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Abstract—Traditionally, parallel graph analytics workloads
have been implemented in systems like Pregel, GraphLab, Ga-
lois, and Ligra that support graph data structures and graph
operations directly. An alternative approach is to express graph
workloads in terms of sparse matrix kernels such as sparse
matrix-vector and matrix-matrix multiplication. An API for
these kernels has been defined by the GraphBLAS project. The
SuiteSparse project has implemented this API on shared-memory
platforms, and the LAGraph project is building a library of graph
algorithms using this API.

How does the matrix-based approach perform compared to the
graph-based approach? Our experiments on a 56 core CPU show
that for representative graph workloads, LAGraph/SuiteSparse
solutions are 5× slower on the average than Galois solutions. We
argue that this performance gap arises from inherent limitations
of a matrix-based API: regardless of which architecture a matrix-
based algorithm is run on, it is subject to the same inherent
limitations of the matrix-based API.

Index Terms—graph analytics, performance study, Graph-
BLAS, high performance computing

I. INTRODUCTION

Graph analytics algorithms are used in many application

areas. For example, betweenness centrality [1] can be used to

find key actors in terrorist networks [2], [3] or find important

river confluence points in a river system [4], and search

engines use the pagerank algorithm to estimate the importance

of webpages. Systems like Ligra [5] and Galois [6], [7] give

users a graph-based API that provides data structures like

graphs and worklists as well as constructs for iterating over

vertices or edges of the graph in parallel. The GBBS [8] and

Lonestar [9] benchmark suites implement graph algorithms

using the Ligra and Galois graph-based API, respectively.

Graphs can also be represented with sparse matrices, and

some graph algorithms can be implemented using sparse

matrix operations to do bulk updates. GraphBLAS [10], [11] is

an API for writing such sparse matrix programs. API functions

include sparse matrix-vector and matrix-matrix multiplication

in which the addition and multiplication operations are gen-

eralized to semiring operations. SuiteSparse [12] is a parallel

implementation of this API, and a library of graph algorithms

called LAGraph [13] uses the GraphBLAS API.

The main advantage of the matrix-based approach is that it

permits a separation of concerns: system programmers focus

on efficient implementation of the GraphBLAS API while

algorithm developers implement portable code for applications

on top of the API. This separation of concerns has been
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Fig. 1: Systems used in our study.

successful in areas of high performance computing like dense

numerical linear algebra, but how well does it perform for

graph workloads in which the approach has not been compared

in-depth with a graph-based approach?

To address this question, we perform an in-depth study

of two systems: LAGraph/SuiteSparse and Lonestar/Galois,

which we use as representative systems for the matrix-based

and graph-based approaches, respectively. Although expres-

siveness and portability differ between the matrix and graph-

based approaches, in this paper, we focus on the performance

differences and reasons behind such differences.

For six widely-used graph problems and nine graphs of

various sizes and characteristics, our experimental evaluation

on a 56-core CPU shows that Lonestar/Galois programs out-

perform LAGraph/SuiteSparse programs by 5× on average.

To understand how much of this advantage is intrinsic to the

graph-based approach and how much of it arises from differ-

ences in runtime systems, we also implemented a subset of

the GraphBLAS API on top of the Galois runtime to produce

a library called GaloisBLAS and studied the performance of

LAGraph/GaloisBLAS programs. The relationship among the

various systems used in this study is shown in Figure 1.

Our study identifies the following inherent limitations of a

matrix-based API and quantifies their impact on performance:

1. Lightweight loops: Algorithms written using matrix-

based APIs may make several passes over the graph to

do very little work in each loop because the matrix-based

API does not support composite operations in a single

sparse matrix function. With a graph-based API, the

application programmer can write a loop that performs

the composite operation. For example, Lonestar/Galois

is 5× faster than LAGraph/SuiteSparse for breadth-first

search on the road-USA graph due to this.



2. Materialization: Programs written using matrix-based

APIs usually materialize large numbers of intermedi-

ate matrices unlike programs written using graph-based

APIs. For example, Lonestar/Galois is 3× faster than

LAGraph/GaloisBLAS for triangle counting on the uk07

web-crawl primarily because it can avoid materialization.

3. Bulk operations: For some problems such as connected

components, algorithms like Afforest [14] that perform

fine-grained operations on vertices (randomly sampling

vertices) are more efficient than algorithms like Shiloach-

Vishkin [15] that perform only bulk (or coarse-grained)

operations. Such fine-grained operations on vertices can-

not be expressed in a matrix-based API. Due to this,

Lonestar/Galois is on average 3× faster than LAGraph/-

SuiteSparse for connected components on all graphs.

4. Round-based execution: The notion of rounds is intrin-

sic to matrix-based APIs, so asynchronous algorithms in

which there is a single worklist and no notion of rounds

cannot be expressed. For example, for single-source

shortest path (sssp), Lonestar/Galois is more than 300

times faster than LAGraph/SuiteSparse on the eukarya

graph primarily due to asynchronous execution.

Although we demonstrate the performance impact of these

limitations on a multi-core CPU, these limitations are not

restricted to this architecture since they are intrinsic to the

matrix-based computation model: any algorithm written with

the matrix approach is subject to these limitations regardless of

which archictecture the algorithm is run on. Consequently, we

believe the performance of matrix-based systems on a GPU or

a distributed cluster will likely be worse than the performance

on a graph-based system like Galois that supports execution

on a GPU [16] and on distributed CPUs or GPUs [17].

In addition to quantifying the limitations, we identify pos-

sible avenues of future work to address them. For dense

matrix programs, compiler optimizations like loop fusion and

scalarization have been used to avoid lightweight loops and

materialization. However, this would break the separation of

concerns between algorithm developers and system program-

mers because either the system programmers need to imple-

ment architecture-specific code for each possible fused loop or

the compiler needs to generate such code automatically. We

believe similar restructuring compiler technology is required

to improve the performance of GraphBLAS programs.

The rest of the paper is organized as follows. Section II

describes graph-based and matrix-based APIs for graph ana-

lytics workloads. Section III describes how SuiteSparse and

GaloisBLAS are implemented. Sections IV and V present the

results of our experimental evaluation using LAGraph/SuiteS-

parse, LAGraph/GaloisBLAS, and Lonestar/Galois. Section VI

discusses related work.

II. APIS FOR GRAPH ANALYTICS

This section describes the main features of graph analytics

workloads (Section II-A) and shows how these workloads can

be expressed in graph-based APIs (Section II-B) and matrix-

based APIs (Section II-C).

