
1

A Round-Efficient Distributed Betweenness
Centrality Algorithm

Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder
Gill, Bozhi You, Keshav Pingali, and Vijaya Ramachandran

2

Betweenness Centrality

Betweenness Centrality (BC) used to
determine relative importance of node in
graph

Applications

Key actor detection in terrorist nets
Disease studies
Power grid analysis
River flow confluence

Distributed implementations necessary

Large graphs with billions of
nodes/edges
BC takes hours to complete even if
approximating

Figure Credit: Claudio Rocchini, Creative Commons Attribution 2.5 Generic

3

Betweenness Centrality Definition

A

C

B

D E
BC: fraction of shortest paths in which
node appears

Example: consider the 2 shortest paths from A to E:

B appears in 1: 1
2 ; C appears in 1: 1

2 ; D appears in 2: 2
2 = 1

σst , number of shortest paths from s to t; σst(v), number of
shortest paths from s to t passing through v , v 6= s 6= t.

Betweenness Centrality (BC)

BC (v) =
∑

s 6=t 6=v

σst(v)
σst

From definition: about n3 operations (n is number of vertices)

3

Betweenness Centrality Definition

A

C

B

D E
BC: fraction of shortest paths in which
node appears

Example: consider the 2 shortest paths from A to E:

B appears in 1: 1
2 ; C appears in 1: 1

2 ; D appears in 2: 2
2 = 1

σst , number of shortest paths from s to t; σst(v), number of
shortest paths from s to t passing through v , v 6= s 6= t.

Betweenness Centrality (BC)

BC (v) =
∑

s 6=t 6=v

σst(v)
σst

From definition: about n3 operations (n is number of vertices)

3

Betweenness Centrality Definition

A

C

B

D E
BC: fraction of shortest paths in which
node appears

Example: consider the 2 shortest paths from A to E:

B appears in 1: 1
2 ; C appears in 1: 1

2 ; D appears in 2: 2
2 = 1

σst , number of shortest paths from s to t; σst(v), number of
shortest paths from s to t passing through v , v 6= s 6= t.

Betweenness Centrality (BC)

BC (v) =
∑

s 6=t 6=v

σst(v)
σst

From definition: about n3 operations (n is number of vertices)

3

Betweenness Centrality Definition

A

C

B

D E
BC: fraction of shortest paths in which
node appears

Example: consider the 2 shortest paths from A to E:

B appears in 1: 1
2 ; C appears in 1: 1

2 ; D appears in 2: 2
2 = 1

σst , number of shortest paths from s to t; σst(v), number of
shortest paths from s to t passing through v , v 6= s 6= t.

Betweenness Centrality (BC)

BC (v) =
∑

s 6=t 6=v

σst(v)
σst

From definition: about n3 operations (n is number of vertices)

4

Brandes Betweenness Centrality

A

C

B

D E

Shortest-path DAG with shortest
path counts rooted at node s:
propagate dependencies (δs•) along
DAG predecessors

BC from Dependencies of a Node

BC (v) =
∑

s 6=v δs•(v)
where δs•(v) =

∑
w :v∈Ps(w)

σsv
σsw
· (1 + δs•(w))

Ps(w) are predecessors of w in DAG

Brandes BC [1]: sum dependencies from all DAGs: O(nm)
operations (m is number of edges)

All-pairs shortest paths (APSP) or k-source shortest paths
(k-SSP, shortest paths for subset of k nodes) to find DAGs

[1] U. Brandes. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 2001.

4

Brandes Betweenness Centrality

A

C

B

D E

Shortest-path DAG with shortest
path counts rooted at node s:
propagate dependencies (δs•) along
DAG predecessors

BC from Dependencies of a Node

BC (v) =
∑

s 6=v δs•(v)
where δs•(v) =

∑
w :v∈Ps(w)

σsv
σsw
· (1 + δs•(w))

Ps(w) are predecessors of w in DAG

Brandes BC [1]: sum dependencies from all DAGs: O(nm)
operations (m is number of edges)

All-pairs shortest paths (APSP) or k-source shortest paths
(k-SSP, shortest paths for subset of k nodes) to find DAGs

[1] U. Brandes. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 2001.

