
EVA: An Encrypted Vector Arithmetic Language and
Compiler for Efficient Homomorphic Computation

Roshan Dathathri

University of Texas at Austin, USA

roshan@cs.utexas.edu

Blagovesta Kostova

EPFL, Switzerland

blagovesta.pirelli@epfl.ch

Olli Saarikivi

Microsoft Research, USA

olsaarik@microsoft.com

Wei Dai

Microsoft Research, USA

wei.dai@microsoft.com

Kim Laine

Microsoft Research, USA

kilai@microsoft.com

Madan Musuvathi

Microsoft Research, USA

madanm@microsoft.com

Abstract
Fully-Homomorphic Encryption (FHE) offers powerful ca-

pabilities by enabling secure offloading of both storage and

computation, and recent innovations in schemes and imple-

mentations have made it all the more attractive. At the same

time, FHE is notoriously hard to use with a very constrained

programming model, a very unusual performance profile,

and many cryptographic constraints. Existing compilers for

FHE either target simpler but less efficient FHE schemes

or only support specific domains where they can rely on

expert-provided high-level runtimes to hide complications.

This paper presents a new FHE language called Encrypted

Vector Arithmetic (EVA), which includes an optimizing com-

piler that generates correct and secure FHE programs, while

hiding all the complexities of the target FHE scheme. Bol-

stered by our optimizing compiler, programmers can develop

efficient general-purpose FHE applications directly in EVA.

For example, we have developed image processing applica-

tions using EVA, with a very few lines of code.

EVA is designed to also work as an intermediate repre-

sentation that can be a target for compiling higher-level

domain-specific languages. To demonstrate this, we have

re-targeted CHET, an existing domain-specific compiler for

neural network inference, onto EVA. Due to the novel opti-

mizations in EVA, its programs are on average 5.3× faster

than those generated by CHET. We believe that EVA would

enable a wider adoption of FHE by making it easier to de-

velop FHE applications and domain-specific FHE compilers.

CCS Concepts: • Software and its engineering→ Com-
pilers; • Security and privacy→ Software and application

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3386023

security; •Computer systems organization→Neural net-
works.

Keywords: Homomorphic encryption, compiler, neural net-

works, privacy-preserving machine learning

ACM Reference Format:
Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim

Laine, and Madan Musuvathi. 2020. EVA: An Encrypted Vector

Arithmetic Language and Compiler for Efficient Homomorphic

Computation. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3385412.3386023

1 Introduction
Fully-Homomorphic Encryption (FHE) allows arbitrary com-

putations on encrypted data without requiring the decryp-

tion key. Thus, FHE enables interesting privacy-preserving

capabilities, such as offloading secure storage and secure

computation to untrusted cloud providers. Recent advances

in FHE theory [12, 13] along with improved implementa-

tions have pushed FHE into the realm of practicality. For

instance, with appropriate optimization, we can perform

encrypted fixed-point multiplications within a few microsec-

onds, which matches the speed of 8086 processors that jump-

started the computing revolution. Future cryptographic in-

novations will further reduce the performance gap between

encrypted and unencrypted computations.

Despite the availability of multiple open-source imple-

mentations [25, 28, 38, 41], programming FHE applications

remains hard and requires cryptographic expertise, making

it inaccessible to most programmers today. Furthermore, dif-

ferent FHE schemes provide subtly different functionalities

and require manually setting encryption parameters that

control correctness, performance, and security. We expect

the programming complexity to only increase as future FHE

schemes become more capable and performant. For instance,

the recently invented CKKS scheme [13] supports fixed-point

arithmetic operations by representing real numbers as inte-

gers with a fixed scaling factor, but requires the program-

mer to perform rescaling operations so that scaling factors

and the cryptographic noise do not grow exponentially due

https://doi.org/10.1145/3385412.3386023
https://doi.org/10.1145/3385412.3386023

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

to multiplications. Moreover, the so-called RNS-variant of

the CKKS scheme [12] provides efficient implementations

that can use machine-sized integer operations as opposed to

multi-precision libraries, but imposes further restrictions on

the circuits that can be evaluated on encrypted data.

To improve the developer friendliness of FHE, this paper

proposes a new general-purpose language for FHE computa-

tion called Encrypted Vector Arithmetic (EVA). EVA is also

designed to be an intermediate representation that is a back-

end for other domain-specific compilers. At its core, EVA

supports arithmetic on fixed-width vectors and scalars. The

vector instructions naturally match the encrypted SIMD – or

batching – capabilities of FHE schemes today. EVA includes

an optimizing compiler that hides all the complexities of the

target FHE scheme, such as encryption parameters and noise.

It ensures that the generated FHE program is correct, per-

formant, and secure. In particular, it eliminates all common

runtime exceptions that arise when using FHE libraries.

EVA implements FHE-specific optimizations, such as opti-

mally inserting operations like rescaling andmodulus switch-

ing. We have built a compiler incorporating all these opti-

mizations to generate efficient programs that run using the

Microsoft SEAL [41] FHE library which implements the RNS-

variant of the CKKS scheme. We have built an EVA executor

that transparently parallelizes the generated program effi-

ciently, allowing programs to scale well. The executor also

automatically reuses the memory used for encrypted mes-

sages, thereby reducing the memory consumed.

To demonstrate EVA’s usability, we have built a Python

frontend for it. Using this frontend, we have implemented

several applications in EVA with a very few lines of code and

much less complexity than in SEAL directly. One application

computes the length of a path in 3-dimensional space, which

can be used in secure fitness mobile applications. We have

implemented some statistical machine learning applications.

We have also implemented two image processing applica-

tions, Sobel filter detection and Harris corner detection. We

believe Harris corner detection is one of the most complex

programs that have been evaluated using CKKS.

In addition, we have built a domain-specific compiler on

top of EVA for deep neural network (DNN) inference. This

compiler takes programs written in a higher-level language

as input and generates EVA programs using a library of op-

erations on higher-level constructs like tensors and images.

In particular, our DNN compiler subsumes the recently pro-

posed domain-specific compiler called CHET [18]. Our DNN

compiler uses the same tensor kernels as CHET, except that

it generates EVA programs instead of generating SEAL pro-

grams. Nevertheless, the optimizing compiler in EVA is able

to outperform CHET in DNN inference by 5.3× on average.

In summary, EVA is a general-purpose language and an

intermediate representation that improves the programma-

bility of FHE applications by guaranteeing correctness and

security, while outperforming current methods.

The rest of this paper is organized as follows. Section 2

gives background on FHE. Section 3 presents the EVA lan-

guage. Section 4 gives an overview of the EVA compiler. We

then describe transformations and analysis in the compiler

in Sections 5 and 6 respectively. Section 7 briefly describes

the domain-specific compilers we built on top of EVA. Our

evaluation is presented in Section 8. Finally, related work and

conclusions are presented in Sections 9 and 10 respectively.

2 Background and Motivation
In this section, we describe FHE (Section 2.1) and the chal-

lenges in using it (Section 2.2). We also describe an imple-

mentation of FHE (Section 2.3). Finally, we present the threat

model assumed in this paper (Section 2.4).

2.1 Fully-Homomorphic Encryption (FHE)
An FHE scheme includes four stages: key generation, encryp-

tion, evaluation, and decryption. Most of the efficient FHE

schemes, for example, BGV [6], BFV [19], and CKKS [13],

are constructed on the Ring Learning with Errors (RLWE)

problem [34]. At the time of key generation, a polynomial

ring of degree N with integer coefficients moduloQ must be

chosen to represent ciphertexts and public keys according to

the security standard [1]. We call Q the ciphertext modulus.

A message is encoded to a polynomial, and subsequently

encrypted with a public key or a secret key to form a cipher-

text consisting of two polynomials of degree up to N − 1.

Encryption also adds to a ciphertext a small random error

that is later removable in decryption.

FHE schemes are malleable by design. From the perspec-

tive of the user, they offer a way to encrypt integers (or

fixed-point numbers in CKKS — see the next section) such

that certain arithmetic operations can be evaluated on the

resulting ciphertexts. Evaluation primarily includes four op-

erations: addition of ciphertexts, addition of a ciphertext and

a plaintext, multiplication of ciphertexts, and multiplication

of a ciphertext and a plaintext. Decrypting (with a secret

key) and decoding reveals the message, as if the computation

was performed on unencrypted data.

Many modern FHE schemes also include a SIMD-like fea-

ture known as batching which allows a vector of values to be

encrypted as a single ciphertext (N /2 values in CKKS). With

batching, arithmetic operations happen in an element-wise

fashion. Batching-compatible schemes can evaluate rotations

which allow data movement inside a ciphertext. But evaluat-

ing each rotation step count needs a distinct public key.

2.2 Challenges in Using FHE
Programmers using FHE face significant challenges thatmust

be overcome for correct, efficient, and secure computation.

We discuss those challenges here to motivate our work.

Depth of Computation: Computations on ciphertexts

increase the initially small error in them linearly on the

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation PLDI ’20, June 15–20, 2020, London, UK

number of homomorphic additions and exponentially on the

multiplicative depth of the evaluation circuit. When the er-

rors get too large, ciphertexts become corrupted and cannot

be decrypted, even with the correct secret key. This bound is

in turn determined by the size of the encryption parameter

Q . Thus, to support efficient homomorphic evaluation of a

circuit, one must optimize the circuit for low depth.

Relinearization: Each ciphertext consists of 2 or more

polynomials (freshly encrypted ciphertexts consist of only 2

polynomials). Multiplication of two ciphertexts with k and l
polynomials yields a ciphertext with k + l + 1 polynomials.

To prevent the number of polynomials from growing indef-

initely, an operation called relinearization is performed to

reduce it back to 2. Relinearization is costly and their optimal

placement is an NP-hard problem [10].

CKKS and Approximate Fixed-Point: The CKKS [13]

scheme introduced an additional challenge by only providing

approximate results (but much higher performance in return).

