has its own overheads, so Lux
synchronizes all shared data in every round (consequently,
address translation is straightforward).

E. Computation Optimizations

Once the graph is partitioned and loaded on the GPU,
each GPU performs computation on its portion of the graph.
In each local round of BSP or BASP, each GPU visits
active vertices in the graph, distributes the edges of those
vertices among threads, and applies the operator. Graph
frameworks have explored a number of implementations for
computation [14], and we briefly describe some of them
below.

1) Visiting Active Vertices: There are two high-level
strategies for visiting active vertices in each round: topology-
driven and data-driven [15]. In topology-driven execution, all
the graph vertices are assumed to be active in each round,
and the operator is applied to all of them. In data-driven
execution, the operator is applied only to a subset of vertices
where there might be work to do. Intuitively, data-driven
execution is preferable if only a small subset of the vertices
is active in a round.

2) Distributing Edges to Threads: Given the vertices that
must be processed in a round, the computational load of
applying the operator to these vertices must be distributed
among the GPU threads. In power-law graphs, vertices
may have very different degrees, so distributing active
vertices among threads may lead to poor load balance. D-
IrGL [4] supports the TWC (Thread/Warp/CTA Expansion)
strategy [16] which leverages the architectural features to
distribute the load. Depending on the degree of a vertex, it
assigns the edges of a vertex to threads of a thread block, to
threads of a warp, or to a single thread. This can handle load
imbalance problems that are present within the thread block,
but it does not handle the load imbalance among the thread
blocks. D-IrGL by default uses an Adaptive Load Balancer
(ALB) [17] strategy that assigns the edges of a very high
degree vertex among thread blocks and uses the TWC to
distribute the edges of all the other vertices. In contrast,

1Generally, a communication framework sends the global ID of the vertex
along with the updated data so the receiver can convert the global ID to a
local ID. Gluon elides the sending of these global addresses by memoizing
the send order so that each host can identify data based on the order it is
received.

Table I: Inputs and their key properties.

rmat23 orkut indochina04 twitter50 friendster uk07 clueweb12 uk14 wdc14

|V | 8.3M 3.1M 7.4M 51M 66M 106M 978M 788M 1,725M
|E| 13.4M 234M 194M 1,963M 1,806M 3,739M 42,574M 47,615M 64,423M
|E|/|V | 16 76 26 38 28 35 43.5 60.4 37
max Dout 35M 33,313 6,985 779,958 5,214 15,402 7,447 16,365 32,848
max Din 9,776 33,313 256,425 3.5M 5,214 975,418 75M 8.6M 46M
Approx. Diameter 3 6 2 12 21 115 501 2498 789
Size (GB) 1.1 1.8 1.6 16 28 29 325 361 493

Lux distributes the edges of each vertex (irrespective of its
degree) to threads within a thread block.

IV. EXPERIMENTAL SETUP

We first describe the multi-GPU platforms (Section IV-A)
and then the multi-GPU frameworks that we study on these
platforms (Section IV-B). We then describe our experimental
methodology (Section IV-C).

A. Multi-GPU Platforms

We study the performance of the multi-GPU graph analyt-
ical frameworks on two experimental platforms: a multi-host
multi-GPU production cluster and a single-host multi-GPU
system. The machine used for the multi-host experiments
is the Bridges cluster at the Pittsburgh Supercomputing
Center [18]. We used up to 64 NVIDIA Tesla P100 GPUs
located on 32 distributed machines with 128GB DRAM
each. Each machine has 2 Intel Broadwell E5-2683 v4 CPUs
with 16 cores per CPU, and they are connected through the
Intel Omni-Path Architecture. Each P100 GPU has 16GB
of memory. We call the single-host multi-GPU system as
Tuxedo. Tuxedo has 2 Intel Xeon E5-2650 v4 CPUs with
12 cores and 96 GB DRAM per CPU. It contains a total of
6 GPUs: the first 4 GPUs are NVIDIA Tesla K80 and the
other 2 are NVIDIA GeForce GTX 1080. Each K80 GPU
has 12GB of memory, and each GTX 1080 GPU has 8GB
of memory.

We use five benchmarks in our experiments: breadth-
first search (bfs), weakly connected components (cc), k-
core (kcore), pagerank (pr), and single-source shortest path
(sssp). These benchmarks are used widely to measure the
performance of graph frameworks [1], [2], [3], [4], [5], [7].
In our experiments, the vertex with the highest out-degree
is used as the source vertex for bfs and sssp. For all inputs,
we add randomized edge-weights. Algorithms are run to
convergence. The reported execution time of applications
excludes the graph loading, partitioning, and construction
time2. Reported runtime numbers are an average of three
runs.

Table I lists the inputs used in our evaluation and their
properties. The rmat23 graph is a randomized scale-free

2Comparing graph partitioning time is not our focus. Graph partitioning
is performed on CPUs; in practice, graphs can be partitioned once,
and in-memory representations of the partitions can be written to disk.
Applications can then load these partitions directly.

graph generated using a rmat generator [19]; orkut, friend-
ster [20], and twitter50 [21] are social network graphs;
indochina04, uk07, clueweb12, uk14 [22], [21], [23], and
wdc14 [24] are web-crawls.