A. Graph Workloads

In graph analytics workloads, vertices in the graph have

labels that are initialized at the start of the computation

and then updated repeatedly during the computation until

a quiescence condition is reached. Vertex label updates are

performed by applying an operator to active vertices in the

graph. In some systems, an operator may read and update an

arbitrary portion of the graph surrounding the active vertex [6].

However, most systems support only vertex operators, which

read and write the labels of just the active vertex and its

immediate neighbors in the graph.

To find active vertices, graph algorithms take one of two ap-

proaches. A topology-driven algorithm executes in rounds, and

in each round, it applies the operator to all graph vertices; the

Bellman-Ford algorithm [18] for single-source shortest path

(sssp) computation is an example. Topology-driven algorithms

are relatively simple to implement since they iterate on the

graph topology, but they may not be work-efficient if there

are only a few active vertices in each round. Data-driven

algorithms have no notion of rounds, and they track active

vertices explicitly in a worklist. Initially, some vertices are

active, and they are placed on the worklist. During execution,

threads get active vertices from the worklist and apply the

operator to them; if this causes other vertices to become active,

they are placed on the worklist. The algorithm terminates when

the worklist is empty. Dijkstra [18] and delta-stepping [19] al-

gorithms for sssp are examples. Active vertices can be tracked

using a bit-vector of size N if there are N vertices in the graph:

we call this a dense worklist [20]. Other implementations keep

an explicit worklist containing only the active vertices [6]: we

call this a sparse worklist. Textbook descriptions [18] of data-

driven algorithms use sparse worklists.

Some frameworks support round-based data-driven algo-

rithms, which can be viewed as a hybrid of the topology-driven

and data-driven approaches. They maintain two worklists:

current and next. In each round, the operator is applied only to

vertices on the current worklist; if this creates active vertices,

they are placed in the next worklist and processed only in the

next round.

B. Graph-Based APIs

We use Galois [6], [7] as our example of a graph-API

system, although the discussion extends to other graph-API

systems as well. The Galois library provides abstract data types

(ADTs) for graphs and worklists. The graph ADT contains

methods to obtain a random vertex, to obtain the immediate

neighbors of a given vertex, to obtain the edges connected

to a given vertex, to iterate over all the vertices or edges in a

graph, to apply an operator to a given vertex, etc. The worklist

ADT contains methods to put and get active vertices. Worklists

support soft priorities [21], which permits some vertices to be

returned preferentially over others. The library and runtime

system inter-operate to ensure that concurrent operations on

the ADTs are performed atomically.

Algorithm 1 shows pseudocode for a round-based data-

driven breadth-first search (bfs) algorithm written using a



Algorithm 1 BFS with the graph abstraction

Require: uint32 t src ⊲ source vertex number

Require: Graph& graph ⊲ input graph

1: Worklist<uint32 t> curr, next;

2: uint32 t level = 1;

3: galois::do all(galois::iterate(graph),

4: [&](uint32 t node) { ⊲ initialize all vertices in parallel

5: graph.getData(node) = BFS::DIST INFINITY; } );

6: graph.getData(src) = 1; ⊲ initialize source

7: next.emplace(src); ⊲ initialize worklist

8: while !next.empty() do

9: swap(curr, next); ⊲ switch active worklists

10: next.clear();

11: ++level;

12: galois::do all(galois::iterate(curr), ⊲ iterate worklist

13: [&](const uint32 t& frontier node) {
14: for (auto& edge : graph.edges(frontier node)) do

15: auto dst = graph.getEdgeDst(edge);

16: uint32 t& dstData = graph.getData(dst);

17: if dstData == BFS::DIST INFINITY then

18: dstData = level; ⊲ mark unvisited with level

19: next.emplace(dst); ⊲ new vertex to worklist

20: end if

21: end for

22: } ); ⊲ end parallel do all loop

23: end while

graph-based API. Two empty worklists are created: curr and

next (Line 1). All nodes are initialized to ∞. The source

vertex for the bfs is an input to the program, and it is added

to the worklist after being initialized to an initial value (Line 6-

7). The loop between lines 8 and 23 iterates over the vertices

in the active worklist until it is empty. The operator is the

body of this loop; it iterates over the immediate neighbors of

the active vertex and updates their labels if they have not been

visited in a prior loop iteration (Line 17-20). Updated nodes

are added to the next worklist (Line 19), and that worklist

is swapped to become the active curr worklist for the next

iteration of the loop (Line 9). In a parallel execution, threads

can get active vertices in parallel from the worklist using a

parallel loop construct (Line 12), and each thread runs the

loop body in parallel. The graph ADTs in a graph-API system

can support parallel accesses and can provide mechanisms for

users to synchronize computation among threads.

C. Matrix-Based APIs

A graph G = (V,E) can be represented by its adjacency

matrix A of size |V |×|V | in which entry A(i, j) is 1 if

and only if an edge exists from vertex i to vertex j in the

graph [22]. If edges have weights on them (like in sssp

problems) entry A(i, j) is the weight on edge (i, j). For most

graphs, the adjacency matrix is very sparse. Vertex labels are

represented by a vector of size |V | with one entry for each

vertex; multiple labels are represented using multiple vectors.

Algorithm 2 BFS with the matrix abstraction [13], [23]

Require: uint32 t src ⊲ source vertex number

Require: GrB Matrix A ⊲ input graph

1: GrB Vector frontier = NULL, dist = NULL;

2: GrB Index nNodes, nNonZero;

3: GrB Matrix nrows(&nNodes, A); ⊲ #rows=#nodes

4: GrB Vector new(&frontier, bool, nNodes);

5: GrB Vector new(&dist, uint32, nNodes);

6: GrB assign(dist, NULL, NULL,

7: 0, GrB ALL, n, NULL);

8: GrB Vector setElement(frontier, true, src); ⊲ init wl

9: int level = 1;

10: for (int64 t level = 1; level ≤ nNodes; level++) do

11: GrB assign(dist, ⊲ set distance of frontier nodes

12: frontier, NULL, level, GrB ALL, nNodes,NULL);

13: GrB Vector nvals(&nNonZero, frontier);

14: if nNonZero == 0 then

15: break; ⊲ terminate if no new work items

16: end if

17: GrB vxm(frontier, dist, NULL, ⊲ find next frontier

18: LOr LAnd Bool Semiring, frontier, A,

19: Replace Complemented Desc);

20: end for

Unlike graph-based APIs which are formulated around op-

erations on individual vertices, matrix-based APIs encourage

the use of bulk operations on vertices. The most important of

these is matrix-vector product in which the matrix is either the

adjacency matrix of the graph or its transpose and the vector

is a vector of vertex labels.

