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Abstract—Many applications today, such as natural language
processing, network and code analysis, rely on semantically
embedding objects into low-dimensional fixed-length vectors.
Such embeddings naturally provide a way to perform useful
downstream tasks, such as identifying relations among objects
and predicting objects for a given context. Unfortunately, training
accurate embeddings is usually computationally intensive and
requires processing large amounts of data.

This paper presents a distributed training framework for a
class of applications that use Skip-gram-like models to generate
embeddings. We call this class Any2Vec and it includes Word2Vec
(Gensim), and Vertex2Vec (DeepWalk and Node2Vec) among
others. We first formulate Any2Vec training algorithm as a graph
application. We then adapt the state-of-the-art distributed graph
analytics framework, D-Galois, to support dynamic graph gener-
ation and re-partitioning, and incorporate novel communication
optimizations. We show that on a cluster of 32 48-core hosts
our framework GraphAny2Vec matches the accuracy of the
state-of-the-art shared-memory implementations of Word2Vec
and Vertex2Vec, and gives geo-mean speedups of 12x and 5Xx
respectively. Furthermore, GraphAny2Vec is on average 2x
faster than DMTK, the state-of-the-art distributed Word2Vec
implementation, on 32 hosts while yielding much better accuracy.

Index Terms—Machine Learning, Graph Analytics, Dis-
tributed Computing

I. INTRODUCTION

Embedding is a popular technique that associates a fixed-
length vector to objects in a set such that the mathematical
closeness of any two vectors approximates the relationship of
the associated objects. Applications in areas such as natural
language processing (NLP) [1]-[3], network analysis [4], [5],
code analysis [6], [7], and bioinformatics [8] rely on semanti-
cally embedding objects into these vectors. Embeddings pro-
vide a way to perform downstream tasks, such as identifying
relations among words, by studying their associated vectors.
Training these embeddings requires large amounts of data
to be used and is computationally expensive, which makes
distributed solutions especially important.

An important class of embedding applications use Skip-
gram-like models, like the one used in Word2Vec [1], to
generate embeddings. We call this class Any2Vec and it
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includes Word2Vec (Gensim [9]), Vertex2Vec (DeepWalk [4]
and Node2Vec [5] are examples), Sequence2Vec [8], and
Doc2Vec [3] among others. Applications in this class maintain
a large embedding matrix, where each row corresponds to the
embedding vector for each object. Sequences of objects in the
training data (text segments for Word2Vec and graph paths
in Vertex2Vec) identify their relations, which are used during
(semi-supervised) training to update the associated embedding
vectors. The relations between objects are irregular, which
leads to sparse accesses to the embedding matrix. Furthermore,
the relations change with the training data, making accesses
dynamic during the training process. Due to these dynamic
and sparse accesses, distributing the training of Any2Vec
embeddings is challenging and existing distributed implemen-
tations [10]-[13] scale poorly due to the overheads of frequent
communication and even then they do not match the accuracy
of the shared-memory implementations.

We first formulate the Any2Vec class of machine learning
algorithms that use Skip-gram-like models as a graph appli-
cation. The objects are vertices and the relations between
them are edges. An edge operator updates the embedding
vectors of the edge’s source and destination vertices. The
algorithm applies these edge operators in a specific order or
schedule (the schedule is critical for accuracy). However, these
applications cannot be implemented in existing distributed
graph analytics frameworks [14]-[17] because it requires:
(1) edge operators, (2) general (vertex-cut) graph partitioning
policies, and (3) dynamic graph re-partitioning. None of the
existing frameworks support all these required features.

This paper introduces a distributed training framework for
Any2Vec applications called GraphAny2Vec, which extends
D-Galois [17], a state-of-the-art distributed graph analytics
framework, to support dynamic graph generation and re-
partitioning. GraphAny2Vec leverages the communication op-
timizations in D-Galois and adds novel application-specific
communication optimizations. It also leverages the Adaptive
Summation technique [18] for preserving accuracy during syn-
chronization and exposes a runtime parameter to transparently



trade-off synchronization rounds and accuracy.

We evaluate two applications, Word2Vec and Vertex2Vec,
in GraphAny2Vec on a cluster of up to 32 48-core hosts
with 3 different datasets each. We show that compared to the
state-of-the-art shared-memory implementations (the original
C implementation [2] and Gensim [9] for Word2Vec and
DeepWalk [4] for Vertex2Vec) on 1 host, GraphAny2Vec on
32 hosts is on average 12x and 5x faster than Word2Vec
and Vertex2Vec respectively, while matching their accuracy.
GraphAny2Vec can reduce the training time for Word2Vec
from 21 hours to less than 2 hours on our largest dataset of
Wikipedia articles while matching the accuracy of Gensim. On
32 hosts, GraphAny2Vec is on average 2 x faster than the state-
of-the-art distributed Word2Vec implementation in Microsoft’s
Distributed Machine Learning Toolkit (DMTK) [10].

The rest of this paper is organized as follows. Section II
provides a background on Any2Vec and graph analytics.
Section III describes our GraphAny2Vec framework and Sec-
tion IV presents our evaluation of GraphAny2Vec. Related
work and conclusions are presented in Sections V and VI.

II. BACKGROUND

In this section, we first briefly describe how stochastic
gradient descent is used to train machine learning models
(Section II-A), followed by how Any2Vec models are trained
with Word2Vec as an example (Section II-B). We then provide
an overview of graph analytics (Section II-C).

A. Stochastic Gradient Descent

A machine learning model is usually expressed by a func-
tion M : IR" x R¥ — IR" or M(w,z) = y where w € R"
is the weight of the model parameters, = € R” is the input
example and y € IR" is the prediction of the model. The
training task of a machine learning model is defined by a set
of training examples (x;,y;) where z; € R” and y; € IR" and
a loss function L : R” x R"™ — IR" (IR™ is the set of non-
negative reals) which assigns a penalty based on closeness of
M (w, x;), the model prediction, and y;, the true answer. In an
ideal world, M (w, z;) = y; and the loss function would be 0
for all training examples 4. Since (z;,y;) are constant during
the training process, we will use function L; : R” — IR™
defined by L;(w) = L(M(w,z;),y;) which is the loss for
training example ¢ given model parameters w for convenience.
Since perfect prediction is usually impossible, for a given set
of training examples, a w with minimum ) . L;(w) is desired.