All the graphs have a power-law degree distribution. Such
graphs typically have a low diameter, but large web-crawls
like uk14 have a non-trivial diameter due to long tails. The
inputs in Table I are divided into three categories: small
graphs are used for single-host multi-GPU experiments on
up to 6 GPUs whereas medium and large graphs are used
for multi-host multi-GPU experiments on up to 64 GPUs.

B. Multi-GPU Graph Analytical Frameworks

We experiment with four multi-GPU graph analytical
frameworks: D-IrGL [4] and Lux [3], which support both
single-host multi-GPU and multi-host multi-GPU architec-
tures, and Gunrock [1] and Groute [2], which support only
single-host multi-GPU architectures. D-IrGL and Lux are
the only distributed GPU graph analytical frameworks. We
chose Gunrock because it is a widely used and stable single-
host multi-GPU framework and Groute because it is the only
framework other than D-IrGL that supports asynchronous
communication between GPUs. On Tuxedo, we evaluated
all the four frameworks using up to 6 GPUs. On Bridges,
we evaluated D-IrGL and Lux on up to 64 GPUs.

D-IrGL is built using the Gluon communication sub-
strate [4] with the CUDA code generated by the IrGL
compiler [9]. The IrGL compiler includes computation op-
timizations like the TWC [16] and ALB [17] load balanc-
ing schemes. D-IrGL provides both push-style data-driven
implementations and pull-style topology-driven implementa-
tions for each benchmark. We use topology-driven execution
for pr (residual based algorithm) and data-driven execution
for the rest.

Lux is built using CUDA on top of the Legion [25] and
GASNet [26] runtimes. We use only cc and pr in Lux as
the others were incorrect or not available. They use data-
driven implementation for cc and topology-driven for pr
(recomputes the rank of each vertex in each round). pr on
Lux does not have a run until convergence option, so we
ran it for the same number of rounds executed by pr in
D-IrGL. Lux uses its in-built IEC partitioning policy (we
observed that it does not do dynamic repartitioning and we
have notified the authors).

Gunrock [1] extends a single GPU graph processing
library [27]. It includes LB load balancing scheme (that
balances the edges of a vertex, irrespective of its degree,
among all thread blocks) and application specific optimiza-
tions for sssp and cc. It also provides direction-optimizing
traversal for bfs. It provides a set of pre-defined partitioned
policies. We choose the default random partitioning strategy
as recommended by Gunrock. Its pr produced incorrect
output (the pagerank values did not match those produced
by pr in the other frameworks), so we omit it in our
evaluation. Gunrock uses data-driven execution for all the
other benchmarks.

Groute [2] leverages the underlying multi-GPU network
topology and low-level networking features, and it provides
programming constructs for writing asynchronous multi-
GPU programs. Groute uses data-driven algorithms for all
the benchmarks except cc (unlike other frameworks, its cc
uses a pointer-jumping algorithm) and uses the edge-cut
partitioning provided by METIS [28].

C. Evaluation Methodology

We chose benchmarks implemented in the D-IrGL frame-
work. Some of these benchmarks have been implemented
in Lux, so we analyze the key performance differences
between Lux and D-IrGL. Since there are many single-host,
multi-GPU frameworks like Gunrock and Groute, it is also
interesting to study the performance of D-IrGL on single-
machine platforms. For these studies, we use smaller graphs.

As Lux supports only IEC, we first compare it with
D-IrGL using IEC. Although both produce edge-balanced
edge-cuts, the ones produced by D-IrGL may be different
from that of Lux. Nevertheless, we modified D-IrGL to
use the same partitions that are produced by Lux if it was
possible (i.e., no crash as well as access to Lux partitions
used). We analyzed different optimizations and variants in
D-IrGL:

1) Computation optimization — TWC vs. ALB: D-IrGL
supports both TWC and ALB load balancing schemes,
but uses ALB by default. ALB is expected to be at
least as good as TWC, and TWC is expected to be
at least as good as the load balancing scheme used
in Lux. The performance at scale is typically limited
by communication, so the difference between them is
expected to be small at scale.

2) Communication optimization — AS vs. UO: Lux
synchronizes all shared (AS) proxies irrespective of
whether they are updated or not. D-IrGL has an option
to use AS, but by default, it tracks updates and synchro-
nizes the updated values only (UO). UO is expected to
be at least as good as AS, although tracking updates
has overheads.

3) Execution model optimization — Sync vs. Async: Lux
uses bulk-synchronous (Sync) execution, while D-IrGL

Table II: Fastest execution time (sec) of all frameworks
using the best-performing number of GPUs on the single-
host multi-GPU system, Tuxedo (GPU count in parentheses).