To understand this, consider the operation y = ATx, where

A is the adjacency matrix of a graph G, and x and y are vectors

of vertex labels. This operation expresses the following vertex

operator on the graph: for each vertex j, label y(j) is computed

by iterating over the incoming neighbors i and summing up

the values of A(i, j)∗x(i). Since transposing a vector is easier

than transposing a matrix, this operation is usually written as

yT=xTA. We can relate this computation to the concepts in

Section II-A as follows.

• A matrix-vector product corresponds to one round of

computation.

• If the vector x is dense, it contains entries for all vertices,

and the matrix-vector product corresponds to a round of

a topology-driven algorithm.

• If the vector x is sparse, only some vertices participate

in the computation, and the matrix-vector product corre-

sponds to a round in a round-based data-driven algorithm.

• Implementing the matrix-vector product by iterating over

y and computing each element by performing a dot-

product of the corresponding row of the matrix and the

vector x (this is called SDOT) corresponds to using a

pull-style vertex operator. Alternatively, iterating over x,

scaling the corresponding column of the matrix with

the element of x, and adding the result to y (this is



called SAXPY) corresponds to using a push-style vertex

operator. The choice between SDOT or SAXPY depends

on how the sparse matrix is represented in memory.

• Redefining the semiring of addition and multiplication

enables the implementation of a wide variety of vertex

operators; for example, for sssp problems, the addition

is interpreted as a minimum operation and the multiplica-

tion operation is interpreted as an addition operation [22].

Matrix-based APIs also provide sparse general matrix-

matrix multiplication (SpGEMM), which is needed for prob-

lems like triangle counting. SpGEMM computes C(i, j) =
A(i, :) ∗ B(:, j)1. Implementing this requires knowing how

many explicit entries there will be in C since A and B are

sparse matrices.

Algorithm 2 shows an LAGraph code snippet for bfs. It

is a round-based, data-driven, push-style algorithm in which

frontier vertices propagate new levels to their out-neighbors

in each round. We use this to explain the GraphBLAS API in

more detail.

LAGraph bfs uses a dense vector dist and a sparse vector

frontier. The vector dist keeps track of the distance of each

vertex from the source vertex. After the bfs computation is

finished, it will store the distances of all the vertices which are

reachable from the source vertices. The vector frontier keeps

track of the vertices in the current frontier in each round.

To make the dist vector dense, GrB_assign() is called

(Line 6). The fifth parameter GrB ALL specifies that all

entries of dist are set to the fourth argument, 0. At line 8,

GrB_Vector_setElement() adds the source vertex to

the empty sparse vector frontier.

Line 10 to 20 perform the actual bfs computation. Each

round consists of three steps or passes.

In the first step (Lines 11-12), GrB_assign() assigns

new distances to the frontier vertices. The parameters dist,

level, GrB ALL, and nNodes specify that the function will

assign the current level to the all nNodes elements of the dist

vector. The parameter frontier is used as a mask matrix. In

GraphBLAS, a mask is used to filter elements of the output

matrix/vector to be updated. For example, if an element (i,

j) of the mask has a non-zero value, only the corresponding

element (i, j) of the output can be updated through operations.

Therefore, the mask vector frontier ensures that only vertices

in the current frontier are assigned the new distance.

The next step (Lines 13-16) checks if the current frontier

is empty. GrB_Vector_nvals() returns the number of

explicit (non-null) entries in the sparse vector. If the frontier

is empty, computation terminates as there are no more nodes

to visit.

In the last step (Lines 17-19), GrB_vxm() constructs

the new frontier vector. The fourth parameter specifies the

semiring for multiply: bfs uses logical-or (LOR) in place of

addition and logical-and (LAND) in place of multiplication in

the matrix-vector product. Multiplying the frontier vector (the

1The colons used in this paper are MATLAB notation [24]. A(i, :) denotes
the ith row of A, and B(:,j) denotes the jth column of B.

fifth parameter) with the adjacency matrix of the graph (the

sixth parameter) using the LOR LAND semiring produces a

vector that contains all the out-neighbors of the vertices in

the current frontier; this is the frontier for the next round of

execution. To prevent vertices that have already been visited

in a previous round from being added to the new frontier, the

complement of the dist vector is used as a mask (visited entries

will have a non-zero value) to prevent the setting of those ver-

tices. The seventh parameter, Replace Complemented Desc,

specifies this behavior for the mask.

D. Discussion

The matrix-based API requires understanding concepts like

semirings and mask matrices that are not needed for using the

graph-based API. The job of the systems programmer is sim-

plified in the matrix-based API, but the job of the application

programmer is arguably more complex. In addition, we make

several observations from matrix-based APIs.

1. Programs written in matrix-based APIs require more

passes or loops over vertices than those written in graph-

based APIs. For example, one round of bfs needs 3 loop

nests using matrix abstraction (one each for lines 11, 13,

and 17 in Algorithm 2), whereas it only needs 1 loop

nest using graph abstraction (lines 14-21 in Algorithm 1).

Each of these nests also acts as a barrier to parallel

execution which limits the benefits of parallelism.

2. Programs for problems like triangle-counting that are

written using matrix-based APIs can create a large num-

ber of intermediate matrices (This is explained in more

detail in Section V).

3. The notion of bulk operations is intrinsic to matrix-based

APIs. Algorithms like Afforest [14] that require fine-

grained operations on some vertices like a random sample

of vertices cannot be expressed.

4. The notion of rounds is intrinsic to matrix-based APIs.

Asynchronous data-driven algorithms like Dijkstra [18]

or delta-stepping [19], in which there is a single worklist

and no notion of rounds, cannot be expressed.

5. Algorithms based on matrix-vector multiplication imple-

ment Jacobi iteration: label values generated in one round

are available only in the next round. There is no obvious

way to allow label values to be read in the same round as

the one in which they are written (Gauss-Seidel iteration).

Section V studies the performance impact of these differ-

ences experimentally.

III. IMPLEMENTATIONS OF GRAPHBLAS API

This section describes two implementations of the Graph-

BLAS API: SuiteSparse [25] and GaloisBLAS, an implemen-

tation in the Galois system which we use to control for the

effects of using different runtimes in SuiteSparse and Galois.