There are two main sources of error in CKKS: (i) error from

the encoding of values to polynomials being lossy, and (ii) the

noise added in every homomorphic operation being mixed

with the message. To counter this, CKKS adopts a fixed-

point representation by associating each ciphertext with

an unencrypted scaling factor. Using high enough scaling

factors allows the errors to be hidden.

CKKS further features an operation called rescaling that
scales down the fixed-point representation of a ciphertext.

Consider a ciphertext x that contains the encoding of 0.25
multiplied by the scale 2

10
(a relatively low scale). x2 encodes

0.0625 multiplied by the scale 2
20
. Further powers would

rapidly overflow modest values of the modulus Q , requiring

impractically large encryption parameters to be selected.

Rescaling the second power by 2
10
will truncate the fixed-

point representation to encode the value at a scale of 2
10
.

Rescaling has a secondary effect of also dividing the ci-

phertext’s modulus Q by the same divisor as the ciphertext

itself. This means that there is a limited “budget” for rescal-

ing built into the initial value of Q . The combined effect for

CKKS is that logQ can grow linearly with the multiplicative

depth of the circuit. It is common to talk about the level of a
ciphertext as how much Q is left for rescaling.

A further complication arises from the ciphertext after

rescaling being encrypted under fundamentally different

encryption parameters. To apply any binary homomorphic

operations, two ciphertexts must be at the same level, i.e.,

have the same Q . Furthermore, addition and subtraction

require ciphertexts to be encoded at the same scale due to

the properties of fixed-point arithmetic. CKKS also supports

a modulus switching operation to bring down the level of

a ciphertext without scaling the message. In our experience,
inserting the appropriate rescaling and modulus switching
operations to match levels and scales is a significantly difficult
process even for experts in homomorphic encryption.

Table 1. Types of values.

Type Description

Cipher An encrypted vector of fixed-point values.

Vector A vector of 64-bit floating point values.

Scalar A 64-bit floating point value.

Integer A 32-bit signed integer.

In the most efficient implementations of CKKS (so called

RNS-variants [11]), the truncation is actually performed by

dividing the encrypted values by prime factors ofQ . Further-

more, there is a fixed order to these prime factors, which

means that from a given level (i.e., how many prime factors

are left in Q) there is only one valid divisor available for

rescaling. This complicates selecting points to rescale, as do-

ing so too early might make the fixed-point representation

so small that the approximation errors destroy the message.

Encryption Parameters: In CKKS, all of the concerns

about scaling factors, rescaling, and managing levels are in-

tricately linked with selecting encryption parameters. Thus,

a typical workflow when developing FHE applications in-

volves a lot of trial-and-error, and repeatedly tweaking the

parameters to achieve both correctness (accuracy) and per-

formance. While some FHE libraries warn the user if the

selected encryption parameters are secure, but not all of

them do, so a developer may need to keep in mind security-

related limitations, which typically means upper-bounding

Q for a given N .

2.3 Microsoft SEAL
Microsoft SEAL [41] is a software library that implements

the RNS variant of the CKKS scheme. In SEAL, the modulus

Q is a product of several prime factors of bit sizes up to 60

bits, and rescaling of ciphertexts is always done by dividing

away these prime factors. The developer must choose these

prime factors and order them correctly to achieve the desired

rescaling behavior. SEAL automatically validates encryption

parameters for correctness and security.

2.4 Threat Model
We assume a semi-honest threat model, as is typical for ho-

momorphic encryption. This means that the party perform-

ing the computation (i.e., the server) is curious about the

encrypted data but is guaranteed to run the desired opera-

tions faithfully. This model matches for example the scenario

where the server is trusted, but a malicious party has read

access to the server’s internal state and/or communication

between the server and the client.

3 EVA Language
The EVA framework uses a single language as its input for-

mat, intermediate representation, and executable format. The

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

Table 2. Instruction opcodes and their semantics (see Section 2 for details on semantics of the restricted instructions).

Opcode Signature Description Restrictions

Negate Cipher→ Cipher Negate each element of the argument.

Add Cipher × (Vector|Cipher) → Cipher Add arguments element-wise.

Sub Cipher × (Vector|Cipher) → Cipher Subtract right argument from left one element-wise.

Multiply Cipher × (Vector|Cipher) → Cipher Multiply arguments element-wise (andmultiply scales).

RotateLeft Cipher × Integer→ Cipher Rotate elements to the left by given number of indices.

RotateRight Cipher × Integer→ Cipher Rotate elements to the right by given number of indices.

Relinearize Cipher→ Cipher Apply relinearization. Not in input

ModSwitch Cipher→ Cipher Switch to the next modulus in the modulus chain. Not in input

Rescale Cipher × Scalar→ Cipher Rescale the ciphertext (and divide scale) with the scalar. Not in input

EVA language abstracts batching-compatible FHE schemes

like BFV [19], BGV [6], and CKKS [12, 13], and can be com-

piled to target libraries implementing those schemes. Input

programs use a subset of the language that omits details

specific to FHE, such as when to rescale. In this section, we

describe the input language and its semantics, while Section 4

presents an overview of the compilation to an executable

EVA program.

Table 1 lists the types that values in EVA programs may

have. The vector typesCipher andVector have a fixed power-
of-two size for each input program. The power-of-two re-

quirement comes from the target encryption schemes.

We introduce some notation for talking about types and

values in EVA. For Vector, a literal value with elements ai
is written [a1,a2, . . . ,ai] or as a comprehension [ai for i =
1 . . . i]. For the ith element of Vector a, we write ai . For the
product type (i.e., tuple) of two EVA types A and B, we write
A×B, and write tuple literals as (a,b)where a ∈ A and b ∈ B.

Programs in EVA are Directed Acyclic Graphs (DAGs),

where each node represents a value available during execu-

tion. Example programs are shown in Figures 1(a) and 2(a).

Nodes with one or more incoming edges are called instruc-
tions, which compute a new value as a function of its pa-
rameter nodes, i.e., the parent nodes connected to it. For the

ith parameter of an instruction n, we write n.parmi and the

whole list of parameter nodes is n.parms. Each instruction

n has an opcode n.op, which specifies the operation to be

performed at the node. Note that the incoming edges are

ordered, as it corresponds to the list of arguments. Table 2

lists all the opcodes available in EVA. The first group are op-

codes that frontends may generate, while the second group

lists FHE-specific opcodes that are inserted by the compiler.

The key to the expressiveness of the input language are the

RotateLeft and RotateRight instructions, which abstract

rotation (circular shift) in batching-compatible FHE schemes.

A node with no incoming edges is called a constant if its
value is available at compile time and an input if its value
is only available at run time. For a constant n, we write

n.value to denote the value. Inputs may be of any type, while

constants can be any type except Cipher. This difference
is due to the fact that the Cipher type is not fully defined

before key generation time, and thus cannot have any values

at compile time. The type is accessible as n.type.
A program P is a tuple (M, Insts,Consts, Inputs,Outputs),

where M is the length of all vector types in P ; Insts, Consts
and Inputs are list of all instruction, constant, and input

nodes, respectively; and Outputs identifies a list of instruc-
tion nodes as outputs of the program.

Next, we define execution semantics for EVA. Consider

a dummy encryption scheme id that instead of encrypting

Cipher values just stores them as Vector values. In other

words, the encryption and decryption are the identity func-

tion. This scheme makes homomorphic computation very

easy, as every plaintext operation is its own homomorphic

counterpart. Given a map I : Inputs→ Vector, let Eid(n) be
the function that computes the value for node n recursively

by using n.value or I (n) if n is a constant or input respec-

tively and using n.op and Eid() on n.parms otherwise. Now
for a program P , we further define its reference semantic as

a function Pid , which given a value for each input node maps

each output node in P to its resulting value:

Pid : ×ni ∈Inputsni .type→ ×no ∈OutputsVector

Pid(I (n
1

i), . . . , I (n
|Inputs |
i)) = (Eid(n

1

o), . . . , Eid(n
|Outputs |
o))

These execution semantics hold for any encryption scheme,

except that output is also encrypted (i.e., Cipher type).
The EVA language has a serialized format defined using

Protocol Buffers [23], a language and platform neutral data

serialization format. Additionally, the EVA language has an

in-memory graph representation that is designed for efficient

analysis and transformation, which is discussed in Section 4.

4 Overview of EVA Compiler
In this section, we describe how to use the EVA compiler

(Section 4.1). We then describe the constraints on the code

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation PLDI ’20, June 15–20, 2020, London, UK

Figure 1. x2y3 example in EVA: (a) input; (b) after ALWAYS-RESCALE; (c) after ALWAYS-RESCALE & MODSWITCH; (d) after

WATERLINE-RESCALE; (e) after WATERLINE-RESCALE & RELINEARIZE (S: Rescale, M: ModSwitch, L: Relinearize).

generated by EVA (Section 4.2). Finally, we give an overview

of the execution flow of the EVA compiler (Section 4.3).

4.1 Using the Compiler
In this paper, we present the EVA compiler for the RNS vari-

ant of the CKKS scheme [12] and its implementation in the

SEAL library [41]. Targeting EVA for other FHE libraries [25,

28, 38] implementing CKKS [12, 13] would be straightfor-

ward. The EVA compiler can also be adapted to support other

batching-compatible FHE schemes like BFV [19] and BGV [6].

The EVA compiler takes a program in the EVA language

as input. Along with the program, it needs the fixed-point

scales or precisions for each input in the program and the

desired fixed-point scales or precisions for each output in

the program. The compiler then generates a program in the

EVA language as output. In addition, it generates a vector

of bit sizes that must be used to generate the encryption

parameters as well as a set of rotation steps that must be used

to generate the rotation keys. The encryption parameters

and the rotations keys thus generated are required to execute

the generated EVA program.