Stochastic Gradient Descent (SGD) [19] is a popular algo-
rithm for machine learning training to find w with minimum
total loss. Suppose that there are [ training examples and
{r1,...,m} is a random shuffle of indices from 1 to [. The
model is initially set to a random guess wg and at iteration 1,

a; - Gr, (Wi—1) (1)

. . oL,
where «; is the learning rate, and g, (w;-1) = —5.-|
i—1

is the gradient of L,, at w;_; for training example . The
learning rate determines how much the model is moved in the
gradient direction and is a sensitive hyper-parameter that needs
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Fig. 1. Viewing Word2Vec in Skip-gram model as a graph. The unique words
in the training data corpus form vertices of the graph and edges represent
the positive (edge label: 1) and negative (edge label: 0) correlations among
vertices. Labels on the vertices are: embedding (e) and training (t) vectors.

to be carefully set and decayed as the training progresses.
Training is complete when the model reaches a desired loss
or evaluation accuracy. An epoch of training is the number
of updates needed to go through the whole dataset once or
equivalently, [ iterations. For subsequent epochs, the dataset is
shuffled again. For the rest of this paper, we will drop w;_;
from g,,(w;—1) as the model is known from the context.

As it is evident from Equation 1, SGD’s update rule for
w; depends on w;_; which makes it an inherently sequential
algorithm. Luckily, there are several parallelization approaches
for SGD algorithm each of which changes the semantics of
the algorithm. The most well-known technique is mini-batch
SGD [20], where the gradients for multiple training examples
are computed from the same point and then averaged. Mini-
batch algorithm is semantically different from SGD and there-
fore, the convergence of the algorithm is negatively affected
for the same number of gradients computed. Hogwild! [21] is
another well-known SGD parallelization technique, wherein
multiple threads compute gradients for different training ex-
amples in parallel in a lock-free way and update the model
in a racy fashion. Surprisingly, this approach works well
on a shared-memory system, especially with models where
gradients are sparse. The staleness of the models following
this parallelization technique hurts the accuracy with too
many working threads. Adaptive Summation (AdaSum) [18]
is another technique similar to mini-batch algorithm which
computes the gradients for multiple gradients in parallel but
instead of averaging, it uses the following formula to reduce
two arbitrary gradients, g, and g3, into one:

AdaSum(ga, gv) = ga + o — 5|'| H%b 9 2
9o
Using this reduction rule, AdaSum takes any number of
gradients and produces one. Maleki et al. [18] show that
AdaSum preserves the convergence of the sequential SGD
algorithm when applied to training of dense deep neural
networks (DNNs).

B. Training Any2Vec Embeddings

An embedding is a mapping from a dataset D to a vector
space IRY such that elements of D that are related are close to
each other in the vector space. The length N of the embedding
vectors is typically much smaller than the size of D.



Many models have been proposed for learning embeddings.
We will focus on the popular Skip-gram model [1] together
with the negative sampling introduced in [2], and explain it
here in a form suitable for a graph analytic understanding.
Note that all the ideas proposed in this work are applicable for
Continuous Bag-of-Words (CBOW) model as it shares archi-
tectural similarities with the Skip-gram model for computing
vector representations of words.

Skip-gram uses a training task where it predicts if a target
word wo appears in the context of a center word w;. Figure 1
(left) illustrates this for an example sentence, with “fox” as the
center word. The context is then defined as the words inside
a window of size c (a hyper-parameter) centered on “fox”.
In Figure 1 (left), these positive samples have green edges
with label 1. For each positive sample, Skip-gram picks k (a
hyper-parameter) random words as negative samples such as
the red edges with label O in the figure. In case of Vertex2Vec,
words correspond to the vertices of the network and context
is defined by the paths generated by doing random walks on
the network [4], [5].

The Skip-gram model consists of two vectors of size N
for each word w in the vocabulary: an embedding vector e,
and a fraining vector t,,. For a pair of words (wr,wo), the

model predicts the label with o(el,, - tw,). €L, - tu, is the
inner product of the two vectors and o(z) = m is the

sigmoid function which is a strictly increasing function from
0 to 1. For a pair of related words, a close to 1 prediction is
desired and a close to 0 otherwise. The loss function is the
defined by —log(1 — |y — a(el - tu,)|) where y is 1 (0)
for related (unrelated) words. Following the standard gradient

rules, e,,, and t,,, are update as follows:

ely, = et —al(y — (el tuwy))th) 3
thyy =€t —a'(y —o(el, - twy))el,

where the superscript identifies the iteration similar to the
subscripts in Equation 1. Note that only one vector from each
word is updated. Also, o is the learning rate for each iteration
and our experiments suggested it is a sensitive hyper-parameter
for Any2Vec and needs to set and decayed carefully.

We base the work in this paper on Google’s Word2Vec tool',
which uses the Hogwild! parallelization technique. Each thread
is given a subset of the corpus and goes through the words in
it sequentially (skipping some due to sub-sampling frequent
words as described in [2]). On each thread and for each word
wy in the assigned text, Word2Vec finds the related words
in the context window centered around w;. For each pair of
related words, Word2Vec randomly samples k unrelated words
to update the vectors. Therefore, for each pair of related words,
a total k + 1 updates occur, 1 with label 1 and k£ with label 0.
As discussed before, these updates occur in a racy manner.

For GraphAny2Vec in this paper, we use Hogwild! paral-
lelization strategy on each machine in a cluster and Adaptive
Summation (AdaSum) for synchronization of updates across

Thttps://code.google.com/archive/p/word2vec/

machines. The combination of these approaches provides suffi-
cient parallelism while preserving the accuracy in a distributed
training. As we will discuss in Section IV-C, the original
AdaSum reduction technique was proposed for DNNs but we
adapted it to Any2Vec for performance gains.

C. Graph Analytics

In typical graph analytics applications, each vertex has one
or more labels, which are updated during algorithm execution
until a global quiescence condition is reached. The labels are
updated by iteratively applying a computation rule, known as
an operator, to the vertices or edges in the graph. The order in
which the operator is applied to the vertices or edges is known
as the schedule. A vertex operator takes a vertex n and updates
labels on n or its neighbors, whereas an edge operator takes
an edge e and updates labels on source and destination of e.