5

Related APSP and BC Work

APSP

O(n) round undirected, unweighted APSP algorithms [2,3,4]

Lenzen-Peleg: prior best unweighted APSP

BC

Asynchronous Brandes BC (ABBC): asynchronous,
shared-memory [5]
Maximal Frontier BC (MFBC): distributed, sparse-matrix
Brandes BC [6]
Hua et al.: distributed BC for undirected, unweighted graphs
[7]

[2] S. Holzer and R. Wattenhofer. Optimal Distributed All Pairs Shortest Paths and Applications. PODC 2012.
[3] D. Peleg, L. Roditty, and E. Tal. Distributed Algorithms for Network Diameter and Girth. ICALP 2012.
[4] C. Lenzen and D. Peleg. Efficient Distributed Source Detection with Limited Bandiwidth. PODC 2013
[5] D. Prountzos and K. Pingali. Betweenness centrality: algorithms and implementations. PPoPP’13.
[6] E. Solomonik, M. Besta, F. Vella, and T. Hoefler. Scaling Betweenness Centrality Using
Communication-efficient Sparse Matrix Multiplication.
[7] Q. S. Hua, H. Fan, M. Ai, L. Qian, Y. Li, X. Shi, and X. Jin. Nearly Optimal Distributed Algorithm for
Computing Betweenness Centrality. ICDCS 2016.

6

Motivation for Our Work

Practical implementations of theoretical, distributed
O(n)-round APSP/BC algorithms do not exist

Existing distributed BC mainly use SSSP/k-SSP with Brandes
BC

High amount of bulk-synchronous parallel (BSP) rounds with
expensive communication barriers

7

Tradeoff exploration:
decreasing number of rounds at
cost of increasing computation
per round

8

Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality
(MRBC) for directed and undirected unweighted graphs

CONGEST: (known) n nodes, m edges, diameter D: APSP in
min(n + O(D), 2n) rounds and mn + O(m) messages

In systems that detect termination: k-SSP in at most k + H
rounds and m · k messages, H is largest finite shortest path
distance for the k sources

BC: at most twice the rounds/messages as APSP/k-SSP

8

Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality
(MRBC) for directed and undirected unweighted graphs

CONGEST: (known) n nodes, m edges, diameter D: APSP in
min(n + O(D), 2n) rounds and mn + O(m) messages

In systems that detect termination: k-SSP in at most k + H
rounds and m · k messages, H is largest finite shortest path
distance for the k sources

BC: at most twice the rounds/messages as APSP/k-SSP

8

Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality
(MRBC) for directed and undirected unweighted graphs

CONGEST: (known) n nodes, m edges, diameter D: APSP in
min(n + O(D), 2n) rounds and mn + O(m) messages

In systems that detect termination: k-SSP in at most k + H
rounds and m · k messages, H is largest finite shortest path
distance for the k sources

BC: at most twice the rounds/messages as APSP/k-SSP

9

Our Contributions: Practice

MRBC implementation in D-Galois[8] with communication
optimization exploiting MRBC properties

MRBC evaluation

3× faster than prior state-of-the-art MFBC
2.8× speedup over Brandes BC on high diameter graphs

[8] R. Dathathri, G. Gill, L. Hoang, H.V. Dang, A. Brooks, N. Dryden, M. Snir, K. Pingali. Gluon: A
Communication-Optimizing Substrate for Distributed Heterogeneous Graph Analytics. PLDI 2018.