A. SuiteSparse

Data structures: SuiteSparse represents sparse matrices

in Compressed Sparse Row (CSR) and Compressed Sparse

Column (CSC) formats. Matrix elements that are manifest



in the compressed format are called explicit entries; some

may be zeros. Vectors in SuiteSparse are represented as

matrices in which one of the dimensions is of length one. This

permits economy in the implementation: matrix-vector and

vector-matrix product are implemented using matrix-matrix

multiplication.

Computation: The core operation in SuiteSparse is sparse

matrix-matrix multiplication (SpGEMM). SpGEMM computes

C(i, j) = A(i, :) ∗ B(:, j). In relational terms, this can be

viewed as a join operation on a row vector of A and a column

vector of B. There are two main approaches to implementing

SpGEMM.

a) SAXPY: Explicit entries in A are enumerated by row,

and for each entry A(i, k), a SAXPY operation (y = ax + y)

is performed with the row vector B(k, :) to compute a

contribution to C(i, j). The explicit entries in B(k, :) can be

accessed efficiently since B is stored in CSR format. If the

entry C(i, j) already exists, the contribution is added to it;

otherwise, storage must be allocated for C(i, j).

Parallel implementations of this method handle the creation

of new explicit entries in C in different ways. The Gustavson

method uses a dense accumulator [26], [27] whose size is

equal to the column dimension of matrix B to store con-

tributions to C(i, j); they are merged into C at the end of

computation. Hash-table-based matrix multiplication [28] uses

a hash table to store intermediate results. It is more memory

efficient than Gustavson but requires additional computation

for look-ups.

b) SDOT: The dot-product SpGEMM computes C by

transposing B to get BT and taking a dot product of a row of

A and a row of BT : C(i, j) = A(i, :) ·BT (j, :). This requires

no intermediate storage if storage for C is allocated before

computation. Usually, an inspector is used to determine how

much storage to allocate for C [29].

SuiteSparse implements matrix-matrix multiplication using

both the SAXPY (Gustavson/hash-table) and SDOT, and it

chooses between the two depending on the input matrices.

Parallel SAXPY in SuiteSparse divides the rows of CSR A

or the columns of CSC B among threads, and the SAXPY

operations are done in parallel. SuiteSparse’s parallel SDOT

also partitions the rows of CSR A or columns of CSC B

among threads.

Runtime: SuiteSparse is implemented using OpenMP. Load-

balancing is accomplished using SuiteSparse’s self-scheduling

of work on top of OpenMP static/dynamic balancing.

B. GaloisBLAS

GaloisBLAS is an implementation of a subset of the Graph-

BLAS API in the Galois system [6] described in Section II.

Data structures: GaloisBLAS uses CSR to represent the

graph like SuiteSparse does. Sparse vectors have three rep-

resentations: ordered map, unordered list, and dense array.

The ordered map stores explicit entries as key-value pairs in

sorted order. The unordered list is a thread-safe structure that

supports parallel additions/removals. The dense array uses the

maximum value of the vector type to denote entries that are

not explicit. In this study, we chose the best representations

for each application, input, and operation. For example, the

distance vector of the bfs which stores distances for all the

nodes uses the array type.

Computation: GaloisBLAS supports both parallel SDOT-

and SAXPY-based SpGEMM. SAXPY-based SpGEMM uses

both the hash-table-based and the Gustavson methods. In this

study, we chose the best implementation for each application

and input graph. We also implemented an optimized SpGEMM

for diagonal matrix times sparse matrix: if a diagonal matrix is

detected, then each row of the other matrix is multiplied by the

diagonal entry in the row of the diagonal matrix. GaloisBLAS

implements custom matrix-vector and vector-matrix products

instead of using matrix-matrix multiplication for both.

Runtime: Parallel execution is managed by Galois [6] which

provides huge page support, thread binding, and work-stealing.

IV. EXPERIMENTAL SETUP

Table I shows the graphs used in our study: they represent

a wide variety of graph structures. rmat22 and rmat26 are

synthetic power-law graphs [30]. indochina04 and uk07 [31],

[32] are web crawls, road-USA-W and road-USA [33] are

road networks, twitter40 [34] and friendster [35] are social

networks, and eukarya [36] is a protein dataset. The road

networks and protein dataset have edge weights. For the other

graphs, we generate random edge weights. The size reported

is for the CSR representation (including edge weights).

We used six widely-used graph problems as representatives

of graph workloads.

bfs: Breadth-first search of a directed graph.

cc: Maximal weakly connected components of a graph.

ktruss: Largest subgraph of an undirected graph in which ev-

ery edge is in at least (k-2) triangles within the subgraph.

pr: Page-rank computation for a directed graph.

sssp: Single-source shortest-path in a weighted directed

graph.

tc: Triangle counting in an undirected graph.

We used LAGraph [13] programs from their repository2.

We used SuiteSparse:GraphBLAS 3.2.1 [12], [25]3 and Galois

6.0 [6]4. We used Lonestar programs in the Galois repository.

Our GaloisBLAS implementation uses Galois 6.0.

Our experiments were done on Intel Xeon Gold 5120 2.2

GHz CPUs with 56 cores on 4 sockets and 187 GB of DRAM.

We reserved huge pages for GaloisBLAS and Lonestar. We do

not reserve huge pages for SuiteSparse as we observed that

their implementation performs better without them.

For bfs and sssp, we use the highest degree vertex as

the source vertex except for road networks where we use the

vertex 0. For ktruss, we use a k value of 7 for all graphs

except road networks where we use 4. All programs were run

to convergence except for pr, which we run for 10 iterations.

2Commit 896125aa002eab782b44ba745ee6b36b598c35e8 on the LAGraph
GitHub at https://github.com/GraphBLAS/LAGraph.