To execute graph applications in distributed-memory, the
edges are first partitioned [22] among the hosts and for each
edge on a host, proxies are created for its endpoints. As
a consequence of this design, a vertex might have proxies
(or replicas) on many hosts. One of these is chosen as the
master proxy to hold the canonical value of the vertex. The
others are known as mirror proxies. Several heuristics exist
for partitioning edges and choosing master proxies [22].

Most distributed graph analytics systems [14]-[17] use bulk-
synchronous parallel (BSP) execution. Execution is done in
rounds of computation followed by bulk-synchronous com-
munication. In the computation phase, every host applies the
operator on vertices/edges in its own partition and updates
the labels of the local proxies. Thus, different proxies of the
same vertex might have different values for the same label.
Every host then participates in a global communication phase
to synchronize the labels of all proxies. Different proxies of the
same vertex are reconciled by applying a reduction operator,
which depends on the algorithm being executed.

III. DISTRIBUTED ANY2VEC

In this section, we first describe our formulation of Any2Vec
as a graph application and provide an overview of our dis-
tributed GraphAny2Vec (Section III-A). We then describe
dynamic graph generation and partitioning (Section III-B),
model synchronization (Section III-C), and communication
optimizations (Section III-D) in more detail.

We use Word2Vec as the running example in this section
as other examples of Any2Vec follow the same logic.

A. Overview of Distributed GraphAny2Vec

We formulate Any2Vec as a graph problem and call it
GraphAny2Vec. Each unique element in the dataset D (such
as unique words in Word2Vec) corresponds to a vertex in a
graph, and the positive and negative samples correspond to
edges in the graph with label 1 and O respectively. Figure 1
(right) illustrates this for Word2Vec. Training the Skip-gram
model is now a graph analytics application. Each vertex has
two vectors — e and ¢ — for embedding and training vectors,
respectively, of size N (labels on the vertices as described in



Algorithm 1 Execution on each distributed host of GraphAn-
y2Vec.

1: procedure GRAPHANY2VEC(Corpus C, Num. of epochs R,
Num. of sync rounds S, Learning rate «)

2: Let h be the host ID

3: Stream C' from disk to build set of vertices V'

4: Read partition h of C' that forms a work-list W

5: for epoch r from 1 to R do

6: for sync round s from 1 to S do

7: Let W be partition s of W

8: Build graph G = (V, E) where E are samples in W
9: Compute(G, W, a) > Updates G locally
10: Synchronize(G) > Updates G globally
11: end for

12: end for

13: end procedure

Section II-C). The model corresponds to these vectors for all
vertices. These vectors are initialized randomly and updated
during training by applying an edge operator, that takes the
source src and destination dst of an edge, and updates e,
and t4s: using Equation 3 where src corresponds to w; and
dst corresponds to wep. In each epoch, the operator is applied
to all edges once in a specific schedule, which we describe in
Section III-B. This schedule is critical for accuracy.
Algorithm 1 gives a brief overview of our distributed
GraphAny2Vec execution. The first step is to construct the
set of vertices V (unique words in case of Word2Vec) by
making a pass over the training data corpus C' on each host
in parallel (line 3). As C' may not fit in the memory of
a single host, we stream it from disk to construct V. The
corpus C is then partitioned (logically) into roughly equal
contiguous chunks among hosts. All hosts read their own
partition of C'in parallel (line 4). The list of vertices in a host’s
partition of C' constitutes the work-list?> T that the host is
responsible for computing Any2Vec on in each epoch (line 5).
The graph edges (positive and negative samples as described
in Section II-B) are dynamically generated as described in
Section III-B. The same vertex may occur in W on different
hosts, so its edges might be generated on different hosts. Such
graph partitions are known as a vertex-cut [22] because edges
of a vertex could be split across partitions. Since the number of
edges generated and processed are determined by the window
size (c) and number of negative samples (k) (both hyper-
parameters), the equal-sized chunk assignment of the training
data corpus aids in load-balancing computation among hosts.
We introduce a new (hyper-)parameter for controlling the
number of synchronization rounds within an epoch. In each
epoch on each host, W is partitioned into S roughly equal
contiguous chunks (one for each round) as shown in Algo-
rithm 1 (line 6). In each round s, W; is the corresponding
subset of W and it forms a smaller subgraph. The Any2Vec

>The work-list T/ does not change across epochs, so we construct it once
and reuse it for all epochs and synchronization rounds in our evaluation.
However, if it does not fit in memory, partition s of W can be constructed
from the corpus in each synchronization round.

operator is then applied to all edges in the graph (line 9)
in a specific schedule. The operator updates the vertex vectors
directly using Equation 3. Then, all hosts participate in a bulk-
synchronous communication to synchronize the vertex vectors
(line 10). We explain this communication in more detail in
Section III-C.

GraphAny2Vec exploits both data and model parallelism.
The edges on the graph represent the positive and negative
samples and as discussed, the edges are partitioned among
distributed hosts and are operated on in parallel. This corre-
sponds to data parallelism. The vectors associated with vertices
of the graph represent the model parameters. While the vertices
are distributed among hosts, the same vertex might have
proxies on multiple hosts. Updates for these vectors (the proxy
copies or the master ones) may occur in the same round and
therefore, the model parameters are updated in parallel which
corresponds to model parallelism.

There are many distributed graph analytics systems [14]—
[17] but GraphAny2Vec cannot be implemented in any of them
without significant effort because none of them provide the
following three requirements in the same framwork: (1) edge
operators, (2) vertex-cut partitioning policies, and (3) dynamic
graphs generation where the vertices and edges change during
algorithm execution out of the box. We extend D-Galois [17],
the state-of-the-art distributed graph analytics system, to sup-
port GraphAny2Vec. D-Galois consists of the Galois [23]
multi-threaded library for computation and the Gluon [17]
communication substrate for synchronization. Galois provides
efficient, concurrent data structures like graphs, work-lists,
dynamic bit-vectors, etc. Gluon incorporates communication
optimizations that enable it to scale to a large number of hosts.
D-Galois already supports edge operators and vertex-cuts. We
adapted D-Galois to handle dynamic graph generation effi-
ciently during computation and communication. as explained
in Sections III-B and III-D respectively.

B. Graph Generation and Partitioning

As explained in Section II-B, the Skip-gram model gener-
ates positive and negative samples using randomization. Con-
sequently, the samples or edges generated for the same element
or vertex in the corpus in different epochs may be different.
As the same edge may not be generated again, one way to
abstract this is to consider that the edges are being streamed
and each edge is processed only once, even across epochs.
Due to this, the graph needs to be constructed dynamically in
each synchronization round, as shown in Algorithm 1 (line 8).