10

Outline

1 Introduction

2 MRBC
Min-Rounds APSP
Min-Rounds BC
D-Galois Model and Delayed Synchronization

3 Evaluation

4 Conclusion

11

CONGEST Model for Distributed Algorithms

Machines are nodes, edges are communication channels

Send message (constant number of words) per round to do
updates

6

4
5

1
2

3

1 2

3

45

6

12

k-SSP Example: Initial State

A

B

D

C

E

F

G

(0, A)

(0, B)

(distance, sourceID)

Left: Initial State of k-SSP
where k = 2 sources A and B

Vertices store current distance
from a source to self in
lexicographically sorted vector

Every round, vertex chooses 1
(distance, source) pair to send
along outgoing edges

13

APSP: When To Send A Pair?

Problem: sent distance may not be final distance associated
with source

Min-Rounds APSP New Insight: Message Send Rule

Send unsent distance d with position p on sorted vector with
corresponding source in round r if p + d = r

Like Dijkstra: sends only final distance

Resulting algorithm pipelines messages: orchestrates updates
across edges and reduces amount of messages sent

13

APSP: When To Send A Pair?

Problem: sent distance may not be final distance associated
with source

Min-Rounds APSP New Insight: Message Send Rule

Send unsent distance d with position p on sorted vector with
corresponding source in round r if p + d = r

Like Dijkstra: sends only final distance

Resulting algorithm pipelines messages: orchestrates updates
across edges and reduces amount of messages sent

14

k-SSP Example: Round 1

(1, A)

(1, A)

A

(1, B)

(1, B)

B

D

C

E

F

G

(0, A)

(0, B)

(1, A)

(1, A)
(1, B)

(1, B)

(distance, sourceID)

Message Send Rule

Send unsent distance d with position
p on sorted vector with
corresponding source in round r if
p + d = r

Example: (0,A) chosen because
0 + 1 (1 is position on vector)
equals round 1

15

k-SSP Example: Round 2

A

B

(2, A)

 (2, A)

D

(2, A)

C

 (2, B)

E

F

G

(0, A)

(0, B)

(1, A)

(1, A)
(1, B)

(1, B)

(2, A)
(2, B)

(2, A)

(distance, sourceID)

16

k-SSP Example: Round 3

A

B

(2, B)

(2, B)

D

C

E

F

G

(0, A)

(0, B)

(1, A)

(1, A)
(1, B)

(1, B)

(2, A)
(2, B)

(2, A)
(2, B)

(distance, sourceID)

17

k-SSP Example: Round 4 (Final)

A

B

D

C

E

F

G

(0, A)

(0, B)

(1, A)

(1, A)
(1, B)

(1, B)

(2, A)
(2, B)

(2, A)
(2, B)

(distance, sourceID)

18

APSP for Brandes BC

Min-Rounds APSP as subroutine for Brandes BC backward
accumulation

Three Additions to APSP

Send shortest path count with distance/source ID in APSP

Timestamp round number in which message is sent

Track predecessors of shortest path DAG for each source

19

Min-Rounds BC: Reversing Global Delays

Insight: leverage saved timestamps, send final values

A

B

D

C

E

F

G

(0, A, 1, _),1

(0, B, 1, _),1

(1, A, 1, 0),2

(1, A, 1, 0),2
(1, B, 1, 0),3

(1, B, 1, 0),2

(2, A, 1, 0),3
(2, B, 2, 0),4

(2, A, 1, 0),3
(2, B, 1, 0),4

(distance, sourceID, #shortpaths, dependency), sentround

→

A

B

D

C

E

F

G

(0, A, 1, _),4

(0, B, 1, _),4

(1, A, 1, 0),3

(1, A, 1, 0),3
(1, B, 1, 0),2

(1, B, 1, 0),3

(2, A, 1, 0),2
(2, B, 2, 0),1

(2, A, 1, 0),2
(2, B, 1, 0),1

(distance, sourceID, #shortpaths, dependency),sendround

Timestamp Pipelining By Reversing Global Delay

Send source’s dependency value to predecessors in source’s DAG in
reverse round order: total rounds + 1 - timestamp