3Commit 13f961b5091ee8b74f60a81b30f3987c9628c985 on the Graph-
BLAS GitHub at https://github.com/DrTimothyAldenDavis/GraphBLAS/

4https://github.com/IntelligentSoftwareSystems/Galois/tree/release-6.0



TABLE I: Input graphs and their properties (friendster is an undirected graph while the rest are directed graphs).

road-USA-W road-USA rmat22 indochina04 eukarya rmat26 twitter40 friendster uk07

|V | 6.3M 23.9M 4.2M 7.4M 3.2M 67.1M 41.7M 65.6M 105.9M
|E| 15.1M 57.7M 67.1M 191.6M 359.7M 1,074M 1,468M 1,806M 3,717M
|E|/|V | 2.4 2.4 16 25.8 110.9 16 35.3 28 35.1
max Dout 9 9 98,961 6,984 2,875 0.6M 3M 5,214 15,402
max Din 9 9 0.1M 0.3M 2,875 0.6M 0.8M 5,214 1M
Apprx. Diam. 3,137 6,261 6 2 48 5 12 21 115
CSR Size (GB) 0.2 0.6 0.5 1.5 2.8 8.6 12 28 29

TABLE II: 56-thread execution time in seconds. Fastest runtime is highlighted. TO signifies timeout (2hr), C signifies correctness

bug, OOM signifies out of memory. SS: LAGraph on SuiteSparse, GB: LAGraph on GaloisBLAS, LS: Lonestar on Galois.

road-USA-W road-USA rmat22 indochina04 eukarya rmat26 twitter40 friendster uk07

bfs

SS 1.73 6.06 0.09 0.01 0.18 0.88 1.26 2.61 2.06

GB 3.23 6.87 0.08 0.01 0.12 0.80 1.06 2.41 1.98

LS 0.58 1.20 0.04 0.00 0.05 0.59 0.87 2.10 0.50

cc

SS 0.33 1.11 0.12 0.36 C 2.00 1.27 2.62 4.95

GB 0.32 0.82 0.11 0.38 C 1.49 1.22 2.44 4.05

LS 0.06 0.07 0.09 0.06 0.11 0.82 0.20 1.22 0.45

ktruss

SS 0.09 0.33 2449.16 6227.92 891.59 TO TO TO OOM

GB 0.07 0.31 1681.76 5840.05 847.57 TO TO TO OOM

LS 0.10 0.21 43.05 497.52 21.63 1722.25 TO 926.15 TO

pr

SS 0.15 0.42 0.41 0.65 0.86 9.08 7.23 29.20 9.27

GB 0.06 0.17 0.16 0.25 0.69 4.64 4.95 19.54 4.38

LS 0.06 0.17 0.03 0.14 0.30 3.88 4.24 16.54 2.36

sssp

SS 15.06 50.32 0.77 0.22 53.05 7.80 12.12 53.41 53.93

GB 14.92 40.54 0.27 0.08 47.67 2.68 4.89 15.10 33.94

LS 0.14 0.34 0.17 0.01 0.16 1.66 3.01 11.22 10.15

tc

SS 0.05 0.19 9.93 7.58 8.40 400.89 513.80 80.01 OOM

GB 0.02 0.04 9.05 8.32 7.48 335.29 440.20 96.66 68.09

LS 0.01 0.06 2.48 6.08 4.03 91.54 42.96 38.17 22.89

We use 56 threads for all inputs unless otherwise mentioned.

The reported runtimes for the main experiments do not include

graph loading and preprocessing time and are an average of 3

runs. We used a timeout of 2 hours for the runs.

LAGraph provides many variants of each algorithm, so we

selected the best performing ones. We use the basic variant of

bfs. We use the FastSV [37] variant for cc. We modified

LAGraph’s pr to produce the same answer the Lonestar

version does, and GaloisBLAS and SuiteSparse each use the

pr variant that perform best for that respective system. We

use LAGraph’s delta-stepping [38] variant 12c for sssp. We

use SandiaDot variant for tc. We use the default variant for

ktruss. For Lonestar, we use default algorithms with default

command line arguments. For sssp in all systems, (1) we

use the default value of 213 for the delta except for eukarya

where we change it to 220, and (2) we change the 32-bit

integer distance type to 64-bit only for eukarya. Other than

this exception, the algorithm selected or its runtime parameter

was not tuned based on the input graph for all systems.

The Intel CapeScripts tool is used to collect performance

and energy information dynamically from a running applica-

tion; we use it to get performance counters in our study. Cape-

Scripts predefines a set of counters (memory traffic, FLOP

rates, timing, speculative execution, control unit buffers); the

user enables a set of counters, and the script will select

specific appropriate counters for each given architecture. After

collecting the raw measurement metrics, CapeScripts will

combine the results in a machine independent manner.

V. EXPERIMENTAL RESULTS

In this section, we refer to the LAGraph/SuiteSparse, LA-

Graph/GaloisBLAS, and Lonestar/Galois systems as SuiteS-

parse (SS), GaloisBLAS (GB), and Lonestar (LS) respectively.

First, we give an overview of the main results in Section V-A.

We then dive deeper into the reasons for the performance

differences by doing a differential analysis of algorithms

expressible in matrix and graph-based APIs in Section V-B.

A. Results Overview

Table II shows the main results from our study. The main

takeaways are that (i) within the context of matrix-based API

systems, GaloisBLAS is competitive to or faster than SuiteS-

parse in almost all cases and (ii) Lonestar is substantially faster

than SuiteSparse and GaloisBLAS.
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Fig. 2: Strong scaling of GaloisBLAS (GB) and Lonestar (LS) for four applications on the four largest graphs (log-log scale).

1) SuiteSparse vs. GaloisBLAS: First, we study SuiteSparse

and GaloisBLAS to determine if GaloisBLAS is a reasonable

implementation of the GraphBLAS API. Table II shows that

for most applications and inputs, GaloisBLAS matches or out-

performs SuiteSparse: on average, GaloisBLAS is 1.4× faster

than SuiteSparse for these experiments. For the remainder

of our discussion, we use GaloisBLAS as the GraphBLAS

implementation in our comparison with Lonestar, which uses

a graph-based API.

2) GaloisBLAS vs. Lonestar: On average, Lonestar is 3.5×
faster than GaloisBLAS. Figure 2 illustrates the strong scaling

of GaloisBLAS and Lonestar from 1 to 56 threads (the x and

y axes are logarithmic) for the four largest graphs (we omit

tc and ktruss because they take a long time to execute

on fewer threads). Both systems scale similarly, but there is

a performance gap between the systems at all thread counts.

The main reasons why Lonestar performs better are closely

related to the inherent limitations of a matrix-based API.

Loop fusion: Lonestar programs typically perform composite

operations in a single fused (nested) loop, whereas LAGraph

programs require multiple sparse-matrix function calls (each

of which is a nested loop) to do the same computation. Loop

fusion may lead to better locality as the same fields might

be accessed in multiple loops otherwise. Algorithms 1 and 2
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Fig. 3: Speedups of variants for cc, sssp, pr, and tc. The green line is the baseline “gb” variant for the problem used in Table II.



illustrate this for bfs. As shown in Table IV, GaloisBLAS

makes significantly more DRAM accesses than Lonestar for

bfs because it must make several passes over the graph to

apply the necessary operators. Due to this, Lonestar is 5×
faster than LAGraph for bfs on road-USA.