The graph can be explicitly constructed in each round.
However, this may add unnecessary overheads as each edge
is processed only once before the graph is destroyed. More
importantly, this does not distinguish between edges (samples)
from different occurrences of the same vertex (element) in
the corpus. Consequently, the relative ordering of the edges is
not preserved. We observed that the accuracy of the model is
highly sensitive to the order in which the edges are processed
because the learning rate decays after each occurrence of the
vertex is processed. Hence, the key to our graph formulation is
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that on each host, the schedule of applying operators on edges
in GraphAny2Vec must match the order in which samples
would be processed in Any2Vec. Note that the work-list W
preserves the ordering of vertex occurrences in the corpus.
Thus, GraphAny2Vec generates or streams edges on-the-fly
using partition s of W in round s, instead of constructing the
graph.

Each host generates edges for its own partition of the data
corpus in W; in each synchronization round. In other words,
the graph is re-partitioned in every round. Each host owns
the edges generated in a given synchronization round. As
mentioned in Section II-C, vertex proxies are created for the
endpoints of edges on a host. The master proxy for each vertex
can be chosen from among its proxies thus created, but this
would incur overheads in every round. We instead logically
partition the vertices (or unique words in case of Word2Vec)
once into roughly equal contiguous chunks among the hosts
and each host creates master proxies for the vertices in its
partition; this is also referred to as the model partitioning in
the literature. Master proxies do not change across rounds or
epochs. Proxies for other vertices on the host would be mirror
proxies. Each mirror knows the host that has its master using
the static partitioning of vertices. Each master also needs to
know the hosts with its dynamic mirrors as the edges change
in each round. At the end of each round, the updates to mirrors
are sent to the master proxy to be reduced. Section II-C
and III-D discuss the update exchange schemes and reduction
operators.

C. Model Synchronization

Figure 3 shows an example where proxies on two hosts need
to be synchronized after computation. Consider the word “fox”
that is present on both hosts. It may have different values
for the embeddings on both hosts after computation. Prior
works for distributed Word2Vec [10]-[13] such as Microsoft’s
Distributed Machine Learning Toolkit (DMTK) [10] (and
other machine learning algorithms) use a parameter server to
synchronize the model, as illustrated in Figure 2(a). One of the
hosts (say P) is chosen as the parameter server which holds
the master proxy of the vectors. Other hosts asynchronously
receive the updated model from the server and update their
model locally based on the assigned computation. Finally, each
host independently sends its local model to the P; to update
the global model.

GraphAny2Vec, however, uses a different synchronization
model based on D-Galois [17], as illustrated in Figure 2(b).
Abstractly, this can be viewed as a decentralized parameter
server model where each host acts as a parameter server for
a partition of the model and the updates occur in a bulk-
synchronous fashion. In Figure 2(b), P; has the master proxies
for the i*" partition of the vertices (model). Dividing the
model equally among hosts and making them responsible
for maintaining the canonical state of their partitions of the
model aids in load-balancing communication among hosts. As
described in Section III-B the local updates to mirrored proxies
are sent to the host with the master proxy to be reduced. This is
more efficient than parameter server in modern interconnects
because one server host does not become the bottleneck in
communication.

Different hosts may update the vectors for the same vertex
in the same round and therefore, the host with the master
proxy needs to reduce multiple updates into one. Prior works
for distributed Word2Vec use averaging but GraphAny2Vec
leverages the AdaSum [18] reduction operator as it allows us
to match the accuracy of shared-memory implementations.

The AdaSum paper shows that the optimal way to perform
such distributed reductions for all parameters in the model
is by using vector-halving distance-doubling technique [24].
However, in GraphAny2Vec, not all vectors are updated in ev-
ery round. Consequently, such communication would result in
redundant communication. As described above, in GraphAn-
y2Vec, the master is responsible for applying the updates
from all mirrors. Suppose that in a synchronization round,
ug = ¢go is the value of an embedding on the master proxy
and g1, ..., gn are the set of updates received from its n mirror
proxies. Then the updates are reduced sequentially on that host
in the following way: V1 < i < n,u; = AdaSum(u;—1, g;)-

D. Communication Schemes and Optimizations

We provide two major schemes to exchange updates be-
tween mirror and master proxies with communication opti-
mization for each.

RepModel-Base: In this scheme, each host has proxies for
all vertices, so the entire model is replicated on each host.
Thus, each host statically knows that every other host has



mirror proxies for the masters on it. This means that at the
beginning of a round, each host sends the master proxy of each
vertex to every other host and at the end of the round, each host
sends back its mirror proxies to the host with master proxy to
update. Obviously, this approach has an overwhelming volume
of communication as a host may not need the update for a
mirror proxy in a round.

RepModel-Opt: This is the same scheme as RepModel-
Base with a communication optimization. In this version, each
host maintains a bit-vector for the mirror proxies updated in
each round. Note that from Equation 3, for edge corresponding
to src and dst, only e, and ¢4, are updated and egq¢ and £,
are neither read nor updated. Therefore, we need two bits for
each vertex, one for each vector. Synchronization in D-Galois
uses this bit-vector to ensure that only the updated mirrors are
sent to their masters and the masters broadcast their values
to all other hosts only if it was updated on any host in that
round.

PullModel-Base: In this scheme, each host makes an in-
spection pass over Wy (its work-list) before computation in
each round to track the vertices that would be accessed during
computation. Mirror proxies are then created for the vertices
tracked and the master proxy communicates both vectors to
the mirror proxy. Then each host updates its vectors and
communicates back the vectors of tracked vertices.

PullModel-Opt: As discussed in RepModel-Opt, e, are
accessed only at the src of an edge and ¢4 are accessed only
at the destination. If a mirror proxy on a host has only outgoing
(or incoming) edges, then it will not access tgs; (OF €gpc).
This is not exploited in PullModel-Base because masters and
mirrors are not label-specific in D-Galois (labels are 2 vectors
e and t). We modified D-Galois to maintain masters and
mirrors specific to each label. We also modified our inspection
phase to track sources and destinations separately, and create
mirrors for eg,.. and ¢4 respectively. Due to this, masters will
broadcast e and ¢ only to those hosts that access it.