While the input and the output programs are in the EVA

language, the set of instructions allowed in the input and

the output are distinct, as listed in Table 2. The Relinearize,

Rescale, and ModSwitch instructions require understand-

ing the intricate details of the FHE scheme. Hence, they are

omitted from the input program.

The input scales and the desired output scales affect the

encryption parameters, and consequently, the performance

and accuracy of the generated program. Choosing the right

values for these is a trade-off between performance and ac-

curacy (while providing the same security). Larger values

lead to larger encryption parameters and more accurate but

slower generated program, whereas smaller values lead to

smaller encryption parameters and less accurate but faster

generated program. Profiling techniques like those used in

prior work [18] can be used to select the appropriate values.

4.2 Motivation and Constraints
There is a one-to-one mapping between instructions in the

EVA language (Table 2) and instructions in the RNS-CKKS

scheme. However, the input program cannot be directly exe-

cuted. Firstly, encryption parameters are required to ensure

that the program would be accurate. EVA can simply deter-

mine the bit sizes that is required to generate the parameters.

However, this is insufficient to execute the program correctly

because some instructions in the RNS-CKKS scheme have

restrictions on their inputs. If these restrictions are not met,

the instructions would just throw an exception at runtime.

Each ciphertext in the RNS-CKKS scheme has a coefficient

modulus q (Q =
∏r

i=1 qi)
1
and a fixed-point scale associated

with it. All freshly encrypted ciphertexts have the same q
but they may have different scale . The following constraints
apply for the binary instructions involving two ciphertexts:

n.parm1.modulus = n.parm2 .modulus
if n.op ∈ {Add, Sub,Multiply}

(1)

n.parm1.scale = n.parm2 .scale
if n.op ∈ {Add, Sub} (2)

In the rest of this paper, whenever we mention Add regard-

ing constraints, it includes both Add and Sub.

1
In SEAL, if the coefficient modulus q is {q1, q2, ..., qr }, then qi is a prime

close to a power-of-2. EVA compiler (and the rest of this paper) assumes qi
is the corresponding power-of-2 instead. To resolve this discrepancy, when

a Rescale instruction divides the scale by the prime, the scale is adjusted

(by the EVA executor) as if it was divided by the power-of-2 instead.

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

Figure 2. x2+x example in EVA: (a) input; (b) after ALWAYS-

RESCALE & MODSWITCH; (c) after MATCH-SCALE.

Consider the example to compute x2y3 for ciphertexts x
and y in Figure 1 (viewed as a dataflow graph). Constraint 2

is trivially satisfied because they are no Add instructions.

Only Rescale and ModSwitch instructions modify q. Con-
straint 1 is also trivially satisfied due to the absence of these

instructions. Nonetheless, without the use of Rescale in-

structions, the scales and the noise of the ciphertexts would
grow exponentially with the multiplicative depth of the pro-

gram (i.e., maximum number of Multiply nodes in any path)

and consequently, the log
2
of the coefficient modulus product

Q required for the input would grow exponentially. Instead,

using Rescale instructions ensures that log
2
Q would only

grow linearly with the multiplicative depth of the program.

In Figure 1, the output has a scale of 2
60 ∗260 ∗230 ∗230 ∗230

(with x .scale = 2
60
and y.scale = 2

30
). This would require Q

to be at least 2
210 ∗ so , where so is the user-provided desired

output scale. To try to reduce this, one can insert Rescale

after every Multiply, as shown in Figure 1(b). However, this

yields an invalid program because it violates Constraint 1 for

the last (bottom) Multiply (and there is no way to choose

the same q for both x and y). To satisfy this constraint,

ModSwitch instructions can be inserted, as shown in Fig-

ure 1(c). Both Rescale and ModSwitch drop the first el-

ement in their input q (or consume the modulus), whereas
Rescale also divides the scale by the given scalar (which

is required to match the first element in q). The output

now has a scale of 2
60 ∗ 230. This would require choosing

q = {230, 230, 260, 260, 230, so}. Thus, although Figure 1(c) exe-

cutes more instructions than Figure 1(a), it requires the same

Q . A better way to insert Rescale instructions is shown in

Figure 1(d). This satisfies Constraint 1 without ModSwitch

instructions. The output now has a scale of 2
60 ∗ 230. We can

choose q = {260, 260, 230, so}, so Q = 2
150 ∗ so . Hence, this

program is more efficient than the input program.

If the computation was modified to x2 + y3 in Figure 1(d),

then the last (bottom) Multiply would be replaced by Add

and the program would violate Constraint 2 as Add would

have operands with scales 2
60

and 2
30
. Consider a simi-

lar but simpler example of x2 + x in Figure 2(a). One way

to satisfy Constraints 1 and 2 is by adding Rescale and

ModSwitch, as shown in Figure 2(b), which would require

q = {230, 230, so}. Another way is to introduce Multiply

of x and a constant 1 with 2
30

scale to match the scale of

Add operands, as shown in Figure 2(c), which would require

q = {260, so}. Although the product Q = 2
60 ∗ so is same

in both cases, the modulus length r is different. Hence, the
program in Figure 2(c) is more efficient due to a smaller r .
Multiply has another constraint. Each ciphertext con-

sists of 2 or more polynomials. Multiply of two ciphertexts

with k and l polynomials yields a ciphertext with k + l + 1
polynomials. Nevertheless, fewer the polynomials faster the

Multiply, so we enforce it to be the minimum:

∀i n.parmi .num_polynomials = 2

if n.op ∈ {Multiply}
(3)

Relinearize reduces the number of polynomials in a cipher-

text to 2. It can be inserted in the program in Figure 1(d) to

satisfy this constraint, as shown in Figure 1(e).

Finally, we use sf to denote the maximum allowed rescale

value in the rest of this paper (log
2
sf is also the maximum

bit size that can be used for encryption parameters), i.e.,

n.parm2 .value ≤ sf
if n.op ∈ {Rescale} (4)

In the SEAL library, sf = 2
60
(which enables a performant

implementation by limiting scales to machine-sized integers).

To summarize, FHE schemes (or libraries) are tedious for

a programmer to reason about, due to all their cryptographic

constraints. Programmers find it even more tricky to satisfy

the constraints in a way that optimizes performance. The EVA
compiler hides such cryptographic details from the programmer
while optimizing the program.

4.3 Execution Flow of the Compiler
As mentioned in Section 3, the in-memory internal represen-

tation of the EVA compiler is anAbstract Semantic Graph,
also known as a Term Graph, of the input program. In the

rest of this paper, we will use the term graph to denote an

Abstract Semantic Graph. In this in-memory representation,

each node can access both its parents and its children, and

for each output, a distinct leaf node is added as a child. It is

straightforward to construct the graph from the EVA pro-

gram and vice-versa, so we omit the details. We use the terms

program and graph interchangeably in the rest of the paper.

Algorithm 1 presents the execution flow of the compiler.

There are four main steps, namely transformation, validation,

parameters selection, and rotations selection. The transfor-

mation step takes the input program andmodifies it to satisfy

the constraints of all instructions, while optimizing it. In the

next step, the transformed program is validated to ensure that

no constraints are violated. If any constraints are violated,

then the compiler throws an exception. By doing this, EVA

ensures that executing the output program will never lead to

a runtime exception thrown by the FHE library. Finally, for

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation PLDI ’20, June 15–20, 2020, London, UK

Algorithm 1: Execution of EVA compiler.

Input :Program Pi in EVA language

Input :Scales Si for inputs in Pi
Input :Desired scales Sd for outputs in Pi
Output :Program Po in EVA language

Output :Vector Bv of bit sizes

Output :Set Rs of rotation steps

1 Po = Transform(Pi , Si)
2 if Validate(Po) == Failed then
3 Throw an exception

4 Bv = DetermineParameters(Po , Si , Sd)
5 Rs = DetermineRotationSteps(Pi , Si)

the validated output program, the compiler selects the bit

sizes and the rotation steps that must be used to determine

the encryption parameters and the rotation keys respectively,

before executing the output program. The transformation

step involves rewriting the graph, which is described in de-

tail in Section 5. The other steps only involve traversal of the

graph (without changing it), which is described in Section 6.

5 Transformations in EVA Compiler
In this section, we describe the key graph transformations in

the EVA compiler. We first describe a general graph rewrit-

ing framework (Section 5.1). Then, we describe the graph

transformation passes (Sections 5.2 and 5.3).

5.1 Graph Rewriting Framework
A graph transformation can be captured succinctly using

graph rewrite rules (or term rewrite rules). These rules specify

the conditional transformation of a subgraph (or an expres-

sion) and the graph transformation consists of transforming

all applicable subgraphs (or expressions) in the graph (or

program). The graph nodes have read-only properties like

the opcode and number of parents. In a graph transforma-

tion, some state or data may be stored on each node in the

graph and the rewrite rules may read and update the state.

The rewrite rules specify local operations on a graph and

the graph transformation itself is composed of applying these

operations wherever needed. The schedule in which these

local operations are applied may impact the correctness or

efficiency of the transformation. Consider two schedules:

(1) forward pass from roots to leaves of the graph (a node

is scheduled for rewriting only after all its parents have

already been rewritten), or (2) backward pass from leaves to

roots of the graph (a node is scheduled for rewriting only

after all its children have already been rewritten). Note that

the rewriting operation may not do any modifications if its

condition does not hold. In forward pass, state (or data) flows

from parents to children. Similarly, in backward pass, state

(or data) flows from children to parents. In general, multiple

forward or backward passes may be needed to apply the

rewrite rules until quiescence (no change).

EVA includes a graph rewriting framework for arbitrary

rewrite rules for a subgraph that consists of a node along

with its parents or children. The rewrite rules for each graph

transformation pass in EVA are defined in Figure 3. A sin-

gle backward pass is sufficient for EAGER-MODSWITCH,

while a single forward pass is sufficient for the rest. The

rewrite rules assume the passes are applied in a specific order:

WATERLINE-RESCALE, EAGER-MODSWITCH, MATCH-

SCALE, and RELINEARIZE (ALWAYS-RESCALE and LAZY-

MODSWITCH are not used but defined only for clarity). For

the sake of exposition, we will first describe RELINEARIZE

pass before describing the other passes.