Avoiding materialization: LAGraph programs may need to

materialize temporary (sparse) vectors or matrices between

sparse-matrix function calls to pass the intermediate values

whereas Lonestar programs may instead use scalars for the

intermediate values in the fused (nested) loop. Consider tc

in Table IV. In GaloisBLAS, tc must be materialized in an

output matrix, and the total count is computed by iterating over

this matrix: this increases instructions and memory accesses.

In Lonestar, no materialization is required: a global counter is

incremented for every triangle found during the computation.

Lonestar is 3× faster than GaloisBLAS for triangle counting

on the uk07 web-crawl because it can avoid the overheads

associated with additional materialization.

Vertex operations: Matrix-based programs are constrained to

bulk operations, whereas graph-based programs can perform

fine-grained vertex operations. For cc, Lonestar implements

the Afforest [14] algorithm, which randomly samples vertices

and executes operations only on those vertices. Such fine-

grained operations on vertices cannot be expressed in a

matrix-based API. Due to this, Lonestar executes an order

of magnitude fewer instructions and memory accesses than

GaloisBLAS as shown in Table IV. Lonestar is on average

3× faster than GaloisBLAS for cc.

Asynchronous execution: The notion of rounds is intrinsic

to matrix-based APIs, so asynchronous algorithms cannot be

expressed. This can hurt performance drastically when a large

number of rounds are executed. For sssp on uk07, Lonestar is

3× faster than GaloisBLAS primarily due to asynchronous ex-

ecution. Asynchronous execution may execute less redundant

work and lead to faster convergence. The hardware metrics for

sssp shown in Table IV validate this.

3) Memory Analysis: Table III shows the maximum res-

ident set size (MRSS) at the end of computation for each

system in this study. MRSS is the most memory that the

program used during execution (including graph loading).

There are a few noteworthy points from these numbers.

First, observe that GaloisBLAS and Lonestar have roughly

the same MRSS for most graphs and applications since they

share the same runtime. For the smaller graphs, the MRSS for

GaloisBLAS and Lonestar is higher than that of SuiteSparse.

This is because the Galois runtime preallocates memory to

avoid dynamic memory allocation during execution, and the

preallocation is more than the memory actually needed by the

program. As the graphs grow in size, SuiteSparse’s MRSS

begins to be significantly higher than GaloisBLAS and Lon-

estar: the preallocation done by the Galois runtime becomes

insignificant compared to the size taken by the graph and

the data structures used during computation. This suggests

that SuiteSparse may be able to improve performance by

optimizing memory usage. In some cases, Lonestar has slightly

higher MRSS than GaloisBLAS: Lonestar maintains additional

data structures such as worklists for algorithms like sssp

which increases memory usage for better performance. Lastly,

observe that tc for SuiteSparse and GaloisBLAS have notice-

ably higher MRSS than Lonestar does for the larger graphs

(friendster, uk). tc in SuiteSparse and GaloisBLAS must

initialize additional matrices derived from the original graph

such as upper/lower triangular matrices in order to do triangle

counting which increases the RSS, and this increased memory

footprint may decrease memory locality during execution.

B. Differential Analysis

To understand the performance gaps between GaloisBLAS

and Lonestar, we performed differential analyses. We constrain

the Lonestar programs in various ways and implement better

algorithms in GraphBLAS where possible to determine the im-

pact of features like asynchronous execution and loop fusion.

This provides insight into performance differences between the

approaches. We present these results in Figure 3.

pr: We examine four pr variants: (1) (pr-)ls, the residual-

based Lonestar pr implementation used in Table II, (2)

(pr-)ls-soa, which is ls except with vertex data in

a structure of arrays instead of array of structures, (3)

(pr-)gb-res, a new GraphBLAS implementation of pr that

matches the residual-based computation done by Lonestar, and

(4) (pr-)gb, the topology-driven LAGraph pr implementa-

tion used in Table II. The results are shown in Figure 3(a).

First, gb-res outperforms gb because gb-res performs

fewer data accesses and has better locality: gb uses edge data

to store the pagerank contributions (or delta) of node, whereas

gb-res uses a separate vector for them.

Next, we compare gb-res and ls-soa. In a residual-

based pr, two operations must be performed in each iteration

using the residual values: the pagerank is updated with the

residual, and the outdegree is multiplied with the residual. In

a matrix API, these operations must be done using two calls to

the API, so the residual vector is iterated over twice, increasing

memory accesses. In the graph API, these operations can be

fused into a single iteration over the residual values: this

reduces memory accesses and increases efficiency. This is

shown in the hardware metrics collected for ls-soa and

gb-res in Table V: gb-res has double the instruction count

of ls-soa and significantly more L1 accesses.

Finally, we compare ls-soa and ls. In ls, the pagerank

and outdegree fields are accessed in the loop over residual

values, so they are packed into a structure rather than being

stored in separate arrays like in ls-soa. This improves data

locality, which improves performance. It is difficult to express

operations on such structures in a matrix-based API.

tc: We examine four tc variants: (1) (tc-)ls, the Lon-

estar tc implementation used in Table II based on triangle

listing [39] which sorts vertices by degrees, (2) (tc-)gb-ll,

a new GraphBLAS implementation of the triangle listing

algorithm, (3) (tc-)gb-sort, the LAGraph algorithm used

in Table II using the sorted graph produced by (1) as input, and

(4) (tc-)gb, the LAGraph algorithm used in Table II that

uses an unsorted graph. The results are shown in Figure 3(b).



TABLE III: Maximum resident set size (in GB) at the end of computation. TO signifies timeout (2hr), C signifies correctness

bug, OOM signifies out of memory. SS: LAGraph on SuiteSparse, GB: LAGraph on GaloisBLAS, LS: Lonestar on Galois.