Generally, RepModel schemes requires the entire model to
fit in the memory of a host and the entire model is updated
on each vertex for every round which requires a huge volume
of communication. However, PullModel allows larger models
with limited required communication for each round at the
expense of an inspection pass. We will compare these schemes
and optimization in Section IV.

IV. EVALUATION

We implement distributed Word2Vec and Vertex2Vec in our
GraphAny2Vec framework, and we refer to these applications
as GraphWord2Vec (GW2V) and GraphVertex2Vec (GV2V)
respectively. Our evaluation methodology is described in detail
in Section IV-A. First, we compare GW2V and GV2V with
the state-of-the-art third-party implementations (Section I'V-B).
We then analyze the impact of AdaSum [18] (Section IV-C)
and communication optimizations (Section IV-D).

A. Experimental Methodology

Hardware: All our experiments were conducted on the
Stampede?2 cluster at the Texas Advanced Computing Center

TABLE I
DATASETS AND THEIR PROPERTIES.

o Vocabulary Training .
Applications  Datasets Words Words Size Labels
1-billion 399.0K 665.5M 3.7GB N/A
W‘(’;dft‘)fec news 4793K  7141M  39GB  N/A
€ wiki 27595K  3594.IM 21GB  N/A
Vertex2Vec  BlogCatalog 10.3K 4.1IM 0.02GB 39
(Graph) Flickr 80.5K 32.2M 0.18GB 195
Youtube 1138.5K 455.4M 2.8GB 47
TABLE II

WORD2VEC TRAINING TIME (HOURS) ON A SINGLE HOST COMPARED
WITH GW2V(AS) ON 32 HOSTS. SPEEDUP GAINED BY DISTRIBUTED
GW2V (AS) ON 32 HOSTS OVER THE STATE-OF-THE-ART
SHARED-MEMORY W2V.

| 1 host | 32 hosts |
DMTK | GW2V | GW2V
Dataset ‘ w2v ‘ GEM ‘ (AVG) ‘ (AS) ‘ (AS) ‘ Speedup
1-billion 4.24 4.39 421 3.98 0.32 13x
news 445 4.66 4.28 451 0.37 12x
wiki 20.49 | OOM 2543 22.34 1.85 11x

using up to 32 Intel Xeon Platinum 8160 (“Skylake”) hosts,
each with 48 cores with clock rate 2.1Ghz, 192GB DDR4
RAM, and 32KB L1 data cache. Machines in the cluster are
connected with a 100Gb/s Intel Omni-Path interconnect. Code
is compiled with g++ 7.1 and MPI mvapich2/2.3.

The evaluation in this paper focuses on distributed CPUs
because the existing (shared-memory and distributed-memory)
Word2Vec and Vertex2Vec frameworks [2], [4], [9], [10] have
been implemented and evaluated for CPU architectures. Nev-
ertheless, the techniques in GraphAny2Vec described in Sec-
tion III are not restricted to CPU architectures. Furthermore,
the GraphAny2Vec framework is based on the state-of-the-
art distributed and heterogeneous graph analytics framework,
D-Galois [17], which supports both CPUs and GPUs. Thus,
GraphAny2Vec can be extended to run on GPUs but that is
beyond the focus of this work. Due to the limited memory
of GPUgs, larger GPU clusters may be required to process the
bigger datasets considered in this study. However, we expect
GraphAny2Vec’s online graph generation, model partitioning,
and communication optimizations to reduce memory usage
and benefit distributed execution on GPUs as well.

Datasets: Table I lists the training datasets used for our
evaluation: text datasets for Word2Vec and graph datasets for
Vertex2Vec. Prior Word2Vec and Vertex2Vec publications used
the same datasets. The wiki (21GB) and Youtube (2.8GB)
datasets are the largest text and graph datasets respectively.
We used DeepWalk [4]° for generating training corpus for
Vertex2Vec by performing 10 random walks each of length
40 from all vertices of the graph. We limit our Word2Vec
and Vertex2Vec evaluation to 32 and 16 hosts of Stampedes
respectively because these datasets do not scale beyond that.
For all frameworks and datasets, the preprocessing steps like

3https://github.com/phanein/deepwalk



Fig. 4. Speedup of DMTK and GW2V on 32 hosts over W2V on 1 host.
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TABLE III
WORD2VEC ACCURACY (SEMANTIC, SYNTACTIC, AND TOTAL) OF
DIFFERENT FRAMEWORKS RELATIVE TO W2V. BLUE (FIRST ROW FOR
EACH ACCURACY TYPE) INDICATES THE BASELINE ACCURACY ALONG
WITH THE TOLERANCE BOUNDS. GREEN AND RED INDICATE ACCURACY
CHANGE > AND < THE TOLERANCE LOWER BOUND RESPECTIVELY.

| Framework | 1-billion | news | wiki

W2V (1 Host) 75.86+0.07 70.79+0.54 79.104+0.31

o GEN (1 Host) -0.22 -0.22 OOM

E DMTK (1 Host) -13.79 -18.43 -7.46

E DMTK(AVG) (32 Hosts) -57.36 -57.15 -34.39

“| DMTK(AS) (32 Hosts) -10.93 17 5.17
GW2V (1 Host) +0.07 -0.08 +0.26
GW2V(AVG) (32 Hosts) 7.00 9.15 4.03
GW2V(AS) (32 Hosts) +0.21 +0.07 -0.17
W2V (1 Host) 50.0+0.18 50.040.26 49.22+0.12

o GEN (1 Host) -0.14 -0.12 OOM

“:é DMTK (1 Host) -1.89 -0.67 -3.11

S| DMTK(AVG) (32 Hosts) 24.89 25.11 23.11

@ DMTK(AS) (32 Hosts) -3.56 -1.78 -1.44
GW2V (1 Host) -0.37 0.0 -0.12
GW2V(AVG) (32 Hosts) -4.89 -4.11 -7.55
GW2V(AS) (32 Hostss) +0.10 +0.11 +0.18
W2V (1 Host) 72.361+0.21 69.211+0.42 74.1040.42
GEN (1 Host) +0.0 -0.14 OOM

3 DMTK (1 Host) -11.65 -15.42 -3.03

= DMTK(AVG) (32 Hosts) -51.29 -51.71 -32.03
DMTK(AS) (32 Hosts) -9.86 -14.78 -5.24
GW2V (1 Host) -0.14 -0.28 +0.1
GW2V(AVG) (32 Hosts) -6.79 -9.28 -5.17
GW2V(AS) (32 Hostss) +0.14 +0.29 -0.17

vocabulary building take < 5% of the execution time and can
be amortized. Thus, we report the accuracy and the training (or
execution) time for all frameworks on these datasets, excluding
preprocessing time, as an average of three distinct runs.
Shared-memory third-party implementations: We eval-
vated the Skip-gram [2] (with negative sampling) training
model for both Word2Vec and Vertex2Vec. We compared

1-billion news wiki
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Fig. 5. Breakdown of time of DMTK(AS) and GW2V(AS) on 32 hosts.