Benchmark Platform rmat23 orkut indochina04

bfs

Gunrock 0.02 (1) 0.03 (6) 0.00 (6)
Groute 0.56 (1) 0.06 (6) 0.01 (1)
Lux - - -
D-IrGL (IEC) 0.03 (6) (IEC) 0.06 (6) (IEC) 0.01 (6)

cc

Gunrock 0.21 (2) 0.13 (6) 0.52 (6)
Groute 0.06 (6) 0.04 (6) 0.08 (6)
Lux 0.48 (6) 0.22 (4) 0.69 (4)
D-IrGL (HVC) 0.08 (6) (IEC) 0.01 (6) (CVC) 0.11 (6)

pr

Gunrock - - -
Groute 25.06 (2) 3.82 (6) 1.06 (4)
Lux 1.30 (4) 2.74 (4) 4.09 (4)
D-IrGL (IEC) 0.5 (6) (OEC) 2.76 (6) (OEC) 1.33 (6)

sssp

Gunrock 0.19 (6) 0.28 (6) 0.01 (6)
Groute 1.02 (4) 0.07 (6) 0.05 (1)
Lux - - -
D-IrGL (IEC) 0.03 (6) (CVC) 0.16 (6) (IEC) 0.02 (4)

Table III: Maximum memory usage (in GBs) across 6 GPUs
of all frameworks for cc on 6 GPUs of the single-host multi-
GPU system, Tuxedo (Lux uses a static memory allocation).

System rmat23 orkut indochina04

Gunrock 1.29 0.75 1.24
Groute 0.50 0.42 0.74
Lux 5.85 5.85 5.85
D-IrGL 0.36 0.21 0.33

uses bulk-asynchronous (Async) execution by default
as it is expected to better than Sync.

Some of these optimizations have been studied separately in
prior work [17], [4], [5], but it is not clear how they interact
with each other and with different partitioning policies. In
particular, their impact on large datasets at scale has not
been studied. Studying each combination of these would
be prohibitive, so we study them orthogonally. We start
with the baseline variant (Var1) — TWC + AS + Sync.
Then, we study ALB + AS + Sync (Var2) and ALB + UO
+ Sync (Var3). Finally, we study the variant with all the
optimizations — ALB + UO + Async (Var4, which is the
default in D-IrGL). We then examine the effect of changing
the partitioning policy.

V. EXPERIMENTAL RESULTS

We first present results for single-host multi-GPU frame-
works (Section V-A). Then, we analyze the results for multi-
host multi-GPU frameworks (Sections V-B and V-C).

A. Single-Host Multi-GPU Graph Analytics

We evaluate all benchmarks in all the frameworks using
the small graphs on 1, 2, 4, and 6 GPUs of Tuxedo. Table II
shows the best performance of each framework. The best-
performing number of GPUs is in parentheses (less than
6 implies that the framework did not scale). Gunrock is the
only framework that uses direction-optimization for bfs, and

friendster twitter50 uk07

b
fs

c
c

k
c
o

re
p

a
g

e
ra

n
k

s
s
s
p

2 4 8 1
6

3
2

6
4 2 4 8 1
6

3
2

6
4 2 4 8 1
6

3
2

6
4

0.25
0.50
1.00
2.00
4.00

1

8

64

0.25

1.00

4.00

16.00

8

32

128

512

0.5

1.0

2.0

4.0

Number of GPUs

E
x
e

c
u

tio
n

 t
im

e
 (

s
e

c
)

Lux
Var1
Var2
Var3
Var4

Figure 3: Strong scaling (log-log scale) of D-IrGL variants
and Lux for medium graphs on Bridges (2 GPUs share a
machine).

Groute uses pointer-jumping algorithm for cc. Consequently,
they have an algorithmic advantage. Nonetheless, D-IrGL is
either competitive with the other frameworks or outperforms
them on this single-host multi-GPU platform. Thus, D-IrGL
is a suitable framework to study the scaling out behavior of
graph analytics on multi-host multi-GPUs.

We observed that we were able to run D-IrGL for the
medium graphs on Tuxedo, whereas all the other frameworks
ran out of memory. To analyze this, for the small graphs,
we measured the memory consumed as the maximum across
the 6 GPUs for each framework and we report it for cc in
Table III. D-IrGL consumes less memory than the others
and handles larger graphs on the same number of GPUs.

B. Multi-Host Multi-GPU Graph Analytics: Optimizations

In this subsection, we evaluate the IEC policy for both
D-IrGL and Lux. We were not able to run Lux benchmarks
for any of the large graphs due to memory problems3, even
on 64 GPUs. As noted earlier, the IEC partitions are the
same for D-IrGL and Lux (when there were no crashes).
As explained in Section IV-C, we evaluate four different
variants of D-IrGL: (1) Var1 (baseline): TWC + AS + Sync,
(2) Var2: ALB + AS + Sync, (3) Var3: ALB + UO + Sync,
and (4) Var4 (default): ALB + UO + Async.

3When Lux is launched, programmers specify the estimated amount of
GPU memory and zero-copy (pinned) memory needed to run it. Even with
the maximum possible GPU memory and recommended zero-copy memory,
it did not run.