20

Backward Accumulation: Round 1

Brandes formulation to propagate finalized dependencies

A

B

B, 1

B, 0.5

D

C

B, 0.5E

F

G

(0, A, 1, _),4

(0, B, 1, _),4

(1, A, 1, 0),3

(1, A, 1, 0),3
(1, B, 1, 1.5),2

(1, B, 1, 0.5),3

(2, A, 1, 0),2
(2, B, 2, 0),1

(2, A, 1, 0),2
(2, B, 1, 0),1

(distance, sourceID, #shortpaths, dependency),sendround

21

Backward Accumulation: Round 2

A

B, 2.5

B

A, 1

A, 1

D

C

E

F

G

(0, A, 1, _),4

(0, B, 1, _),4

(1, A, 1, 0),3

(1, A, 1, 2),3
(1, B, 1, 1.5),2

(1, B, 1, 0.5),3

(2, A, 1, 0),2
(2, B, 2, 0),1

(2, A, 1, 0),2
(2, B, 1, 0),1

(distance, sourceID, #shortpaths, dependency),sendround

22

Backward Accumulation: Round 3

A, 3

A, 1

A

B, 1.5

B

D

C

E

F

G

(0, A, 1, _),4

(0, B, 1, _),4

(1, A, 1, 0),3

(1, A, 1, 2),3
(1, B, 1, 1.5),2

(1, B, 1, 0.5),3

(2, A, 1, 0),2
(2, B, 2, 0),1

(2, A, 1, 0),2
(2, B, 1, 0),1

(distance, sourceID, #shortpaths, dependency),sendround

23

Backward Accumulation: Round 4

A

B

D

C

E

F

G

(0, A, 1, _),4

(0, B, 1, _),4

(1, A, 1, 0),3

(1, A, 1, 2),3
(1, B, 1, 1.5),2

(1, B, 1, 0.5),3

(2, A, 1, 0),2
(2, B, 2, 0),1

(2, A, 1, 0),2
(2, B, 1, 0),1

(distance, sourceID, #shortpaths, dependency),sendround

24

Final Result

Add source dependencies to get BC contribution

A

B

D
BC:3.5

C

E
BC:0.5

F

G

(0, A, 1, _),4

(0, B, 1, _),4

(1, A, 1, 0),3

(1, A, 1, 2),3
(1, B, 1, 1.5),2

(1, B, 1, 0.5),3

(2, A, 1, 0),2
(2, B, 2, 0),1

(2, A, 1, 0),2
(2, B, 1, 0),1

(distance, sourceID, #shortpaths, dependency),sendround

To get BC, use APSP rather than k-SSP

25

D-Galois and the Execution Model

D-Galois: distributed graph analytics system using
shared-memory Galois and Gluon communication substrate

A

B

D

C

E

F

G

→
A

B

D

C

E

D

E

F

G

Host 1 Host 2

Distribute edges from graph; cached-copies (proxies) of
endpoints created

Execution in bulk-synchronous parallel (BSP) rounds:
computation then communication to sync proxies

26

Example Execution in D-Galois: Round 1 Compute

Computation: CONGEST “message sends” along edges

(1, A, 1)

(1, A, 1)

A

(1, B, 1)

(1, B, 1)

B

D

C

E

(0, A, 1),1

(0, B, 1),1

(1, A, 1)

(1, A, 1)
(1, B, 1)

(1, B, 1)

D

E

F

G

(distance, sourceID, #shortpaths), sentround

Host 1 Host 2

27

Example Execution in D-Galois: Round 2 Sync

Synchronization of proxies D and E after computation

A

B

D

C

E

(0, A, 1),1

(0, B, 1),1

(1, A, 1)

(1, A, 1)
(1, B, 1)

(1, B, 1)

D

E

F

G

(1, A, 1)
(1, B, 1)

(1, B, 1)

(distance, sourceID, #shortpaths), sentround

Host 1 Host 2

28

Redundant Synchronization (I)

Beginning of Round 3: Synchronize all data on proxy G

A

B

D

C

E

F

G

(0, A, 1),1

(0, B, 1),1

(1, A, 1),2

(1, A, 1),2
(1, B, 1)

(1, B, 1),2

(2, A, 1)
(2, B, 1)

(2, A, 1)

(distance, sourceID, #shortpaths), sentround

G

(2, A, 1)
(2, B, 1)

H

Host 1 Host 2

29

Redundant Synchronization (II)

After compute, stale value on host 2: needs synchronization again!