GraphWord2Vec (GW2V) with the state-of-the-art shared-
memory Word2Vec implementations, the original C imple-
mentation (W2V) [2] as well as the more recent Gensim
(GEN) [9] python implementation. We also compared our
GraphVertex2Vec (GV2V) with the state-of-the-art shared-
memory Vertex2Vec framework, DeepWalk [4] (both Deep-
Walk and Node2Vec [5] use Gensim’s [9] Skip-gram model).

Distributed-memory third-party implementations: We
compared GraphWord2Vec with the state-of-the-art dis-
tributed-memory Word2Vec from Microsoft’s Distributed Ma-
chine Learning Toolkit (DMTK) [10], which is based on
the parameter server model. The model is distributed among
parameter server hosts. During execution, hosts acting as
workers request the required model parameters from the
servers and send model updates back to the servers. Each
host in the cluster acts as both server and worker, and it
is the only configuration possible. DMTK uses OpenMP for
parallelization within a host, while GW2V uses Galois [23]
for parallelization within a host. Both GW2V and DMTK use
MPI for communication between hosts. We modified DMTK
to include a runtime option of configuring the number of
synchronization rounds. DMTK uses averaging as the reduc-
tion operation to combine the gradients. We refer to this as
DMTK(AVG). We also implemented AdaSum [18] in DMTK
and we call this DMTK(AS). There are no prior distributed
implementations of Vertex2Vec. Unless otherwise specified,
GW2V and GV2V use AS to combine gradients and use
PullModel-Opt communication optimization.

Hyper-parameters: We used the hyper-parameters sug-
gested by [2], unless otherwise specified: window size of 5,
number of negative samples of 15, sentence length of 10K,
threshold of 10~* for Word2Vec and 0 for Vertex2Vec for
down-sampling the frequent words, and vector dimension-
ality N of 200. All models were trained for 16 epochs.
For distributed frameworks, GV2V, GW2V, and DMTK, we
compared 2 gradient combining methods: Averaging (AVG)
and AdaSum (AS) [18] method. Synchronization rounds are
increased linearly (roughly) with the number of hosts in order



to maintain the desired accuracy (discussed in Section IV-C).
Therefore, Unless otherwise specified, GV2V, GW2V, and
DMTK use the same number of synchronization rounds: 1
for 1 host, 3 for 2 hosts, 6 for 4 hosts, 12 for 8 hosts, 24 for
16 hosts, and 48 for 32 hosts. Note that DMTK uses only 1
synchronization round by default, but this yields much lower
accuracy, so we do not report these results.

Accuracy: In order to measure the accuracy of trained
models of Word2Vec on different datasets, we used the ana-
logical reasoning task outlined by Word2Vec [2]. We evaluated
the accuracy using scripts and question-words.txt provided
by the Word2Vec code base*. Question-words.txt consists of
analogies such as "Athens" : "Greece" :: "Berlin" : ?, which are
predicted by finding a vector x such that embedding vector(z)
is closest to embedding vector("Athens") - vector("Greece") +
vector("Berlin") according to the cosine distance. For this par-
ticular example the accepted value of x is "Germany". There
are 14 categories of such questions, which are broadly divided
into 2 main categories: (1) the syntactic analogies (such as
"calm" : "calmly" :: "quick" : "quickly") and (2) the semantic
analogies such as the country to capital city relationship. We
report semantic, syntactic, and total accuracy averaged over all
the 14 categories of questions. For Vertex2Vec, we measured
Micro-F1 and Macro-F1 scores using scoring scripts provided
by DeepWalk [4]°.

B. Comparing With The State-of-The-Art

Word2Vec: We compare GW2V with distributed-memory
implementation DMTK and shared-memory implementations,
W2V and GEN. Table II compares their training time on a
single host. Figure 4 shows the speedup of both GW2V and
DMTK on 32 hosts over W2V on 1 host. Note that AVG and
AS methods are used to combine gradients during inter-host
synchronization, so they have no impact on a single host.

Performance: We observe that for all datasets on a single
host, the training time of GW2V is similar to that of W2V,
GEN, and DMTK. GW2V scales up to 32 hosts and speeds up
the training time by ~ 13X on average over 1 host. GW2V is
~ 2x faster on average than DMTK on 32 hosts. Figure 4 also
shows that there is negligible performance difference between
using AVG and using AS to combine gradients in both DMTK
and GW2V. Training wiki using GW2V takes only 1.9 hours,
which saves 18.6 hours and 1.5 hours compared to training
using W2V and DMTK respectively.

To understand the performance differences between DMTK
and GW2V better, Figure 5 shows the breakdown of their
training time into 3 phases: inspection, (maximum) computa-
tion, and (non-overlapped) communication. Firstly, GW2V’s
inspection phase as well as serialization and de-serialization
during synchronization are parallel using D-Galois parallel
constructs and concurrent data-structures [17], [23], whereas
these phases are sequential in DMTK as it uses non-concurrent
data-structures such as set and vector provided by the C++

“https://github.com/tmikolov/word2vec
Shttps://github.com/phanein/deepwalk/blob/master/example_graphs/
scoring.py

TABLE IV
VERTEX2VEC TRAINING TIME (SEC) OF DEEPWALK ON 1 HOST VS.
GRAPHVERTEX2VEC (GV2V) ON 16 HOSTS.

Dataset | DeepWalk | GV2V | Speedup |
BlogCatalog 1153 28.8 4.0x
Flickr 976.7 183.1 5.3x
Youtube 11589.2 | 2226.2 5.2x

TABLE V

VERTEX2VEC ACCURACY (MACRO F1 AND MICRO F1) OF GV2V ON 16
HOSTS RELATIVE TO DEEPWALK ON 1 HOST (NOTE: THE SCORING
SCRIPTS PROVIDED BY DEEPWALK WERE NOT ABLE TO HANDLE THE
YOUTUBE DATASET).