5.2 Relinearize Insertion Pass
Each ciphertext is represented as 2 or more polynomials.

Multiplying two ciphertexts each with 2 polynomials yields a

ciphertext with 3 polynomials. The Relinearize instruction

reduces a ciphertext to 2 polynomials. To satisfy Constraint 3,

EVA must insert Relinearize after Multiply of two nodes

with Cipher type and before another such Multiply.

The RELINEARIZE rewrite rule (Figure 3) is applied for a

node n only if it is a Multiply operation and if both its par-

ents (or parameters) have Cipher type. The transformation

in the rule inserts a Relinearize node nl between the node

n and its children. In other words, the new children of n will

be only nl and the children of nl will be the old children of n.
For the example graph in Figure 1(d), applying this rewrite

rule transforms the graph into the one in Figure 1(e).

Optimal placement of relinearization is an NP-hard prob-

lem [10]. Our relinearization insertion pass is a simple way

to enforce Constraint 3. More advanced relinearization in-

sertion, with or without Constraint 3, is left for future work.

5.3 Rescale and ModSwitch Insertion Passes
Goal: The Rescale and ModSwitch nodes (or instruc-

tions) must be inserted such that they satisfy Constraint 1,

so the goal of the Rescale and ModSwitch insertion passes

is to insert them such that the coefficient moduli of the par-

ents of any Add and Multiply node are equal.

While satisfying Constraint 1 is sufficient for correctness,

performance depends on where Rescale and ModSwitch

are inserted (as illustrated in Section 4.2). Different choices

lead to different coefficient modulus q = {q1,q2, ...,qr }, and
consequently, different polynomial modulus N for the roots

(or inputs) to the graph (or program). Larger values of N and

r increase the cost of every FHE operation and the memory

of every ciphertext. N is a non-decreasing function of Q =∏r
i=1 qi (i.e., ifQ grows, N either remains the same or grows

as well). Minimizing bothQ and r is a hard problem to solve.

However, reducingQ is only impactful if it reduces N , which

is unlikely as the threshold of Q , for which N increases,

grows exponentially. Therefore, the goal of EVA is to yield
the optimal r , which may or may not yield the optimal N .

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

ALWAYS − RESCALE
n ∈ Insts n.op = Multiply Nck = {(nc ,k) | nc .parmk = n}

Insts← Insts ∪ {ns } ns .op← Rescale ns .parm1 ← n ns .parm2 ← min(∀j, n.parmj .scale)
∀(nc ,k) ∈ Nck , nc .parmk ← ns

WATERLINE − RESCALE

n ∈ Insts n.op = Multiply Nck = {(nc ,k) | nc .parmk = n}
(n.parm1.scale ∗ n.parm2 .scale)/sf ≥ max(∀nj ∈ {Consts, Inputs}, nj .scale)

Insts← Insts ∪ {ns } ns .op← Rescale ns .parm1 ← n ns .parm2 ← sf
∀(nc ,k) ∈ Nck , nc .parmk ← ns

LAZY −MODSWITCH

n ∈ Insts n.op ∈ {Add, Sub,Multiply} n.parmi .level > n.parmj .level

Insts← Insts ∪ {nm } nm .op← ModSwitch nm .parm1 ← n.parmj n.parmj ← nm

EAGER −MODSWITCH

n ∈ {Insts,Consts, Inputs} n1c .parmi = n n2c .parmj = n

n1c .parmi .rlevel > n2c .parmj .rlevel Nck = {(nc ,k) | nc .parmk = n ∧ nc .parmk .rlevel = n
2

c .parmj .rlevel}

Insts← Insts ∪ {nm } nm .op← ModSwitch nm .parm1 ← n ∀(nc ,k) ∈ Nck , nc .parmk ← nm

MATCH − SCALE
n ∈ Insts n.op ∈ {Add, Sub} n.parmi .scale > n.parmj .scale

Insts← Insts ∪ {nt } Consts← Consts ∪ {nc } nc .value← n.parmi .scale/n.parmj .scale
nt .op← Multiply nt .parm1 ← n.parmj nt .parm2 ← nc n.parmj ← nt

RELINEARIZE

n ∈ Insts n.op = Multiply n.parm1.type = n.parm2 .type = Cipher Nck = {(nc ,k) | nc .parmk = n}

Insts← Insts ∪ {nl } nl .op← Relinearize nl .parm1 ← n ∀(nc ,k) ∈ Nck , nc .parmk ← nl

Figure 3. Graph rewriting rules (each rule is a transformation pass) in EVA (sf : maximum allowed rescale value).

Constrained-Optimization Problem: The only nodes

that modify a ciphertext’s coefficient modulus are Rescale

andModSwitch nodes; that is, they are the only ones whose

output ciphertext has a different coefficient modulus than

that of their input ciphertext(s). Therefore, the coefficient

modulus of the output of a node depends only on the Rescale

andModSwitch nodes in the path from the root to that node.

To illustrate their relation, we define the term rescale chain.

Definition 5.1. Given a directed acyclic graph G = (V, E):

For n1,n2 ∈ V , n1 is a parent of n2 if ∃(n1,n2) ∈ E.
A node r ∈ V is a root if r .type = Cipher and �n ∈ V s.t.

n is a parent of r .

Definition 5.2. Given a directed acyclic graph G = (V, E):

A path p from a node n0 ∈ V to a node n ∈ V is a sequence

of nodes p0, ...,pl s.t. p0 = n0, pl = n, and ∀0 ≤ i < l,pi ∈ V
and pi is a parent of pi+1. A path p is said to be simple if
∀0 < i < l,pi .op , Rescale and pi .op , ModSwitch.

Definition 5.3. Given a directed acyclic graph G = (V, E):

A rescale path p to a node n ∈ V is a sequence of nodes

p0, ...,pl s.t. (∀0 ≤ i ≤ l,pi .op ∈ {Rescale,ModSwitch}),

∃ a simple path from a root to p0, ∃ a simple path from

pl to n, (∀0 ≤ i < l, ∃ a simple path from pi to pi+1), and
(n.op = Rescale or n.op = ModSwitch) =⇒ (pl = n) .

A rescale chain of a node n ∈ V is a vector c s.t. ∃ a rescale
path p to n and (∀0 ≤ i < |p |, (pi .op = ModSwitch =⇒

ci = ∞) and (pi .op = Rescale =⇒ ci = pi .parm2 .value)).

Note that ∞ is used here to distinguish ModSwitch from

Rescale in the rescale chain.

A rescale chain c of a node n and c ′ of a node n′ are equal
if (|c | = |c ′ | and (∀0 ≤ i < |c |, ci = c

′
i or ci = ∞ or c ′i = ∞)).

A rescale chain c of a node n ∈ V is conforming if ∀ rescale
chain c ′ of n, c is equal to c ′.

Note that all the roots in the graph have the same coeffi-

cient modulus. Therefore, for nodes n1 and n2, the coefficient

modulus of the output ofn1 is equal to that ofn2 if and only if
there exists conforming rescale chains for n1 and n2, and the
conforming rescale chain of n1 is equal to that of n2. Thus,
we need to solve two problems simultaneously:

• Constraints: Ensure the conforming rescale chains of

the parents of any Multiply or Add node are equal.

• Optimization: Minimize the length of the rescale chain

of every node.

Outline: In general, the constraints problem can be solved

in two steps:

• Insert Rescale in a pass (to reduce exponential growth

of scale and noise).

• Insert ModSwitch in another pass so that the con-

straints are satisfied.

The challenge is in solving this problem in this way, while

yielding the desired optimization.

Always Rescale Insertion: A naive approach of insert-

ing Rescale is to insert it after every Multiply of Cipher

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation PLDI ’20, June 15–20, 2020, London, UK

Figure 4. x2+x +x in EVA: (a) after WATERLINE-RESCALE

(b) after WATERLINE-RESCALE & LAZY-MODSWITCH; (c)

after WATERLINE-RESCALE & EAGER-MODSWITCH.

nodes. We call this approach as always rescale and define it

in the ALWAY-RESCALE rewrite rule in Figure 3. Consider

the example in Figure 1(a). Applying this rewrite rule on this

example yields the graph in Figure 1(b). For some Multiply

nodes (e.g., the bottom one), the conforming rescale chains

of their parents do not exist or do not match. To satisfy these

constraints, ModSwitch nodes can be inserted appropri-

ately, as shown in Figure 1(c) (we omit defining this rule

because it would require multiple forward passes). The con-

forming rescale chain length for the output is now more

more than the multiplicative depth of the graph. Thus, al-
ways rescale and its corresponding modswitch insertion may

lead to a larger coefficient modulus (both in the number of

elements and their product) than not inserting any of them.

Insight: Consider that all the roots in the graph have the

same scale s . For example in Figure 1(a), let x .scale = 2
30

instead of 2
60
. Then, after always rescale (replace 260 with

2
30
in Figure 1(b)), the only difference between the rescale

chains of a noden would be their length and not the values in

it. This is the case even when roots may have different scales

as long as all Rescale nodes rescale by the same value s .
Then, a conforming rescale chain cn for n can be obtained by

adding ModSwitch nodes in the smaller chain(s). Thus, |cn |
would not be greater than the multiplicative depth of n. The
first key insight of EVA is that using the same rescale value

for all Rescale nodes ensures that |co | cannot be greater

than the multiplicative depth of o (a tight upper bound). The
multiplicative depth of a node n is not a tight lower bound

for |cn |, as shown in Figure 1(d). The second key insight of

EVA is that using the maximum rescale value sf (satisfying

Constraint 4) for all Rescale nodes minimizes |co | because
it minimizes the number of Rescale nodes in any path.