4
9

.2
G

B

4
9

.2
G

B

3
.4

G
B

3
.5

G
B

4
4

.5
G

B

4
4

.5
G

B

4
.1

G
B

4
.1

G
B

1
8

0
.3

G
B

1
8

0
.3

G
B

4
.3

G
B

4
.6

G
B

1
8

9
.7

G
B

1
8

9
.7

G
B

1
8

1
.6

G
B

2
4

3
.1

G
B

5
8

.6
G

B

5
8

.6
G

B

1
2

.7
G

B

1
4

.6
G

B

2
3

.1
G

B

2
3

.1
G

B

1
.8

G
B

1
.8

G
B

2
1

.4
G

B

2
1

.4
G

B

4
G

B

4
G

B

5
4

.8
G

B

5
4

.8
G

B

1
.7

G
B

1
.7

G
B

2
2

9
.4

G
B

2
2

9
.4

G
B

1
2

2
.5

G
B

1
6

6
.8

G
B

2
9

.7
G

B

2
9

.7
G

B

5
.8

G
B

6
.2

G
B

1
1

.1
G

B

1
1

G
B

0
.2

G
B

0
.2

G
B

9
G

B

9
.2

G
B

0
.4

G
B

0
.4

G
B

5
.1

G
B

5
.1

G
B

0
.1

G
B

0
.1

G
B

1
5

G
B

1
5

G
B

4
.9

G
B

5
.3

G
B

1
6

.7
G

B

1
6

.6
G

B

1
.1

G
B

1
.1

G
B

friendster twitter50 uk07
b

fs
c
c

k
c
o

re
p

a
g

e
ra

n
k

s
s
s
p

V
a

r1

V
a

r2

V
a

r3

V
a

r4

V
a

r1

V
a

r2

V
a

r3

V
a

r4

V
a

r1

V
a

r2

V
a

r3

V
a

r4

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

0

2

4

6

8

0

5

10

15

0

1

2

3

T
im

e
 (

s
e

c
)

Min Wait Device Comm. Max Compute

Figure 4: Breakdown of execution time of different variants
of D-IrGL for medium graphs on 32 P100 GPUs of Bridges.

Figure 3 shows the strong scaling behavior of D-IrGL
variants and Lux programs on medium graphs using up to
64 GPUs. The missing points for both D-IrGL and Lux
indicate that the benchmarks failed either due to memory
limits or crashes. Figures 4 and 5 show the breakdown in
execution time on 32 and 4 GPUs, respectively. We measure
the computation time on each device (GPU) and report the
maximum among them. We also measure the time spent on
each corresponding host (CPU) waiting (blocking) to receive
messages from another host and report the minimum among
them. We report the rest of the execution time (maximum
among devices) as the non-overlapping communication time
between the device and host. In addition, we report the
communication volume (in GB) on each bar. Figure 6 shows
the breakdown in execution time on 64 GPUs for large
graphs.

1) Lux vs. D-IrGL baseline (Var1): We analyze Lux by
comparing it with the baseline Var1. This turns off specific
optimizations in D-IrGL that are not present in Lux. As
observed in Figure 3, Lux does not scale beyond 4 GPUs and
Var1 always outperforms Lux. However, as seen in Figure 5,
both Var1 and Lux perform similarly in the computation
phase because both can balance load within the thread block
but not among the thread blocks. Var1, even with AS, spends
little time in synchronization among hosts (Min Wait Time).
For 8 or more hosts, most of Lux’s runtime is spent waiting.

friendster twitter50 uk07

c
c

p
a

g
e

ra
n

k

D-IrGL
 (Var1)

Lux D-IrGL
 (Var1)

Lux D-IrGL
 (Var1)

Lux

0

5

10

15

20

0

25

50

75

100

T
im

e
 (

s
e

c
)

Min Wait Device Comm. Max Compute

Figure 5: Breakdown of execution time of Lux and D-IrGL
for medium graphs on 4 P100 GPUs of Bridges.

2) Computation Optimizations — TWC vs. ALB: D-IrGL
supports ALB [17], which can dynamically balance the load
among the thread blocks within the GPU. The only differ-
ence between Var1 and Var2 is that Var2 uses ALB while
Var1 uses TWC. Figures 3, 4, and 6 show that Var2 performs
similar to Var1 in most cases. However, for particular cases
such as pagerank on uk-2007 as well as clueweb12 and
uk-2014, Var2 performs better. Figure 6 shows that Var2
spends less time in computation than Var1 for pagerank on
both clueweb12 and uk-2014. This is because pagerank uses
pull-style algorithm that reads the incoming neighbors of a
vertex to update its label, and the maximum in-degree for
these inputs is huge (shown in Table I). Var1 uses TWC
to distribute the edges of high in-degree vertices within the
threads of a thread block, leading to a huge load imbalance
among the thread blocks. Var2 uses ALB which dynamically
detects the presence of thread block load imbalance and dis-
tributes the load evenly among all thread blocks within the
GPU. All the other benchmarks use push-style algorithms
that read the vertex’s label and updates outgoing neighbors,
and the same inputs have much lower maximum out-degree
compared to maximum in-degree (Table I). As a result, the
benchmarks do not suffer from thread block load imbalance.
Consequently, the computation times (and execution times)
of Var1 and Var2 are similar for the other benchmarks.