‘ ‘ %e L.abe'ed‘ 30% ‘ 60% ‘ 90%
Vertices

BlogCatalog Deepwalk 34.0 37.2 38.4

Micro-F1 GV2vV -0.1 +0.1 +0.7

Flickr Deepwalk 38.6 40.4 41.1

GV2vV +0.1 -0.1 -0.2

BlogCatalog Deepwalk 34.1 37.2 38.4

Macro-F1 GV2v -0.3 +0.1 +0.7

Flickr Deepwalk 26.5 28.7 29.5

GV2vV +0.1 -0.1 +0.3

standard template library. Moreover, in GW2V, hosts can
update their masters in-place. This is not possible in DMTK
as workers on each host have to fetch model parameters from
servers on the same host to update, incurring overhead for ad-
ditional copies. Secondly, DMTK communicates much higher
volume (=~ 3.5x) than GW2V. GW2V memoizes [17] the
vertex IDs exchanged during inspection phase and exchanges
only the required values. In contrast, DMTK sends the vertex
IDs along with the updated values to the parameter servers
before and after the communication. In addition, GW2V’s
inspection precisely identifies both the positive and negative
samples required for the current round. DMTK, on the other
hand, only identifies precise positive samples, and builds
a pool for negative samples. During computation, negative
samples are randomly picked from this pool. The entire pool
is communicated from and to the parameter servers, although
some of them may not be updated, leading to redundant
communication.

Accuracy: Table III compares the accuracies (semantic,
syntactic, and total) for all frameworks on 1 and 32 hosts
relative to the accuracies achieved by W2V. On a single host,
GW?2V is able to achieve accuracies (semantic, syntactic and
total) comparable to W2V. DMTK on a single host is less
accurate due to implementation differences in the Skip-gram
model training: DMTK only updates learning rate between
mini-batches, whereas others continuously degrade learning
rate, and DMTK uses a different strategy to choose negative
samples as described earlier. On 32 hosts, DMTK(AVG) has a
much lower accuracy than the baseline while GW2V(AVG) has
a better accuracy than DMTK(AVG) but still subpar compared
to the baseline. AS significantly improves the accuracies
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Fig. 6. Accuracy of GW2V after each epoch for 1-billion dataset on 1 host
(SM) and on 32 hosts using AS and AVG.

over AVG for both DMTK and GW2V. DMTK(AS) matches
its own single host accuracy and GW2V(AS) matches the
accuracy of W2V.

Vertex2Vec: Table IV compares the training time of Deep-
Walk [4] on a single host with our GV2V on 16 hosts. We
observe that for all datasets, GraphVertex2Vec can train the
model ~ 4.8 faster on average. Similar to GraphWord2Vec,
this speedup does not come at the cost of the accuracy, as
shown in Table V, which shows the Micro-F1 and Macro-F1
score with 30%, 60%, and 90% labeled vertices.

Discussion: GraphAny2Vec significantly speeds up the train-
ing time for Word2Vec and Vertex2Vec applications by dis-
tributing the computation across the cluster without sacri-
ficing the accuracy. Reduced training time also accelerates
the process of improving the training algorithms as it allows
application designers to make more end-to-end passes (with
different hyper-parameters) in a short duration of time.

C. AdaSum Reduction Operator in GraphAny2Vec

If time were not an issue, all machine learning algorithms
would run sequentially. A sequential SGD is simple to tune
and converges fast. Unfortunately, it is slow. A point (z,y)
on Figure 6 denotes the total accuracy (y) as a function of
epoch (z). The blue line (SM) shows the accuracy of GW2V
on a single shared-memory host. It clearly converges to a high
accuracy quickly. In contrast, the green lines plot accuracy of
distributed GW2V that uses averaging the gradients (AVG)
with different learning rates on 32 hosts. The learning rate
of 0.025 is the same as SM while the learning rate of 0.8 is
32 times larger. The former converges slowly while the latter
does not converge at all (accuracy is 0) because the learning
rate is too large. As it can also be observed, none of the other
learning rates have an on-par accuracy with averaging. Finally,
the red line plots accuracy of distributed GW2V that uses AS
and 0.025 as the learning rate on 32 hosts. AS has no problem
meeting the accuracy of the sequential algorithm. In addition
to providing the same accuracy as SM, it is ~ 12X times

faster on 32 hosts than SM (as shown in Table II). Not having
to tune the learning rate and still getting accuracy at scale is
made possible by AdaSum.

Synchronization Rounds: AdaSum (AS) improves the accu-
racies significantly but in order to get accuracies comparable
to shared-memory implementations, the number of synchro-
nization rounds in each epoch is an important knob to tune.
We observe that accuracies improve as we increase the number
of synchronization rounds within an epoch for both AS and
AVG. Nonetheless, accuracies show more improvement for AS
(for example, semantic: 3.07%, syntactic: 3.99% and total:
3.36% when synchronization rounds are increased from 12
to 48 on 32 hosts) as opposed to AVG, which shows very
little change in accuracies with synchronization rounds. In
general, we have observed that in order to maintain the desired
accuracy, the synchronization rounds needs to be increased
(roughly) linearly with the number of hosts. We have followed
this rule of thumb in all our experiments.

D. Impact of Communication Optimizations

Figure 7 compares the strong scaling of GW2V with
RepModel-Base (RMB), RepModel-Opt (RMO), PullModel-
Base (PMB), and PullModel-Opt (PMO). Each of the opti-
mized variants scale well for all datasets but the performance
differences between them increase with more hosts. This is
due to two reasons: (a) synchronization rounds doubles with
the number of hosts, thus communicating more data, and (b)
as training data or corpus gets divided among more hosts,
sparsity in the updates increase. Figure 8 shows the breakdown
of the training time into inspection, (maximum) computation,
and (non-overlapped) communication time on 32 hosts.