Waterline Rescale Insertion: Based on our insights, the

value to rescale is fixed to sf (= 2
60
in SEAL). That does not

address the question of when to insert Rescale nodes. If the

scale after Rescale becomes too small, then the computed

messagemay lose accuracy irrevocably.We call theminimum

required scale aswaterline and use sw to denote it. We choose

sw to be maximum of the scales of all roots. Consider a

Multiply nodenwhose scale after multiplication is sn . Then,
a Rescale in inserted between n and its children only if the

scale after Rescale is above the waterline, i.e., (sn/sf) ≥ sw .
We call this approach as waterline rescale and define the

WATERLINE-RESCALE rewrite rule in Figure 3. This rule

transforms the graph in Figure 1(a) to the one in Figure 1(d).

ModSwitch Insertion: For a node n, let n.level denote its
conforming rescale chain length. Let n.rlevel denote the con-
forming rescale chain length of n in the transpose graph. A

naiveway to insertModSwitch is to find aAdd orMultiply

node for which level of the parents do not match and insert

the appropriate number of ModSwitch nodes between one

of the parents and the node. We call this lazy insertion and

define the LAZY-MODSWITCH rewrite rule in Figure 3. We

call inserting it at the earliest feasible edge in the graph as

eager insertion. The EAGER-MODSWITCH rewrite rule (Fig-

ure 3) finds a node for which rlevel of the children do not

match and inserts the appropriate number of ModSwitch

nodes between some of the children and itself. If the rlevel of
the roots do not match, then there is another rule (omitted in

Figure 3 for brevity) that inserts the appropriateModSwitch

nodes between some of the roots and their children.

Consider the x2 + x + x example in Figure 4(a). Applying

the LAZY-MODSWITCH and EAGER-MODSWITCH rewrite

rules yields the graphs in Figures 4(b) and (c) respectively.

The operands of Add after eager insertion use a smaller

coefficient modulus than after lazy insertion, so Add would

be faster if eager insertion is used. Thus, eager insertion

leads to similar or more efficient code than lazy insertion.

Matching Scales: As illustrated in Section 4.2, it is easy

to match scales of parents of Add by multiplying one of

the parents and 1 with the appropriate scale. The MATCH-

SCALE rewrite rule (Figure 3) takes this simple approach

to satisfy Constraint 2 while avoiding introduction of any

additional Rescale or ModSwitch. For the example graph

in Figure 2(a), applying this rewrite rule transforms the graph

into the one in Figure 2(c).

Optimality: EVA selects encryption parameters (see Sec-

tion 6.2) s.t. r = max(∀o ∈ {Outputs}, 1 + |co | + ⌈
o .scale∗so

sf
⌉),

where so is the desired scale for the output o. WATERLINE-

RESCALE is the only pass that determines |co | and o.scale
for any output o (neither LAZY-MODSWITCH nor MATCH-

SCALE modify that). If |co | is decreased by 1 (an element

sf from co is removed), then o.scale would increase by at

least sf , so it would not decrease r . Due to waterline rescale,
o.scale < sw ∗ sf , so Rescale cannot be inserted to reduce

o.scale by at least sf (because the minimum required scale is

sw). Thus, EVA yields the minimal or optimal r .

6 Analysis in EVA Compiler
In this section, we briefly describe our graph traversal frame-

work (Section 6.1) and a few analysis passes (Section 6.2).

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

6.1 Graph Traversal Framework and Executor
EVA’s graph traversal framework allows either a forward

traversal or a backward traversal of the graph. In the forward

traversal pass, a node is visited only after all its parents are

visited. Similarly, in the backward traversal pass, a node is

visited only after all its children are visited. Graph traver-

sals do not modify the structure of the graph (unlike graph

rewriting) but a state on each node can be maintained.

Parallel Implementation: We implement an executor

for the generated EVA program using the traversal frame-

work. A node is said to be ready or active if all its parents (or
children) in forward (or backward) pass have already been

visited. These active nodes can be scheduled to execute in

parallel as each active node only updates its own state (i.e.,

there are no conflicts). For example in Figure 1(e), the parents

of the bottom Multiply can execute in parallel. Each FHE

instruction (node) can take a significant amount of time to

execute, so it is useful to exploit parallelism among FHE in-

structions. The EVA executor automatically parallelizes the

generated EVA program by implementing a parallel graph

traversal using the Galois [20, 37] parallel library.

A node is said to retire if all its children (or parents) in for-

ward (or backward) pass have already been visited. The state

for the retired nodes will no longer be accessed, so it can be

reused for other nodes. In Figure 1(e), the ciphertext for x2

can be reused after the Relinearize is executed. The EVA ex-

ecutor automatically reuses the memory used for encrypted

messages, thereby reducing the memory consumed.

6.2 Analysis Passes
Validation Passes: We implement a validation pass for

each of the constraints in Section 4.2. All are forward passes.

The first pass computes the rescale chains for each node and

asserts that it is conforming. It also asserts that the conform-

ing rescale chains of parents of Add and Multiply match,

satisfying Constraint 1. The second and third passes compute

a scale and num_polynomials for each node respectively and

assert that Constraint 2 and 3 is satisfied respectively. If any

assertion fails, an exception in thrown at compile-time. Thus,

these passes elide runtime exceptions thrown by SEAL.

Encryption Parameter Selection Pass: Akin to encryp-

tion selection in CHET [18], the encryption parameter selec-

tion pass in EVA computes the conforming rescale chain and

the scale for each node. For each leaf or output o after the
pass, let co be the conforming rescale chains of o without∞
in it and let s ′o = so ∗ o.scale, where so is the desired output

scale. s ′o is factorized into s0∗s1∗...∗sk such that sk is a power-
of-two, sk ≤ sf (= 2

60
in SEAL), and ∀0 ≤ i < k, si = sf . Let

|s ′o | denote the number of factors of s ′o . Then EVA finds the

outputm with the maximum |cm |+ |s
′
m |. The factors of sm are

appended to cm and sf (the special prime that is consumed

during encryption) in inserted at the beginning of cm . For

from EVA import *

def sqrt(x):

return x*constant(scale , 2.214) +

(x**2)* constant(scale , -1.098) +

(x**3)* constant(scale , 0.173)

program = Program(vec_size =64*64)

scale = 30

with program:

image = inputEncrypted(scale)

F = [[-1, 0, 1],

[-2, 0, 2],

[-1, 0, 1]]

for i in range (3):

for j in range (3):

rot = image << (i*64+j)

h = rot * constant(scale , F[i][j])

v = rot * constant(scale , F[j][i])

first = i == 0 and j == 0

Ix = h if first else Ix + h

Iy = v if first else Iy + v

d = sqrt(Ix**2 + Iy**2)

output(d, scale)

Figure 5. PyEVA program for Sobel filtering 64 × 64 im-

ages. The sqrt function evaluates a 3rd degree polynomial

approximation of square root.

each element s in cm , log2 s is applied to obtain a vector of

bit sizes, which is then returned.

Rotation Keys Selection Pass: Similar to rotation keys

selection in CHET [18], EVA’s rotation keys selection pass

computes and returns the set of unique step counts used

among all RotateLeft and RotateRight nodes in the graph.

7 Frontends of EVA
The various transformations described so far for compiling

an input EVA program into an executable EVA program

make up the backend in the EVA compiler framework. In

this section, we describe two frontends for EVA, that make it

easy to write programs for EVA.

7.1 PyEVA
We have built a general-purpose frontend for EVA as a DSL

embedded into Python, called PyEVA. Consider the PyEVA

program in Figure 5 for Sobel filtering, which is a form of

edge detection in image processing. The class Program is

a wrapper for the Protocol Buffer [23] format for EVA pro-

grams mentioned in Section 3. It includes a context manager,

such that inside a with program: block all operations are

recorded in program. For example, the inputEncrypted func-

tion inserts an input node of type Cipher into the program

currently in context and additionally returns an instance

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation PLDI ’20, June 15–20, 2020, London, UK

of class Expr, which stores a reference to the input node.

The expression additionally overrides Python operators to

provide the simple syntax seen here.

7.2 EVA for Neural Network Inference
CHET [18] is a compiler for evaluating neural networks on

encrypted inputs. The CHET compiler receives a neural net-

work as a graph of high-level tensor operations, and through

its kernel implementations, analyzes and executes these neu-

ral networks against FHE libraries. CHET lacks a proper

backend and operates more as an interpreter coupled with

automatically chosen high-level execution strategies.

We have obtained the CHET source code andmodified it to

use the EVA compiler as a backend. CHET uses an interface

called Homomorphic Instruction Set Architecture (HISA) as a
common abstraction for different FHE libraries. In order to

make CHET generate EVA programs, we introduce a new

HISA implementation that instead of calling homomorphic

operations inserts instructions into an EVA program. This

decouples the generation of the program from its execution.

We make use of CHET’s data layout selection optimization,

but not its encryption parameter selection functionality, as

this is already provided in EVA. Thus, EVA subsumes CHET.

8 Experimental Evaluation
In this section, we first describe our experimental setup (Sec-

tion 8.1). We then describe our evaluation of homomorphic

neural network inference (Section 8.2) and homomorphic

arithmetic, statistical machine learning, and image process-

ing applications (Section 8.3).

8.1 Experimental Setup
All experiments were conducted on a 4 socket machine with

Intel Xeon Gold 5120 2.2GHz CPU with 56 cores (14 cores per

socket) and 190GB memory. Our evaluation of all applica-

tions uses GCC 8.1 and SEAL v3.3.1 [41], which implements

the RNS variant of the CKKS scheme [12]. All experiments

use the default 128-bit security level.