3) Communication Optimizations — AS vs. UO: D-IrGL
supports tracking updates and sending only the updated
values (UO). Var3 uses UO while Var2 sends all the shared
values (AS). Figures 3, 4, and 6 show that Var3 outperforms
Var2 for almost all cases (except uk-2007 on 64 GPUs). Var3
is faster than Var2 because not all vertices are updated in ev-
ery bulk-synchronous (BSP) round, and synchronizing labels
of all vertices (AS) leads to unnecessary communication.
We observe that Var3 reduces host-device communication
volume and time significantly in almost all cases. For uk07

2
9

0
4

.3
G

B

2
9

0
2

.3
G

B

1
0

.9
G

B

1
1

.8
G

B

8
1

4
.8

G
B

8
1

4
.8

G
B

2
1

.8
G

B

2
3

.2
G

B

4
2

3
2

.2
G

B

4
2

3
2

.2
G

B

2
.6

G
B

2
.7

G
B

9
4

2
.7

G
B

9
4

2
.7

G
B

2
3

6
.1

G
B

3
9

8
.7

G
B

2
9

9
9

.9
G

B

2
9

9
4

.1
G

B

5
9

.6
G

B

7
0

.2
G

B

1
2

4
1

.1
G

B

1
2

4
1

.1
G

B

2
.4

G
B

2
.7

G
B

1
4

4
2

.2
G

B

7
.1

G
B

8
.2

G
B

6
3

8
.9

G
B

6
3

8
.9

G
B

1
G

B

1
G

B

1
9

8
.6

G
B

1
9

8
.6

G
B

5
2

.5
G

B

6
7

.8
G

B

1
2

4
1

.1
G

B

1
2

4
1

.1
G

B

1
5

.7
G

B

1
7

G
B

clueweb12 uk14
b

fs
c
c

k
c
o

re
p

a
g

e
ra

n
k

s
s
s
p

V
a

r1

V
a

r2

V
a

r3

V
a

r4

V
a

r1

V
a

r2

V
a

r3

V
a

r4

0

100

200

0

50

100

0

50

100

150

200

250

0

100

200

300

400

0

100

200

300

400

T
im

e
 (

s
e

c
)

Min Wait Device Comm. Max Compute

Figure 6: Breakdown of execution time of different variants
of D-IrGL for large graphs on 64 P100 GPUs of Bridges.

with sssp on 64 GPUs (which executes 155 BSP rounds),
we observe that the average message size was reduced from
∼2MB to ∼0.2MB when switching from Var2 to Var3.
Although this is a reduction, communication of these small
messages is bound by the latency, so the communication
time is similar. However, UO has the overhead of extracting
the updated values from the GPU (using a prefix-scan). Var3
is slower than Var2 due to this overhead for this case. To
contrast this effect, consider friendster for sssp on 64 GPUs
(executes 26 BSP rounds), the average message size was
reduced from ∼60MB to ∼10MB when switching from Var2
to Var3. As these are larger messages, this reduction leads to
a reduction in communication time that offsets the overhead
of prefix-scan.

Sending only the updated values is key to reducing the
communication volume and time, but there is a threshold
below which the overhead of extracting the updated values
outweighs the benefits of volume reduction. This threshold
can be determined using microbenchmarking, and existing
multi-GPU frameworks can benefit from doing this.

4) Execution Model — Sync vs. Async: D-IrGL supports
bulk-asynchronous execution (Async). Var4 uses Async (the
rest use Sync). Figures 3, 4, and 6 show that Var4 outper-
forms Var3 in most cases. Async minimizes idle time as
it does not wait for messages from other hosts to perform
the next round of computation. This may result in faster
convergence as faster hosts can communicate the updated

friendster twitter50 uk07

b
fs

c
c

k
c
o

re
p

a
g

e
ra

n
k

s
s
s
p

2 4 8 1
6

3
2

6
4 2 4 8 1
6

3
2

6
4 2 4 8 1
6

3
2

6
4

0.125

0.250

0.500

1.000

0.5

4.0

32.0

256.0

0.25

1.00

4.00

8

32

128

512

0.25

0.50

1.00

2.00

Number of GPUs

E
x
e

c
u

tio
n

 t
im

e
 (

s
e

c
)

Lux
D-IrGL

HVC
OEC
IEC
CVC

Figure 7: Strong scaling (log-log scale) of D-IrGL with
different partitioning policies and Lux for medium graphs
on Bridges (2 GPUs share a physical machine).

values for straggler hosts to compute with less stale val-
ues. However, Async may suffer from an increase in the
redundant work performed. To illustrate, we examine bfs
with uk14 on 64 GPUs. Async is slower due to increase in
the minimum number of local rounds executed (from 1000
to 2141), leading to an increase in the average work items
(from 6.7 ∗ 1010 to 7.7 ∗ 1010), communication volume, and
host-device communication time. In contrast, for bfs with
clueweb12 on 64 GPUs, the increase in redundant work is
offset by a decrease in the minimum number of rounds
executed by the straggler host, which improves overall
execution time.

BASP-style execution is beneficial in most cases as it can
reduce the idle time. However, it can lead more redundant
computation/communication, so it would be useful to dy-
namically throttle the degree of asynchronous execution.