road-USA-W road-USA rmat22 indochina04 eukarya rmat26 twitter40 friendster uk07

bfs

SS 0.36 1.37 1.20 3.37 6.10 19.04 25.28 61.58 63.93
GB 3.79 4.24 4.16 5.12 6.34 12.14 14.85 30.60 32.12
LS 3.79 4.24 4.16 5.11 6.34 12.13 14.88 31.04 32.10

cc

SS 0.68 2.48 2.50 6.40 C 38.27 47.00 92.34 125.28
GB 3.79 4.24 4.16 5.11 C 12.14 14.88 31.04 32.12
LS 3.73 4.02 4.16 4.80 6.33 12.07 12.89 31.03 28.92

ktruss

SS 0.80 2.96 8.71 19.49 16.19 TO TO TO OOM
GB 3.79 4.24 4.73 5.57 6.34 TO TO TO OOM
LS 3.73 4.03 4.16 4.81 6.33 12.07 TO 31.03 TO

pr

SS 0.54 2.04 1.70 4.76 7.47 27.05 36.27 88.89 91.86
GB 3.79 4.24 4.16 5.12 6.33 12.13 14.89 31.03 32.11
LS 3.79 4.24 3.77 5.11 6.33 12.10 14.88 30.57 31.82

sssp

SS 0.62 2.33 1.90 5.26 10.86 30.36 39.74 96.51 100.63
GB 3.79 4.24 4.16 5.12 6.34 12.09 14.86 30.67 31.83
LS 3.79 4.24 4.16 5.11 6.34 12.13 14.88 30.95 32.12

tc

SS 0.63 2.41 3.71 8.89 10.48 57.89 64.72 122.13 OOM
GB 3.79 4.23 4.16 5.11 6.33 12.13 14.89 31.04 52.73
LS 3.73 4.02 4.15 4.81 4.99 12.08 12.90 17.58 29.01

TABLE IV: Average ratios (GaloisBLAS over Lonestar) of

hardware counters collected during algorithm execution for all

inputs. Greater than 1 means that GaloisBLAS had a higher

count for that metric.

Instruction L1 L2 L3 DRAM

Count Access Access Access Access

bfs 4.26 3.32 1.52 1.48 1.41
cc 27.03 28.85 9.99 7.43 9.03
pr 0.98 1.56 1.07 1.16 1.27
sssp 4.91 2.98 5.03 4.09 3.87

tc* 2.22 2.41 2.89 2.26 2.30

* tc ratios do not include uk07 (CAPE ran out of memory for it).

TABLE V: Average ratios (one algorithm variant over another)

of hardware counters collected for all inputs.

Instruction L1 L2 L3 RAM

Count Access Access Access Access

pr-gb-res / pr-ls-soa 1.81 2.56 1.04 1.03 0.97
cc-gb / cc-ls-sv 4.12 4.56 3.18 2.91 3.66
tc-gb-ll / tc-ls 0.95 1.21 1.32 1.15 1.14

First, note that using the sorted graph in gb-sort does

not necessarily improve performance: in fact, it degrades it in

some cases. The gb algorithm does not leverage the sorted-

by-degree nature of the input, so there is no purpose in

using a sorted graph. To close this gap, we implemented the

triangle listing algorithm in LAGraph/GaloisBLAS: gb-ll.

This algorithm leverages the sorted graph to avoid iterating

over high degree vertices: as a result, it gains significant

improvement over gb-sort.

Next, we compare gb-ll with ls. Even though both

use the same triangle listing algorithm that leverages the

sorted graph, ls outperforms gb-ll. ls does not need to

materialize any additional matrices to do counting and can

fuse the counting step into the finding step. The increased

memory accesses are reflected in the hardware counter ratio

in Table V: gb-ll performs more memory accesses. gb-ll

has less instructions: this is because preprocessing (which is

excluded from the time reported) in gb-ll has removed the

need for runtime symmetry breaking (triangle uvw is only

counted if u > v > w): ls checks this condition during

runtime. Even though gb-ll executes fewer instructions, it

is slower because it makes more memory accesses.

ktruss: ktruss uses triangle counting as a subroutine but un-

like tc, Lonestar (ls) does not use sorted graphs and LAGraph

(gb) is not doing preprocessing to avoid symmetry breaking.

Nevertheless, like in tc, gb materializes intermediate matrices

while ls does not. Both ls and gb use a round-based

algorithm in which edges are incrementally removed from the

graph. However, in ls, the edge removals are immediately

visible to all other threads (Gauss-Seidel iteration) unlike gb

in which edge removals only occur after the end of a round

(Jacobi iteration) due to the bulk nature of matrix operations.

Due to this, gb executes 1.6× more computational rounds

than ls. More execution rounds results in increased memory

accesses, which results in significantly more runtime: note that

gb did not finish in 2 hours for some inputs (Table II).

cc: Lonestar uses the Afforest algorithm [14] in Table II; we

call this (cc-)ls. This algorithm cannot be expressed using

the GraphBLAS API because it uses sampling and fine-grained

vertex operations, so LAGraph implements a restricted version

of the Shiloach-Vishkin pointer-jumping algorithm [37]. In

pointer-jumping algorithms, vertices have parent pointers that

point to other vertices in the same connected component;

one vertex in each connected component is called the root,

and its parent pointer points to itself. At the end of the cc

computation, the parent pointer of each vertex should point

to the root of its connected component. When a matrix-based

API is used, the parent pointers must be updated by a bulk

operation that performs some fixed number of pointer-jumping

steps everywhere. We call this LAGraph implementation used

in Table II (cc)-gb. In contrast, the graph-based API permits



unbounded pointer-jumping in which the parent pointer of a

vertex can end up getting short-circuited to any of its ancestors

in the chain of parent pointers, independently of pointer-

jumping at other vertices. We call this Shiloach-Vishkin al-

gorithm [15] in Lonestar (cc-)ls-sv.

Figure 3(c) shows that ls significantly outperforms ls-sv,

as expected [14]. Note that on high-diameter graphs like

road networks, ls-sv performs much better than gb: the

asynchronous execution model in Galois permits information

to propagate faster through the graph via pointer-jumping than

a matrix-based API permits. Due to this, ls-sv executes

fewer instructions and memory accesses as shown in Table V.

sssp: Both Lonestar (ls) and LAGraph’s (gb) sssp in Table II

use delta-stepping. However, Lonestar exploits the asynchrony

in the Galois runtime to implement an asynchronous ver-

sion of delta-stepping, whereas LAGraph implements a bulk-

synchronous version of delta-stepping. ls also partitions the

edges of high-degree nodes among several threads; this is

called edge-tiling, and it promotes load balancing for power-

law graphs. To understand the impact of edge-tiling, we

compare with ls without edge-tiling, (sssp-)ls-notile.

Figure 3(d) shows the performance impact of this optimization.