RepModel-Opt, which avoids communicating untouched

vectors reduces communication volume by 2.5x and is 16%
faster on average than RepModel-Base on 32 hosts. This
shows that RepModel-Opt is able to exploit the sparsity in
the communication. In contrast to RepModel-Opt, PullModel-
Base only communicates the vectors that are needed in a
round. This is done through an inspection pass which by itself
has a compute and a communication overhead. On 32 hosts,
PullModel-Base sends 1.3 more communication volume on
average than RepModel-Opt. PullModel-Opt enhances the
inspection pass to only communicate half of the vectors as
explained in Section III-D. It is 14%, 22%, and 34% faster on
average than PullModel-Base, RepModel-Opt, and RepModel-
Base respectively. It also reduces communication volume by
1.5%, 1.1x, and 2.7x, respectively.
Summary: PullModel-Opt in GraphAny2Vec always performs
better than the other variants due to the enhanced inspec-
tion phase which reduces communication volume exchanged
among hosts at the cost of slightly increased bookkeeping.
These improvements are expected to grow as we scale to
bigger datasets and number of hosts. Hence, PullModel-Opt
not only allows one to train bigger models, but also gives the
best performance.
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Fig. 7. Strong scaling of GW2V (RMB: RepModel-Base, RMO:
RepModel-Opt, PMB: PullModel-Base, PMO: PullModel-Opt).

V. RELATED WORK

Training models: Mikolov et al. [1] proposed two simple
model architectures for computing continuous vector represen-
tations of words from very large unstructured data sets, known
as Continuous Bag-of-Words (CBOW) and Skip-gram (SG).
These models removed the non-linear hidden layer and hence
avoid dense matrix multiplications, which was responsible
for most of the complexity in the previous models such as
LSA [25] and LDA. CBOW is similar to the feedforward
Neural Net Language Model (NNLM) [26], where the non-
linear hidden layer is removed and the projection layer is
shared for all words. SG on the other hand unlike CBOW, in-
stead of predicting the current word based on the context, tries
to maximize classification of a word based on another word
within a sentence. Later Mikolov et al. [2] further introduced
several extensions, such as using hierarchical softmax instead
of full softmax, negative sampling, subsampling of frequent
words, etc., to SG model that improves both the accuracy and
the training time. SG has also been adopted in other domains
to represent vertices of a graph/network (DeepWalk [4] and
Node2Vec [5]), genome sequences in bio-informatics (Se-
quence2Vec [8]), and documents (Doc2Vec [3]).
Shared-memory frameworks: Our work adapts the algorithm
from Mikolov et al. [2] for distribution. This work, together
with many current implementations [9] are designed to run on
a single machine but utilizing multi-threaded parallelism. Our
work is motivated by the fact that these popularly used imple-
mentations take days or even weeks to train on large training
corpus. GraphAny2Vec is able to significantly speedup the
training process while maintaining the accuracy comparable
to the state-of-the-art shared-memory frameworks.
Distributed-memory frameworks: Prior works on distribut-
ing Word2Vec either use synchronous data-parallelism [11]-
[13], [27] or parameter-server style asynchronous data paral-
lelism [10], [28]. However, they perform communication after
every mini-batch, which is prohibitively expensive in terms of
network bandwidth. Our design was motivated by the need
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Fig. 8. Breakdown of training time of GW2V with different communication
schemes on 32 hosts.

to use commodity machines and network available on public
clouds. Our approach communicates infrequently and uses
AdaSum [18] to overcome the resulting staleness.

Ordentlich et al. [27] can handle models that do not fit
on a single machine in a cluster by vertically partitioning
the embedding and training vectors and assigning parts of
it to different machine. These partitions compute partial dot
products locally but communicate to compute global dot
products. However, in order to compute partial dot products,
all hosts have to process the same training data at a given
instance, whereas, in GraphAny2Vec, each host can indepen-
dently process different chunks of the training data corpus in
parallel. Therefore, our design not only allows for horizontal
partitioning of large models that do not fit in memory, but also
enables parallel processing of large corpses of data.

Big data analytics frameworks like Spark [29]) and machine
learning frameworks like TensorFlow [30] and DMTK [10] are
sufficiently general to support Any2Vec applications. Conse-
quently, there are Word2Vec implementations in Spark [12],
[27], TensorFlow [28], and DMTK [10]. These implementa-
tions cannot be adapted to support the graph-specific opti-
mizations and Any2Vec-specific optimizations introduced in
this paper. That is why GraphAny2Vec outperforms and scales
even better than DMTK which is the state-of-the-art for such
problems. Thus, the generality of these frameworks comes
at the cost of performance. On the other hand, traditional
HPC programming models like MPI [31] can also be used to
implement Any2Vec like the Word2Vec implementation [13]
that uses MPI. Optimizations introduced in this paper can also
be implemented with MPI but they would require a significant
effort to support a new Any2Vec application as MPI is too
low-level.

Our formulation of Any2Vec as a graph problem enables
Any2Vec applications to be implemented in existing graph
frameworks. Any2Vec requires (1) edge operators, (2) vertex-
cut partitioning policies, and (3) dynamic graph re-partitioning,
but none of the existing distributed graph frameworks [14]—



[17] support all these features. Gemini [16] does not support
edge operators or vertex-cut partitioning policies. Power-
Graph [14] supports vertex-cuts but does not support edge
operators. TuX? [15] is a graph engine that supports subset
of distributed machine learning applications by extending the
Gather-Apply-Scatter model [14]. D-Galois [17] is the state-
of-the-art graph engine that optimizes communication based
on invariants in the graph partitioning policies. Both TuX? and
D-Galois support edge operators and vertex cuts, but they do
not support dynamic graphs. GraphAny2Vec extends D-Galois
to support dynamic graph generation and re-partitioning. It
is the first distributed graph framework to support Any2Vec
and it introduces communication optimizations specific to
Any2Vec applications.

VI. CONCLUSIONS

Through GraphAny2Vec, we show that popular Any2Vec
ML applications can be mapped to graph applications.
GraphAny2Vec highlights and implements the extensions re-
quired in the current state-of-the graph analytics framework to
support Any2Vec applications, namely dynamic graph gener-
ation, graph re-partitioning, and communication optimization.

GraphAny2Vec substantially speeds up the training time for
Any2Vec applications by distributing the computation across
the cluster without sacrificing the accuracy. Reduced training
time also accelerates the process of improving the training
algorithms as it allows application designers to make more
end-to-end passes in a short duration of time. GraphAny2Vec
thus enables more explorations of Any2Vec applications in
areas such as natural language processing, network analysis,
and code analysis.
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