C. Multi-Host Multi-GPU Graph Analytics: Partitioning

In this subsection, we use all the optimizations — ALB
+ UO + Async (Var4), and analyze different partitioning
policies.

Figure 7 shows the strong scaling of benchmarks with
various partitioning policies for medium graphs. CVC scales
best for all benchmarks and inputs. Figures 8 and 9 show the
breakdown of execution time for medium and large graphs,
respectively. The clear takeaway is that communication time
is the bottleneck is most cases. The communication time of

3
.7

G
B

4
.6

G
B

3
.5

G
B

2
.5

G
B

7
.7

G
B

4
.1

G
B

4
.1

G
B

2
.9

G
B

4
6

.3
G

B

4
.5

G
B

4
.6

G
B

7
.1

G
B

1
4

9
4

.8
G

B

2
3

1
.8

G
B

2
4

3
.1

G
B

1
8

5
.6

G
B

1
7

.1
G

B 1
6

G
B

1
4

.6
G

B

1
0

.5
G

B

0
.9

G
B

2
.2

G
B

1
.8

G
B

1
.5

G
B

4
.6

G
B

4
G

B

4
G

B

2
.8

G
B

7
.5

G
B

1
.7

G
B

1
.7

G
B

2
.9

G
B

4
5

0
.8

G
B

1
7

5
.6

G
B

1
6

6
.8

G
B

1
3

4
.8

G
B

3
.3

G
B

6
.9

G
B

6
.2

G
B

5
.6

G
B

0
.1

G
B

0
G

B

0
.2

G
B

0
.2

G
B

0
.2

G
B 0

.4
G

B

0
.4

G
B

0
.7

G
B

0
.2

G
B

0
.1

G
B

0
.1

G
B

0
.3

G
B

1
.5

G
B

5
.3

G
B

5
.6

G
B

0
.4

G
B

0
.3

G
B

1
.1

G
B

1
.1

G
B

friendster twitter50 uk07

b
fs

c
c

k
c
o

re
p

a
g

e
ra

n
k

s
s
s
p

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

IE
C

C
V

C

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0

2

4

6

0

25

50

75

100

0.0

0.5

1.0

T
im

e
 (

s
e

c
)

Min Wait Device Comm. Max Compute

Figure 8: Breakdown of execution time of D-IrGL with
different partitioning policies for medium graphs on 32 P100
GPUs of Bridges.

CVC is generally lower than all other partitioning policies
even though it sends more data. Compute time may also
be higher in some configurations, but in many cases the
higher compute time is offset by the significantly lower
communication time.

CVC has fewer communication partners due to the use
of its structural invariants, thereby allowing it to send more
data faster. This is similar to what has been previously
observed for CPUs as well [7], except that CVC also helps
reduce the host-device communication for GPUs. The key
difference between the results on CPUs which used Sync and
our results is that CVC starts outperforming other policies
at a much smaller scale — 16 or more GPUs. This may
be due to two reasons: (1) Async may balance the load
better than Sync, or (2) the communication to computation
ratio may be higher when GPUs are used instead of CPUs.
This is important because none of the existing multi-GPU
frameworks support vertex-cuts while hardware manufactur-
ers are designing single-host multi-GPU systems with 16
GPUs (like NVIDIA DGX2).

Even with all the optimizations and the best partitioning
policies, the host-device communication time is a significant
portion of the execution time but not much more than the
computation time. The execution time can be further reduced
by overlapping this communication with computation using
asynchronous communication between host and device or by
communicating directly between devices using GPUDirect.

2
.7

G
B

1
.5

G
B

1
1

.8
G

B

1
0

.7
G

B

9
.4

G
B

2
3

.3
G

B

2
3

.2
G

B

3
5

.5
G

B

8
.2

G
B

2
.7

G
B

2
.7

G
B

2
0

.5
G

B

4
3

.8
G

B

3
9

8
.7

G
B

8
.1

G
B

7
0

.2
G

B

1
.1

G
B

0
.7

G
B

2
.7

G
B

3
G

B

4
.8

G
B

7
.2

G
B

8
.2

G
B

1
4

.2
G

B

2
.5

G
B

1
G

B

1
G

B

4
.7

G
B

1
6

.2
G

B

6
7

.8
G

B

6
5

.9
G

B

6
.3

G
B

4
G

B

1
7

G
B

1
8

.9
G

B

0
.8

G
B

7
G

B

6
.5

G
B

1
1

.9
G

B

2
3

G
B

1
5

1
.7

G
B

5
G

B

clueweb12 uk14 wdc14

b
fs

c
c

k
c
o

re
p

a
g

e
ra

n
k

s
s
s
p

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

IE
C

C
V

C

H
V

C

O
E

C

C
V

C

0

10

20

30

0

10

20

0

3

6

9

0

10

20

30

0

10

20

30

40

T
im

e
 (

s
e

c
)

Min Wait Device Comm. Max Compute

Figure 9: Breakdown of execution time of D-IrGL with
different partitioning policies for large graphs on 64 P100
GPUs of Bridges.