A

B

(2, B, 1)

(2, B, 1)

D

C

E

F

G

(0, A, 1),1

(0, B, 1),1

(1, A, 1),2

(1, A, 1),2
(1, B, 1),3

(1, B, 1),2

(2, A, 1),3
(2, B, 2)

(2, A, 1),3
(2, B, 1)

(distance, sourceID, #shortpaths), sentround

G

(2, A, 1),3
(2, B, 1)

H

Host 1 Host 2

(3, A, 1)

(3, A, 1)

30

Optimization: Delayed Synchronization in D-Galois

Delayed Synchronization

Synchronize updated
data associated with a
source on a proxy only if
that data meets the
message send rule’s
conditions

Beginning of Round 3, sync only source A data on G
(distance 2 + position 1 = round 3)

A

B

D

C

E

F

G

(0, A, 1),1

(0, B, 1),1

(1, A, 1),2

(1, A, 1),2
(1, B, 1)

(1, B, 1),2

(2, A, 1)
(2, B, 1)

(2, A, 1)

(distance, sourceID, #shortpaths), sentround

G

(2, A, 1)

H

Host 1 Host 2

Intuition: data not read until round it is sent

Availability of proxies allows delaying synchronization

31

Delayed Synchronization Example Continued (I)

Round 3 compute

A

B

(2, B, 1)

(2, B, 1)

D

C

E

F

G

(0, A, 1),1

(0, B, 1),1

(1, A, 1),2

(1, A, 1),2
(1, B, 1),3

(1, B, 1),2

(2, A, 1),3
(2, B, 2)

(2, A, 1),3
(2, B, 1)

(distance, sourceID, #shortpaths), sentround

G

(2, A, 1),3

H

Host 1 Host 2

(3, A, 1)

(3, A, 1)

32

Delayed Synchronization Example Continued (II)

Beginning of Round 4: synchronize source B data on proxy G
(distance 2 + position 2 = round 4)

A

B

D

C

E

F

G

(0, A, 1),1

(0, B, 1),1

(1, A, 1),2

(1, A, 1),2
(1, B, 1),3

(1, B, 1),2

(2, A, 1),3
(2, B, 2)

(2, A, 1),3
(2, B, 1)

(distance, sourceID, #shortpaths), sentround

G

(2, A, 1),3
(2, B, 2)

H

Host 1 Host 2

(3, A, 1)

Delayed sync reduces network congestion and communication
volume

33

Outline

1 Introduction

2 MRBC
Min-Rounds APSP
Min-Rounds BC
D-Galois Model and Delayed Synchronization

3 Evaluation

4 Conclusion

34

Experimental Setup: Evaluated Algorithms

1 Asynchronous Brandes BC (ABBC)

2 Maximal Frontier BC (MFBC), sparse-matrix-based

3 Synchronous Brandes BC (SBBC), Brandes in D-Galois

4 Min-Rounds BC (MRBC)

System (A)synchronous? Distributed? Batching?

ABBC Galois Async N N
MFBC CTF Sync Y Y
SBBC D-Galois Sync Y N
MRBC D-Galois Sync Y Y

We focus on SBBC and MRBC

ABBC excellent for high diameter graphs if fits in memory

MFBC performs moderately well, slows as graphs grow

35

Experimental Setup: Platform

Low Diameter High Diameter

livejournal rmat24 friendster kron30 indochina04 road-europe gsh15 clueweb12

|V | 4.8M 17M 66M 1,073M 7.4M 174M 988M 978M
|E | 69M 268M 3,612M 17,091M 194M 348M 33,877M 42,574M
H (Estimated Diameter) 17 9 25 9 45 22541 103 501