We evaluate a simple arithmetic application to compute

the path length in 3-dimensional space. We also evaluate

applications in statistical machine learning, image process-

ing, and deep neural network (DNN) inferencing using the

frontends that we built on top of EVA (Section 7). For DNN

inferencing, we compare EVA with the state-of-the-art com-

piler for homomorphic DNN inferencing, CHET [18], which

has been shown to outperform hand-tuned codes. For the

other applications, no suitable compiler exists for compari-

son. Hand-written codes also do no exist as it is very tedious

to write them manually. We evaluate these applications us-

ing EVA to show that EVA yields good performance with

little programming effort. For DNN inferencing, the accuracy

reported is for all test inputs, whereas all the other results

reported are an average over the first 20 test inputs. For the

Table 3. Deep Neural Networks used in our evaluation.

Network No. of layers # FP Accu-

Conv FC Act operations racy(%)

LeNet-5-small 2 2 4 159960 98.45

LeNet-5-medium 2 2 4 5791168 99.11

LeNet-5-large 2 2 4 21385674 99.30

Industrial 5 2 6 - -

SqueezeNet-CIFAR 10 0 9 37759754 79.38

Table 4. Programmer-specified input and output scaling

factors used for both CHET and EVA, and the accuracy of

homomorphic inference in CHET and EVA (all test inputs).

Model Input Scale (log P) Output Accuracy(%)

Cipher Vector Scalar Scale CHET EVA

LeNet-5-small 25 15 10 30 98.42 98.45

LeNet-5-medium 25 15 10 30 99.07 99.09

LeNet-5-large 25 20 10 25 99.34 99.32

Industrial 30 15 10 30 - -

SqueezeNet-CIFAR 25 15 10 30 79.31 79.34

other applications, all results reported are an average over

20 different randomly generated inputs.

8.2 Deep Neural Network (DNN) Inference
Networks: We evaluate five deep neural network (DNN)

architectures for image classification tasks that are summa-

rized in Table 3:

• The three LeNet-5 networks are all for theMNIST [32]

dataset, which vary in the number of neurons. The

largest one matches the one used in the TensorFlow’s

tutorials [42].

• Industrial is a network from an industry partner for

privacy-sensitive binary classification of images.

• SqueezeNet-CIFAR is a network for the CIFAR-10

dataset [31] that uses 4 Fire-modules [15] and follows

the SqueezeNet [27] architecture.

We obtain these networks (and the models) from the au-

thors of CHET, so they match the networks evaluated in

their paper [18]. Industrial is a FHE-compatible neural net-

work that is proprietary, so the authors gave us only the

network structure without the trained model (weights) or

the test datasets. We evaluate this network using randomly

generated numbers (between -1 and 1) for the model and the

images. All the other networks were made FHE-compatible

by CHET authors using average-pooling and polynomial acti-

vations instead of max-pooling and ReLU activations. Table 3

lists the accuracies we observed for these networks using

unencrypted inference on the test datasets. We evaluate en-

crypted image inference with a batch size of 1 (latency).

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

Table 5.Average latency (s) of CHET and EVA on 56 threads.

Model CHET EVA Speedup from EVA

LeNet-5-small 3.7 0.6 6.2

LeNet-5-medium 5.8 1.2 4.8

LeNet-5-large 23.3 5.6 4.2

Median 70.4 9.6 7.3

SqueezeNet-CIFAR 344.7 72.7 4.7

Industrial SqueezeNet-CIFAR

LeNet-5-medium LeNet-5-large

2 8 32 2 8 32

16

64

256

128

512

2048

2

8

32

32

128

Threads

Av
er

ag
e

La
te

nc
y

(s
)

CHET EVA

Figure 6. Strong scaling of CHET and EVA (log-log scale).

Scaling Factors: The scaling factors, or scales in short,

must be chosen by the user. For each network (and model),

we use CHET’s profiling-guided optimization on the first 20

test images to choose the input scales as well as the desired

output scale. There is only one output but there are many

inputs. For the inputs, we choose one scale each for Cipher,
Vector, and Scalar inputs. Both CHET and EVA use the same

scales, as shown in Table 4. The scales impact both perfor-

mance and accuracy. We evaluate CHET and EVA on all test

images using these scales and report the accuracy achieved

by fully-homomorphic inference in Table 4. There is negli-

gible difference between their accuracy and the accuracy of

unencrypted inference (Table 3). Higher values of scaling

factors may improve the accuracy, but will also increase the

latency of homomorphic inference.

Comparison with CHET Compiler: Table 5 shows that
EVA is at least 4× faster than CHET on 56 threads for all

networks. Note that the average latency of CHET is slower

than that reported in their paper [18]. This could be due to

differences in the experimental setup. The input and output

scales they use are different, so is the SEAL version (3.1 vs.

Table 6. Encryption parameters selected by CHET and EVA

(where Q =
∏r

i=1Qi).

Model CHET EVA

log
2
N log

2
Q r log

2
N log

2
Q r

LeNet-5-small 15 480 8 14 360 6

LeNet-5-medium 15 480 8 14 360 6

LeNet-5-large 15 740 13 15 480 8

Industrial 16 1222 21 15 810 14

SqueezeNet-CIFAR 16 1740 29 16 1225 21

3.3.1). We suspect the machine differences to be the primary

reason for the slowdown because they use smaller number

of heavier cores (16 3.2GHz cores vs. 56 2.2GHz cores). In

any case, our comparison of CHET and EVA is fair because

both use the same input and output scales, SEAL version,

Channel-Height-Width (CHW) data layout, and hardware.

Both CHET and EVA perform similar encryption parameters

and rotation keys selection. The differences between CHET

and EVA are solely due to the benefits that accrue from EVA’s

low-level optimizations.

CHET relies on an expert-optimized library of homomor-

phic tensor kernels, where each kernel (1) includes FHE-

specific instructions and (2) is explicitly parallelized. How-

ever, even experts cannot optimize or parallelize across dif-

ferent kernels as that information is not available to them.

In contrast, EVA uses a library of vectorized tensor kernels

and automatically (1) inserts FHE-specific instructions using

global analysis and (2) parallelizes the execution of different

instructions across kernels. Due to these optimizations, EVA
is on average 5.3× faster than CHET. On a single thread (Fig-

ure 6), EVA is on average 2.3× faster than CHET and this is

solely due to better placement of FHE-specific instructions.

The rest of the improvement on 56 threads (2.3× on average)

is due to better parallelization in EVA.

Both CHET and EVA have similar Relinearize placement.

However, they differ in the placement of the other FHE-

specific instructions — Rescale and ModSwitch. These in-

structions directly impact the encryption parameters (both

CHET and EVA use a similar encryption parameter selec-

tion pass). We report the encryption parameters selected by

CHET and EVA in Table 6. EVA selects much smaller coef-

ficient modulus, both in terms of the number of elements

r in it and their product Q . Consequently, the polynomial

modulus N is one power-of-2 lower in all networks, except

LeNet-5-large. Reducing N and r reduces the cost (and the

memory) of each homomorphic operation (and ciphertext)

significantly. In CHET, Rescale and ModSwitch used by

the experts for a given tensor kernel may be sub-optimal for

the program. On the other hand, EVA performs global (inter-

procedural) analysis to minimize the length of the coefficient

modulus, yielding much smaller encryption parameters.

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation PLDI ’20, June 15–20, 2020, London, UK

Table 7. Compilation, encryption context (context), encryp-

tion, and decryption time for EVA.

Model Time (s)

Compilation Context Encrypt Decrypt

LeNet-5-small 0.14 1.21 0.03 0.01

LeNet-5-medium 0.50 1.26 0.03 0.01

LeNet-5-large 1.13 7.24 0.08 0.02

Industrial 0.59 15.70 0.12 0.03

SqueezeNet-CIFAR 4.06 160.82 0.42 0.26

Table 8. Evaluation of EVA for fully-homomorphic arith-

metic, statistical machine learning, and image processing

applications on 1 thread (LoC: lines of code).

Application Vector Size LoC Time (s)

3-dimensional Path Length 4096 45 0.394

Linear Regression 2048 10 0.027

Polynomial Regression 4096 15 0.104

Multivariate Regression 2048 15 0.094

Sobel Filter Detection 4096 35 0.511

Harris Corner Detection 4096 40 1.004

To understand the differences in parallelization, we evalu-

ated CHET and EVA on 1, 7, 14, 28, and 56 threads. Figure 6

shows the strong scaling. We omit LeNet-5-small because it

takes too little time, even on 1 thread. It is apparent that EVA

scales much better than CHET. The parallelization in CHET

is within a tensor operation or kernel using OpenMP. Such

static, bulk-synchronous schedule limits the available paral-

lelism. In contrast, EVA dynamically schedules the directed

acyclic graph of EVA (or SEAL) operations asynchronously.

Thus, it exploits the parallelism available across tensor ker-

nels, resulting in much better scaling. The average speedup

of EVA on 56 threads over EVA on 1 thread is 18.6× (exclud-

ing LeNet-5-small).

Comparison with Hand-Written LoLa: LoLa [7] imple-

ments hand-tuned homomorphic inference for neural net-

works, but the networks they implement are different than

the ones we evaluated (and the ones in CHET). Nonethe-

less, they implement networks for the MNIST and CIFAR-10

datasets.

For the MNIST dataset, LoLa implements the highly-tuned

CryptoNets [21] network (which is similar in size to LeNet-

5-small). This implementation has an average latency of 2.2
seconds and has an accuracy of 98.95%. EVA takes only 1.2
seconds on a much larger network, LeNet-5-medium, with a

better accuracy of 99.09%. For the CIFAR-10 dataset, LoLa
implements a custom network which takes 730 seconds and

has an accuracy of 74.1%. EVA takes only 72.7 seconds on a

much larger network with a better accuracy of 79.34%.