Table IV shows the load balance for all benchmarks and
policies with uk07 and uk14. Static load balance, dynamic
load balance, and memory load balance refer to the dis-
tribution of edges, computation time, and GPU memory
allocated, respectively. The metric for all three is the
maximum of that measure divided by the mean of that
measure. First, static balance is not necessarily correlated
to dynamic balance due to the irregular nature of graph
analytics benchmarks. For instance on uk14, pagerank with
CVC is statically imbalanced but dynamically balanced,
while bfs with IEC is statically balanced but dynamically
imbalanced. Thus, even if a partitioning policy aims to
statically balance load across GPUs, there is no guarantee
that computation is balanced across GPUs. This is similar
to what has been observed for CPUs [7]. Second, and more
importantly, static and memory load balance are highly
correlated as the amount of memory allocated on a GPU is
proportional to the number of edges assigned to it. As GPUs
have limited memory, static load balancing is important as
high static load imbalance may cause applications to run
out of memory even for graphs with size less than the
combined memory available on all the GPUs. This is evident
for partitioning policies on large graphs (Figure 9).

Table IV: Static load balance (max./mean no. of edges),
dynamic load balance (max./mean compute time), and GPU
memory (max./mean) of D-IrGL.

BenchmarkPartition uk07 on 32 GPUs uk14 on 64 GPUs
Static Dynamic MemoryStatic Dynamic Memory

bfs

CVC 1.15 1.17 1.15 1.15 1.11 1.14
HVC 1.10 1.20 1.08 1.40 1.38 1.38
IEC 1.00 1.14 1.04 1.00 1.31 1.08
OEC 1.00 1.20 1.02 1.00 1.24 1.03

cc

CVC 1.03 1.18 1.05 1.12 1.10 1.13
HVC 1.09 1.30 1.08 1.11 1.34 1.11
IEC 1.00 1.27 1.02 1.00 1.24 1.04
OEC 1.00 1.29 1.02 1.00 1.22 1.04

kcore

CVC 1.03 1.14 1.05 1.12 1.12 1.13
HVC 1.09 1.22 1.08 1.11 1.35 1.11
IEC 1.00 1.20 1.02 1.00 1.31 1.04
OEC 1.00 1.19 1.02 1.00 1.29 1.04

pagerank
CVC 1.16 1.04 1.15 1.15 1.02 1.14
IEC 1.00 1.09 1.04 1.00 1.09 1.08
OEC 1.00 1.10 1.03 1.00 1.08 1.04

sssp

CVC 1.15 1.10 1.15 1.15 1.09 1.15
HVC 1.10 1.21 1.09 1.40 1.34 1.39
IEC 1.00 1.14 1.02 1.00 1.24 1.04
OEC 1.00 1.14 1.01 1.00 1.22 1.02

VI. RELATED WORK

GPU Studies. Owens et al. [29] present a survey of general-
purpose computation on GPUs. Shi et al. [14] present a
survey of different issues in GPU-based graph processing,
such as data layout, memory access pattern, and workload
mapping. Gill et al. [7] present a detailed study of the
different partitioning policies for distributed CPUs. Pan et
al. [6] and Hoang et al. [30] analyze the performance of
breadth-first search and triangle counting, respectively, on
distributed GPUs. In this paper, we analyze five graph
analytical applications on distributed GPUs with different
partitioning policies as well computation and communication
optimizations.
GPU Graph Analytical Frameworks. Several frame-
works [31], [9], [27] focus on improving the performance of
graph analytical applications on a single GPU by exploiting
the architectural features. Totem [32] is a graph framework
built to support Bulk Synchronous Parallel (BSP) execution
on a CPU-GPU heterogeneous system. Gill et al. [33]
propose a compiler framework for processing graph ana-
lytical applications on distributed CPU-GPU heterogeneous
systems.

Medusa [34] provides a programming framework for writ-
ing graph analytical applications on single-host multi-GPU
platforms by using sequential C/C++ code. Similarly, Gun-
rock [1] and Groute [2] provide support for writing single-
host multi-GPU graph analytical applications using BSP and
asynchronous style of execution respectively. D-IrGL [4]
and Lux [3] support multi-host multi-GPU platforms. In
this study, we evaluate distributed GPU graph analytical
applications in D-IrGL [4] using real-world datasets of
different sizes.

VII. CONCLUSION

Our study on distributed multi-GPU graph analytical
system shows the need for vertex-cut policies such as
Cartesian vertex-cut for scaling on multi-GPU platforms.
It also shows the importance of static balance of graph
partitions to efficiently handle large graphs using the limited
GPU memories.

To improve performance on multi-host multi-GPU sys-
tems, frameworks should adopt modern GPU architecture ca-
pabilities such as GPUDirect to avoid data transfers through
the host. In addition, control mechanisms need to be devel-
oped to dynamically throttle bulk-asynchronous execution
to obtain the right trade-off between decoupled execution of
hosts and redundant computation/communication.

ACKNOWLEDGMENT

This research was supported by the NSF grants
1406355, 1618425, 1705092, 1725322, and by the DARPA
contracts FA8750-16-2-0004 and FA8650-15-C-7563. We
used XSEDE grant ACI-1548562 through allocation TG-
CIE170005. We used the Bridges cluster, supported by NSF
award number ACI-1445606.