Platform: Stampede2’s Skylake cluster

Intel Xeon Platinum 8160, 48 cores on 2 sockets per machine
2.1GHz clock rate, 192GB DDR4 RAM

Graphs run on up to 256 machines

Low diameter graphs ≤ 25, high diameter greater than 25

Web crawls (such as clueweb12) also high-diameter

36

Execution Times, Low Diameter Graphs

SBBC: O(k · H) BSP rounds MRBC: O(k + H) BSP rounds

H = largest shortest path distance for k sources

Ti
m

e
(s

ec
)

Low Diameter

MRBC round reduction (which leads to communication improvements)
does not outweigh compute overhead

37

Execution Times, High Diameter Graphs

SBBC: O(k · H) BSP rounds MRBC: O(k + H) BSP rounds

H = largest shortest path distance for k sources

Ti
m

e
(s

ec
)

High Diameter

MRBC outperforms SBBC (2.8× faster): round reduction and
communication improvement more significant

38

Execution Time of SBBC/MRBC from 64 to 256 Hosts

gsh15 clueweb12

64 128 256 64 128 256

2048

4096

4096

Hosts

T
im

e
 (

s
e

c
)

SBBC MRBC

Both SBBC and MRBC scale as number of hosts increase
Communication time of SBBC does not scale as well
compared to MRBC

39

Conclusion

Presented round-efficient distributed APSP and BC algorithm
(MRBC) that improves communication by pipelining message
sends

MRBC in D-Galois over Brandes BC: 14× reduction in
rounds, 2.8× speedup for high-diameter graphs

Source Code:
https://github.com/IntelligentSoftwareSystems/Galois/

Artifact:
https://zenodo.org/record/2399798

https://github.com/IntelligentSoftwareSystems/Galois/
https://zenodo.org/record/2399798

40

Backup Slides

41

Execution Time of SBBC/MRBC at 256 Hosts, Breakdown

35.3
GB

29.8
GB

29.9
GB

15.2
GB

25.9
GB

12.8
GB

kron30 gsh15 clueweb12

SBBC
MRBC

SBBC
MRBC

SBBC
MRBC

0

1000

2000

3000

0

1000

2000

3000

4000

0

1000

2000

3000

Ti
m

e
(s

ec
)

Computation Non-overlapped Communication

42

More Topics Covered in the Paper

Termination detection routine for Min-Rounds APSP which
reduces the round complexity and termination detection in
D-Galois

Proofs of correctness for the algorithm and its optimizations

More detailed analysis of experiments

43

Effect of D-Galois Optimization

Note difference in CONGEST model and D-Galois model

Number of Rounds

MRBC reduces rounds over SBBC in both models (same
bounds apply)

Messages Sent

CONGEST: messages sent along edges in SBBC/MRBC are
same (only final value is sent)
D-Galois

SBBC: proxy distance from source updated/sent only once
(updated value is final value)
MRBC: proxy distance updated multiple times before
finalization, i.e. communicate every update, not just when
value is finalized

Without optimization, MRBC may send more messages; expected
to perform worse

44

Best Execution Times (1, 32 Hosts) on Small Graphs (I)
Ti

m
e

(s
ec

)

Low Diameter

High Diameter

MRBC is 3× faster than MFBC on average

SBBC also outperforms MFBC

45

Best Execution Times (1, 32 Hosts) on Small Graphs (II)
Ti

m
e

(s
ec

)

Low Diameter

High Diameter

SBBC best for graphs with low-diameter

MRBC better for high-diameter

46

Best Execution Times (1, 32 Hosts) on Small Graphs (III)
Ti

m
e

(s
ec

)

Low Diameter

High Diameter

ABBC fast on high diameter graphs

ABBC extremely slow otherwise

	Introduction
	MRBC
	Min-Rounds APSP
	Min-Rounds BC
	D-Galois Model and Delayed Synchronization

	Evaluation
	Conclusion