LoLa uses SEAL 2.3 (which implements BFV [19]) which

is less efficient than SEAL 3.3.1 (which implements RNS-

CKKS [12]) but much more easier to use. EVA is faster be-

cause it exploits a more efficient FHE scheme which is much

more difficult to manually write code for. Thus, EVA outper-
forms even highly tuned expert-written implementations like
LoLa with very little programming effort.

Compilation Time: We present the compilation time, en-

cryption context time, encryption time, and decryption time

for all networks in Table 7. The encryption context time in-

cludes the time to generate the public key, the secret key, the

rotation keys, and the relinearization keys. This can take a

lot of time, especially for large N , like in SqueezeNet-CIFAR.

Compilation time, encryption time, and decryption time are

negligible for all networks.

8.3 Arithmetic, Statistical Machine Learning, and
Image Processing

We implemented several applications using PyEVA. To illus-

trate a simple arithmetic application, we implemented an

application that computes the length of a given encrypted

3-dimensional path. This computation can be used as a ker-

nel in several applications like in secure fitness tracking on

mobiles. For statistical machine learning, we implemented

linear regression, polynomial regression, and multi-variate

regression on encrypted vectors. For image processing, we

implemented Sobel filter detection and Harris corner detec-

tion on encrypted images. All these implementations took

very few lines of code (< 50), as shown in Table 8.

Table 8 shows the execution time of these applications on

encrypted data using 1 thread. Sobel filter detection takes

half a second and Harris corner detection takes only a sec-

ond. The rest take negligible time. We believe Harris corner
detection is one of the most complex programs that have been
evaluated using CKKS. EVA enables writing advanced appli-

cations in various domains with little programming effort,

while providing excellent performance.

9 Related Work
Libraries for FHE. SEAL [41] implements RNS variants

of two FHE schemes: BFV [19] and CKKS [12, 13]. HElib [25]

implements two FHE schemes: BGV [6] and CKKS. PAL-

ISADE [38] is a framework that provides a general API for

multiple FHE schemes including BFV, BGV, and CKKS. For

BFV and CKKS, PALISADE is similar to SEAL as it only im-

plements lower-level FHE primitives. On the other hand,

EVA language abstracts batching-compatible FHE schemes

like BFV, BGV, and CKKS while hiding cryptographic details

from the programmer. Although EVA compiler currently gen-

erates code targeting only CKKS implementation in SEAL,

it can be adapted to target other batching-compatible FHE

scheme implementations or FHE libraries.

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

General-Purpose Compilers for FHE. To reduce the bur-
den of writing FHE programs, general-purpose compilers

have been proposed that target different FHE libraries. These

compilers share many of the same goals as ours. Some of

these compilers support general-purpose languages like Julia

(cf. [2]), C++ (cf. [14]), and R (cf. [3]), whereas ALCHEMY [16]

is the only one that provides its own general-purpose lan-

guage. Unlike EVA, none of these languages are amenable

to be a target for domain-specific compilers like CHET [18]

because these languages do not support rotations on fixed

power-of-two sized vectors. Nonetheless, techniques in these

compilers (such as ALCHEMY’s static type safety and error

rate analysis) are orthogonal to our contributions in this

paper and can be incorporated in EVA.

All prior general-purpose compilers target (libraries imple-

menting) either the BFV scheme [19] or the BGV scheme [6].

In contrast, EVA targets (libraries implementing) the recent

CKKS scheme [12, 13], which is much more difficult to write

or generate code for (compared to BFV or BGV). For exam-

ple, ALCHEMY supports the BGV scheme and would require

significant changes to capture the semantics (e.g., Rescale)

of CKKS. ALCHEMY always inserts ModSwitch after every

ciphertext-ciphertext multiplication (using local analysis),

which is not optimal for BGV (or BFV) and would not be

correct for CKKS. EVA is the first general-purpose compiler

for CKKS and it uses a graph rewriting framework to in-

sert Rescale and ModSwitch operations correctly (using

global analysis) so that the modulus chain length is optimal.

These compiler passes in EVA can be incorporated in other

general-purpose compilers (to target CKKS).

Domain-Specific Compilers for FHE. Some prior com-

pilers for DNN inferencing [4, 5, 18] target CKKS. CHET [18]

is a compiler for tensor programs that automates the selec-

tion of data layouts for mapping tensors to vectors of vectors.

The nGraph-HE [5] project introduced an extension to the

Intel nGraph [17] deep learning compiler that allowed data

scientists to make use of FHE with minimal code changes.

The nGraph-HE compiler uses run-time optimization (e.g.,

detection of special plaintext values) and compile-time opti-

mizations (e.g., use of ISA-level parallelism, graph-level opti-

mizations). nGraph-HE2 [4] is an extension of nGraph-HE

that uses a hybrid computational model – the server interacts

with the client to perform non-HE compatible operations,

which increases the communication overhead. Moreover, un-

like CHET and EVA, neither nGraph-HE nor nGraph-HE2

automatically select encryption parameters.

To hide the complexities of FHE operations, all existing

domain-specific compilers rely on a runtime of high-level

kernels which can be optimized by experts. However, experts

are limited to information within a single kernel (like con-

volution) to optimize insertion of FHE-specific operations

and to parallelize execution. In contrast, EVA optimizes in-

sertion of FHE-specific operations by using global analysis

and parallelizes FHE operations across kernels transparently.

Therefore, CHET, nGraph-HE, and nGraph-HE2 can target

EVA instead of the FHE scheme directly to benefit from such

optimizations and we demonstrated this for CHET.

Compilers forMPC. Multi-party computation (MPC) [22,

44] is another technique for privacy-preserving computation.

The existing MPC compilers are mostly general-purpose [24]

and even though it is possible to use them for deep learning

applications, it is hard to program against a general-purpose

interface. The EzPC compiler is a machine learning compiler

that combines arithmetic sharing and garbled circuits and

operates in a two-party setting [9]. EzPC uses ABY as a

cryptographic backend [35].

Privacy-Preserving Deep Learning. CryptoNets, one of
the first systems for neural network inference using FHE

[21] and the consequent work on LoLa, a low-latency Cryp-

toNets [7], show the ever more practical use of FHE for deep

learning. CryptoNets and LoLa however use kernels for neu-

ral networks that directly translate the operations to the

cryptographic primitives of the FHE schemes. There are also

other algorithms and cryptosystems specifically for deep

learning that rely on FHE (CryptoDL [26], [8], [29]), MPC

(Chameleon [39], DeepSecure [40], SecureML [36]), obliv-

ious protocols (MiniONN [33]), or on hybrid approaches

(Gazelle [30], SecureNN [43].) None of these provide the

flexibility and the optimizations of a compiler approach.

10 Conclusions
This paper introduces a new language and intermediate rep-

resentation called Encrypted Vector Arithmetic (EVA) for

general-purpose Fully-Homomorphic Encryption (FHE) com-

putation. EVA includes a Python frontend that can be used

to write advanced programs with little programming effort,

and it hides all the cryptographic details from the program-

mer. EVA includes an optimizing compiler that generates

correct, secure, and efficient code, targeting the state-of-the-

art SEAL library. EVA is also designed for easy targeting

of domain specific languages. The state-of-the-art neural

network inference compiler CHET, when re-targeted onto

EVA, outperforms its unmodified version by 5.3× on aver-

age. EVA provides a solid foundation for a richer variety

of FHE applications as well as domain-specific compilers

and auto-vectorizing compilers for computing on encrypted

data.

Acknowledgments
This research was supported by the NSF grants 1406355,

1618425, 1705092, 1725322, and by the DARPA contracts

FA8750-16-2-0004 and FA8650-15-C-7563. We thank Keshav

Pingali for his support. We thank the anonymous reviewers

and in particular our shepherd, Petar Tsankov, for their many

suggestions in improving this paper.

EVA: An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic Computation PLDI ’20, June 15–20, 2020, London, UK

References
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-

wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,

Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis

Morrison, Amit Sahai, and Vinod Vaikuntanathan. 2018. Homomorphic
Encryption Security Standard. Technical Report. HomomorphicEncryp-

tion.org, Toronto, Canada.

[2] David W. Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Mal-

ozemoff, Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. 2019. RAM-

PARTS: A Programmer-Friendly System for Building Homomorphic

Encryption Applications. In Proceedings of the 7th ACM Workshop on
Encrypted Computing & Applied Homomorphic Cryptography (Lon-

don, United Kingdom) (WAHC’19). ACM, New York, NY, USA, 57–68.

https://doi.org/10.1145/3338469.3358945
[3] Louis JM Aslett, Pedro M Esperança, and Chris C Holmes. 2015. A

review of homomorphic encryption and software tools for encrypted

statistical machine learning. arXiv preprint arXiv:1508.06574 (2015).
[4] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir

Wierzynski. 2019. nGraph-HE2: A High-Throughput Framework for

Neural Network Inference on Encrypted Data. In Proceedings of the
7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography.

[5] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzyn-

ski. 2019. nGraph-HE: A Graph Compiler for Deep Learning on Ho-

momorphically Encrypted Data. In Proceedings of the 16th ACM Inter-
national Conference on Computing Frontiers.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Lev-

eled) fully homomorphic encryption without bootstrapping. In ITCS
2012: 3rd Innovations in Theoretical Computer Science, Shafi Goldwasser

(Ed.). Association for Computing Machinery, Cambridge, MA, USA,

309–325. https://doi.org/10.1145/2090236.2090262
[7] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. 2019. Low

Latency Privacy Preserving Inference. In Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML, Kamalika Chaudhuri

and Ruslan Salakhutdinov (Eds.).

[8] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance

Morel, and Emmanuel Prouff. 2017. Privacy-Preserving Classification

on Deep Neural Network. Cryptology ePrint Archive, Report 2017/035.

http://eprint.iacr.org/2017/035.
[9] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and

Shardul Tripathi. 2019. EzPC: Programmable and Efficient Secure

Two-Party Computation for Machine Learning. In IEEE European Sym-
posium on Security and Privacy, EuroS&P.