REFERENCES

[1] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, “Multi-
GPU Graph Analytics,” in IPDPS, 2017.

[2] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An
Asynchronous Multi-GPU Programming Model for Irregular
Computations,” in PPoPP, 2017.

[3] Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, and
A. Aiken, “A Distributed multi-GPU System for Fast Graph
Processing,” VLDB, 2017.

[4] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks,
N. Dryden, M. Snir, and K. Pingali, “Gluon: A
Communication-optimizing Substrate for Distributed
Heterogeneous Graph Analytics,” in PLDI, 2018.

[5] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, V. Jatala, V. K.
Nandivada, M. Snir, and K. Pingali, “Gluon-Async: A Bulk-
Asynchronous System for Distributed and Heterogeneous
Graph Analytics,” in PACT, 2019.

[6] Y. Pan, R. Pearce, and J. D. Owens, “Scalable Breadth-First
Search on a GPU Cluster,” in IPDPS, 2018.

[7] G. Gill, R. Dathathri, L. Hoang, and K. Pingali, “A Study
of Partitioning Policies for Graph Analytics on Large-scale
Distributed Platforms,” ser. PVLDB, 2018.

[8] L. Hoang, R. Dathathri, G. Gill, and K. Pingali, “CuSP:
A Customizable Streaming Edge Partitioner for Distributed
Graph Analytics,” in IPDPS, 2019.

[9] S. Pai and K. Pingali, “A Compiler for Throughput Optimiza-
tion of Graph Algorithms on GPUs,” in OOPSLA, 2016.

[10] R. Chen, J. Shi, Y. Chen, and H. Chen, “PowerLyra: Dif-
ferentiated Graph Computation and Partitioning on Skewed
Graphs,” in EuroSys, 2015.

[11] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable
matrix computations on large scale-free graphs using 2D
graph partitioning,” in SC 2013.

[12] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui, “The TAO of
parallelism in algorithms,” in PLDI, 2011.

[13] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri,
“Partitioning Trillion-Edge Graphs in Minutes,” in IPDPS,
2017.

[14] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S.
Hua, “Graph Processing on GPUs: A Survey,” ACM Comput.
Surv., 2018.

[15] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven ver-
sus Topology-driven Irregular Computations on GPUs,” in
IPDPS, 2013.

[16] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU
Graph Traversal,” SIGPLAN Not., 2012.

[17] V. Jatala, L. Hoang, R. Dathathri, G. Gill, V. K. Nandivada,
and K. Pingali, “An Adaptive Load Balancer For Graph
Analytical Applications on GPUs.” [Online]. Available:
http://arxiv.org/abs/1911.09135

[18] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Pe-
terson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “Xsede:
Accelerating scientific discovery,” Computing in Science and
Engineering, 2014.

[19] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
Recursive Model for Graph Mining. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611972740.43

[20] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” http://snap.stanford.edu/data, Jun.
2014.

[21] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered Label
Propagation: A Multiresolution Coordinate-free Ordering for
Compressing Social Networks,” in WWW, 2011.

[22] P. Boldi, A. Marino, M. Santini, and S. Vigna, “Bubing:
Massive crawling for the masses,” in WWW, 2014.

[23] P. Boldi and S. Vigna, “The WebGraph framework i: Com-
pression techniques,” in WWW, 2004.

[24] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Web data
commons - hyperlink graphs,” 2012. [Online]. Available:
http://webdatacommons.org/hyperlinkgraph/

[25] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing Locality and Independence with Logical Regions,”
in SC 2012.

[26] D. Bonachea, “GASNet Specification, V1.1,” Tech. Rep.,
2002.

[27] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D.
Owens, “Gunrock: A High-performance Graph Processing
Library on the GPU,” in PPoPP, 2015.

[28] G. Karypis and V. Kumar, “A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs,” SIAM J. Sci.
Comput., 1998.

[29] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. Lefohn, and T. Purcell, “A Survey of GeneralPurpose
Computation on Graphics Hardware,” Computer Graphics
Forum, 2007.

[30] L. Hoang, V. Jatala, X. Chen, U. Agarwal, R. Dathathri,
G. Gill, and K. Pingali, “DistTC: High Performance Dis-
tributed Triangle Counting,” in HPEC Graph Challenge ’19.

[31] K. Meng, J. Li, G. Tan, and N. Sun, “A Pattern Based
Algorithmic Autotuner for Graph Processing on GPUs,” in
PPoPP, 2019.

[32] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ri-
peanu, “A Yoke of Oxen and a Thousand Chickens for Heavy
Lifting Graph Processing,” in PACT, 2012.

[33] G. Gill, R. Dathathri, L. Hoang, A. Lenharth, and K. Pingali,
“Abelian: A Compiler for Graph Analytics on Distributed,
Heterogeneous Platforms,” in Euro-Par, 2018.

[34] J. Zhong and B. He, “Medusa: Simplified Graph Processing
on GPUs,” IEEE Trans. Parallel Distrib. Syst., 2014.