We see that for power-law graphs like rmat26 and twit-

ter40, this optimization boosts performance by 1.5× over gb.

ls-notile is still faster than gb due to asynchronous exe-

cution even for low-diameter graphs. Asynchrony is especially

important for high-diameter graphs: both the tiled and no-

tiled variants are over 100× faster than gb for road-USA as

bulk-synchronous algorithms must execute significantly more

rounds of computation for high-diameter graphs.

bfs: Both Lonestar (ls) and LAGraph (gb) implementations

of bfs in Table II use the same level-by-level bfs algorithm

which propagates the distance value one edge at a time in each

round of execution. The runtime difference between the two

implementations arises from an extra matrix operation that

gb does: gb uses a vector-matrix multiply to mark newly

visited vertices in a computation round. It does an additional

vector assign operation after the multiply in order to update the

visited vertices’ distance values. In other words, it (1) creates a

worklist for the next round and (2) updates the distances using

two disjoint operations that both iterate over the vertex data

structure. In ls, the worklist creation and the distance update

are in the same loop; this reduces overall accesses to memory

as the vertex data structure is only iterated over once. Table IV

shows that gb’s instruction count and memory accesses are

much higher than those of ls.

VI. RELATED WORK

Using matrix operations to do graph algorithms uses the

idea that the topology of the graph can be represented in a ma-

trix [22]. Many graph algorithms have been defined in terms of

linear algebraic operations [22], [38], [40]–[42]. Graph analyt-

ics systems that use matrix-based operations [43] include the

Combinatorial BLAS [44], PEGASUS [45], GBASE [46], and

SystemML [47]. Although these systems used matrix-based

operations, they are not necessarily GraphBLAS-compliant.

GraphBLAS is an API defined to make writing graph algo-

rithms using a matrix-based API standard [10], [11] and aims

to provide a set of core functions to define all types of graph

algorithms. There are implementations of the GraphBLAS API

such as SuiteSparse:GraphBLAS [12] and GraphBLAST [48].

SuiteSparse:GraphBLAS is a full implementation of the API

on top of OpenMP. The GraphBLAS community has also

developed libraries for heterogeneous systems. GraphBLAST

is an implementation for a single GPU. It optimizes memory

accesses by exploiting direction optimization [49], [50] and

contains optimizations to avoid unnecessary computations.

However, it only implements a subset of the GraphBLAS API

and does not support all the applications evaluated in this

paper. There are no implementations of the GraphBLAS API

on multiple GPUs or distributed CPU clusters yet. Our work

introduces an implementation of the GraphBLAS API called

GaloisBLAS built on the Galois [6] system for shared-memory

CPUs. LAGraph is a collection of algorithms defined with the

GraphBLAS API [13] that we use in our experiments.

Graph-centric graph analytics systems treat the graph as an

ADT that can be used to query vertices and edges, update

graph state, add/remove elements of the graph, etc. Exam-

ples of such systems include Galois [6], [17], Gemini [51],

Ligra [5], and Gunrock [50] among many other systems that

span both GPUs [16], [50], [52] and distributed clusters [17],

[51], [53], [54]. In particular, Galois is the system that we use

to implement GaloisBLAS: we use the parallel constructs and

data structures it provides to create a parallel implementation

of a subset of the GraphBLAS API.

To the best of our knowledge, this study is the first de-

tailed analysis of performance differences between matrix- and

graph-centric approaches for graph analytics workloads.

VII. CONCLUSION

This paper studied the performance of a matrix-based ap-

proach for writing graph algorithms (LAGraph running on

top of SuiteSparse or GaloisBLAS) relative to a graph-based

approach (Lonestar programs running on the Galois system).

Our results show that Lonestar/Galois programs are 5× faster

than LAGraph/SuiteSparse programs. We argued that the main

reasons for these differences were that (i) programs using

a matrix-based API need to iterate over a graph multiple

times to apply a composite operator that is not supported

by the API unlike in a graph-based API where such updates

can be combined in a single loop, (ii) programs written

using a matrix-based API will materialize a large amount

of intermediate data unlike graph-based approaches, (iii) the

matrix approach is constrained to bulk operations whereas the

graph-based approach can perform fine-grained operations on

vertices, and (iv) the matrix approach is constrained to round-

based execution whereas the graph-based approach can enjoy

the benefits of asynchronous execution. Although our study

was conducted on CPUs, the findings extend to all archi-

tectures as these limitations are intrinsic to the matrix-based

approach to graph computation: these restrictions apply at the

algorithmic level and not the architectural level. While these



issues are intrinsic to matrix-based approaches irrespective

of the architecture, issues (i) and (ii) may be solved using

restructuring compiler technology in the future.
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optimization, modeling and analysis of sparse matrix-matrix products
on multi-core and many-core processors,” Parallel Computing, 2019.

[29] R. Ponnusamy, J. Saltz, and A. Choudhary, “Runtime compilation
techniques for data partitioning and communication schedule reuse,” in
SC, 1993.

[30] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A Recursive Model

for Graph Mining, 2004.
[31] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression

Techniques,” in WWW, 2004.
[32] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered Label Prop-

agation: A Multiresolution Coordinate-free Ordering for Compressing
Social Networks,” in WWW, 2011.

[33] “”9th DIMACS Implementation Challenge”,” 2019. [Online]. Available:
http://users.diag.uniroma1.it/challenge9/

[34] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a Social
Network or a News Media?” in WWW, 2010.

[35] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network
Dataset Collection,” http://snap.stanford.edu/data, Jun. 2014.

[36] A. Azad, G. A. Pavlopoulos, C. A. Ouzounis, N. C. Kyrpides, and
A. Bulu, “HipMCL: a high-performance parallel implementation of the
Markov clustering algorithm for large-scale networks,” Nucleic Acids

Research, 2018.
[37] Y. Zhang, A. Azad, and Z. Hu, “FastSV: a distributed-memory connected

component algorithm with fast convergence,” in Parallel Processing for

Scientific Computing, 2020.
[38] U. Sridhar, M. Blanco, R. Mayuranath, D. G. Spampinato, T. M. Low,

and S. McMillan, “Delta-Stepping SSSP: From Vertices and Edges to
GraphBLAS Implementations,” in IPDPSW, 2019.

[39] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in KDD, 2011.

[40] A. Azad and A. Buluc, “LACC: A Linear-Algebraic Algorithm for
Finding Connected Components in Distributed Memory,” in IPDPS,
2019.

[41] T. A. Davis, “Graph algorithms via SuiteSparse: GraphBLAS: triangle
counting and K-truss,” in HPEC, 2018.

[42] A. Azad, A. Bulu, and J. Gilbert, “Parallel Triangle Counting and
Enumeration Using Matrix Algebra,” in IPDPSW, 2015.

[43] D. Yan, Y. Tian, and J. Cheng, “Matrix-based graph systems,” Systems

for Big Graph Analytics, 2017.
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