[10] Hao Chen. 2017. Optimizing relinearization in circuits for homomor-

phic encryption. CoRR abs/1711.06319 (2017). https://arxiv.org/abs/
1711.06319.

[11] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-

soo Song. 2018. A Full RNS variant of Approximate Homomorphic

Encryption. In Selected Areas in Cryptography – SAC 2018. Springer.
https://doi.org/10.1007/978-3-030-10970-7_16 LNCS 11349.

[12] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-

soo Song. 2019. A Full RNS Variant of Approximate Homomorphic

Encryption. In SAC 2018: 25th Annual International Workshop on Se-
lected Areas in Cryptography (Lecture Notes in Computer Science), Carlos
Cid and Michael J. Jacobson Jr: (Eds.), Vol. 11349. Springer, Heidelberg,

Germany, Calgary, AB, Canada, 347–368. https://doi.org/10.1007/978-
3-030-10970-7_16

[13] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017.

Homomorphic Encryption for Arithmetic of Approximate Numbers.

In Advances in Cryptology – ASIACRYPT 2017, Part I (Lecture Notes
in Computer Science), Tsuyoshi Takagi and Thomas Peyrin (Eds.),

Vol. 10624. Springer, Heidelberg, Germany, Hong Kong, China, 409–

437. https://doi.org/10.1007/978-3-319-70694-8_15
[14] Cingulata 2018. Cingulata. https://github.com/CEA-LIST/Cingulata.

[15] David Corvoysier. 2017. SqueezeNet for CIFAR-10. https://github.com/
kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze.

[16] Eric Crockett, Chris Peikert, and Chad Sharp. 2018. ALCHEMY: A

Language and Compiler for Homomorphic Encryption Made EasY.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 1020–1037. https:
//doi.org/10.1145/3243734.3243828

[17] Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram

Bobba, Matthew Brookhart, Avijit Chakraborty, William Constable,

Christian Convey, Leona Cook, Omar Kanawi, Robert Kimball, Jason

Knight, Nikolay Korovaiko, Varun Kumar Vijay, Yixing Lao, Christo-

pher R. Lishka, Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath

Narayana, Adam Procter, and Tristan J. Webb. 2018. Intel nGraph:

An Intermediate Representation, Compiler, and Executor for Deep

Learning. CoRR abs/1801.08058 (2018). arXiv:1801.08058 http:
//arxiv.org/abs/1801.08058

[18] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter,

Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET:

An Optimizing Compiler for Fully-homomorphic Neural-network In-

ferencing. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation.

[19] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical

Fully Homomorphic Encryption. Cryptology ePrint Archive, Report

2012/144. https://eprint.iacr.org/2012/144.
[20] Galois System 2019. Galois System. http://iss.oden.utexas.edu/?p=

projects/galois
[21] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,

Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying

Neural Networks to Encrypted Data with High Throughput and Accu-

racy. In Proceedings of The 33rd International Conference on Machine
Learning, ICML.

[22] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to

Play any Mental Game or A Completeness Theorem for Protocols

with Honest Majority. In 19th Annual ACM Symposium on Theory of
Computing, Alfred Aho (Ed.). ACM Press, New York City, NY, USA,

218–229. https://doi.org/10.1145/28395.28420
[23] Google Inc. [n.d.]. Protocol Buffer. https://developers.google.com/

protocol-buffers. Google Inc.
[24] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve

Zdancewic. 2019. SoK: General Purpose Compilers for Secure Multi-

Party Computation. In 2019 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, San Francisco, CA, USA, 1220–1237.

https://doi.org/10.1109/SP.2019.00028
[25] HElib 2020. HElib. https://github.com/homenc/HElib.
[26] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. Cryp-

toDL: Deep Neural Networks over Encrypted Data. (2017). http:
//arxiv.org/abs/1711.05189

[27] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,

William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <1MB model size. CoRR
abs/1602.07360 (2016). https://arxiv.org/abs/1602.07360.

[28] Cryptography Lab in Seoul National University. [n.d.]. Homomorphic
Encryption for Arithmetic of Approximate Numbers (HEAAN).

[29] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. 2018.

Secure Outsourced Matrix Computation and Application to Neural

Networks. In ACM CCS 2018: 25th Conference on Computer and Com-
munications Security, David Lie, Mohammad Mannan, Michael Backes,

and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 1209–

1222. https://doi.org/10.1145/3243734.3243837
[30] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.

2018. GAZELLE: A Low Latency Framework for Secure Neural Net-

work Inference. In USENIX Security 2018: 27th USENIX Security Sym-
posium, William Enck and Adrienne Porter Felt (Eds.). USENIX Asso-

ciation, Baltimore, MD, USA, 1651–1669.

https://doi.org/10.1145/3338469.3358945
https://doi.org/10.1145/2090236.2090262
http://eprint.iacr.org/2017/035
https://arxiv.org/abs/1711.06319
https://arxiv.org/abs/1711.06319
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://github.com/CEA-LIST/Cingulata
https://github.com/kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze
https://github.com/kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze
https://doi.org/10.1145/3243734.3243828
https://doi.org/10.1145/3243734.3243828
http://arxiv.org/abs/1801.08058
http://arxiv.org/abs/1801.08058
http://arxiv.org/abs/1801.08058
https://eprint.iacr.org/2012/144
http://iss.oden.utexas.edu/?p=projects/galois
http://iss.oden.utexas.edu/?p=projects/galois
https://doi.org/10.1145/28395.28420
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://doi.org/10.1109/SP.2019.00028
https://github.com/homenc/HElib
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
https://arxiv.org/abs/1602.07360
https://doi.org/10.1145/3243734.3243837

PLDI ’20, June 15–20, 2020, London, UK Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and Madan Musuvathi

[31] Alex Krizhevsky. 2009. The CIFAR-10 Dataset. https://www.cs.toronto.
edu/~kriz/cifar.html.

[32] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. [n.d.]. The

MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/
mnist/.

[33] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural

Network Predictions via MiniONN Transformations. In ACM CCS 2017:
24th Conference on Computer and Communications Security, Bhavani M.

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM Press, Dallas, TX, USA, 619–631. https://doi.org/10.1145/3133956.
3134056

[34] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal

Lattices and Learning with Errors over Rings. In Advances in Cryp-
tology – EUROCRYPT 2010 (Lecture Notes in Computer Science), Henri
Gilbert (Ed.), Vol. 6110. Springer, Heidelberg, Germany, French Riviera,

1–23. https://doi.org/10.1007/978-3-642-13190-5_1
[35] Payman Mohassel and Peter Rindal. 2018. ABY

3
: A Mixed Protocol

Framework for Machine Learning. In ACM CCS 2018: 25th Conference
on Computer and Communications Security, David Lie, Mohammad

Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press,

Toronto, ON, Canada, 35–52. https://doi.org/10.1145/3243734.3243760
[36] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for

Scalable Privacy-Preserving Machine Learning. In 2017 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, San Jose,

CA, USA, 19–38. https://doi.org/10.1109/SP.2017.12
[37] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A

Lightweight Infrastructure for Graph Analytics. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles

(Farminton, Pennsylvania) (SOSP ’13). ACM, New York, NY, USA, 456–

471. https://doi.org/10.1145/2517349.2522739
[38] PALISADE 2020. PALISADE Homomorphic Encryption Software Li-

brary. https://palisade-crypto.org/.
[39] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.

Songhori, Thomas Schneider, and Farinaz Koushanfar. 2018.

Chameleon: A Hybrid Secure Computation Framework for Machine

Learning Applications. In ASIACCS 18: 13th ACM Symposium on
Information, Computer and Communications Security, Jong Kim,

Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo

Kim (Eds.). ACM Press, Incheon, Republic of Korea, 707–721.

[40] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018.

Deepsecure: Scalable Provably-secure Deep Learning. In Proceedings
of the 55th Annual Design Automation Conference (San Francisco, Cal-

ifornia) (DAC ’18). ACM, New York, NY, USA, Article 2, 6 pages.

https://doi.org/10.1145/3195970.3196023
[41] SEAL 2019. Microsoft SEAL (release 3.3). https://github.com/Microsoft/

SEAL. Microsoft Research, Redmond, WA.

[42] TensorFlow 2016. LeNet-5-like convolutional MNIST model ex-

ample. https://github.com/tensorflow/models/blob/v1.9.0/tutorials/
image/mnist/convolutional.py.

[43] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN:

3-Party Secure Computation for Neural Network Training. Proceedings
on Privacy Enhancing Technologies 2019, 3 (July 2019), 26–49. https:
//doi.org/10.2478/popets-2019-0035

[44] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets

(Extended Abstract). In 27th Annual Symposium on Foundations of
Computer Science. IEEE Computer Society Press, Toronto, Ontario,

Canada, 162–167. https://doi.org/10.1109/SFCS.1986.25

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1145/2517349.2522739
https://palisade-crypto.org/
https://doi.org/10.1145/3195970.3196023
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fully-Homomorphic Encryption (FHE)
	2.2 Challenges in Using FHE
	2.3 Microsoft SEAL
	2.4 Threat Model

	3 EVA Language
	4 Overview of EVA Compiler
	4.1 Using the Compiler
	4.2 Motivation and Constraints
	4.3 Execution Flow of the Compiler

	5 Transformations in EVA Compiler
	5.1 Graph Rewriting Framework
	5.2 Relinearize Insertion Pass
	5.3 Rescale and ModSwitch Insertion Passes

	6 Analysis in EVA Compiler
	6.1 Graph Traversal Framework and Executor
	6.2 Analysis Passes

	7 Frontends of EVA
	7.1 PyEVA
	7.2 EVA for Neural Network Inference

	8 Experimental Evaluation
	8.1 Experimental Setup
	8.2 Deep Neural Network (DNN) Inference
	8.3 Arithmetic, Statistical Machine Learning, and Image Processing

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

