A Round-Efficient Distributed Betweenness Centrality Algorithm

Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi You, Keshav Pingali, and Vijaya Ramachandran
Betweenness Centrality

- **Betweenness Centrality** (BC) used to determine relative importance of node in graph
- **Applications**
 - Key actor detection in terrorist nets
 - Disease studies
 - Power grid analysis
 - River flow confluence
- **Distributed implementations necessary**
 - Large graphs with billions of nodes/edges
 - BC takes hours to complete even if approximating

Figure Credit: Claudio Rocchini, Creative Commons Attribution 2.5 Generic
Betweenness Centrality Definition

- **BC**: fraction of shortest paths in which node appears

Example: consider the 2 shortest paths from A to E:
- B appears in 1: \(\frac{1}{2} \); C appears in 1: \(\frac{1}{2} \); D appears in 2: \(\frac{2}{2} = 1 \)
Betweenness Centrality Definition

- **BC**: fraction of shortest paths in which node appears

- Example: consider the 2 shortest paths from A to E:
 - B appears in 1: \(\frac{1}{2} \); C appears in 1: \(\frac{1}{2} \); D appears in 2: \(\frac{2}{2} = 1 \)
Betweenness Centrality Definition

- **BC**: fraction of shortest paths in which node appears

Example: consider the 2 shortest paths from A to E:
- B appears in 1: $\frac{1}{2}$; C appears in 1: $\frac{1}{2}$; D appears in 2: $\frac{2}{2} = 1$
Betweenness Centrality Definition

- BC: fraction of shortest paths in which node appears

Example: consider the 2 shortest paths from A to E:
- B appears in 1: $\frac{1}{2}$; C appears in 1: $\frac{1}{2}$; D appears in 2: $\frac{2}{2} = 1$

σ_{st}, number of shortest paths from s to t; $\sigma_{st}(v)$, number of shortest paths from s to t passing through v, $v \neq s \neq t$.

<table>
<thead>
<tr>
<th>Betweenness Centrality (BC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BC(v) = \sum_{s \neq t \neq v} \frac{\sigma_{st}(v)}{\sigma_{st}}$</td>
</tr>
</tbody>
</table>

From definition: about n^3 operations (n is number of vertices)
Brandes Betweenness Centrality

- Shortest-path DAG with shortest path counts rooted at node s: propagate dependencies $(\delta_s \cdot)$ along DAG predecessors

Brandes BC [1]: sum dependencies from all DAGs: $O(nm)$ operations (m is number of edges)

All-pairs shortest paths (APSP) or k-source shortest paths (k-SSP, shortest paths for subset of k nodes) to find DAGs

Brandes Betweenness Centrality

- Shortest-path DAG with shortest path counts rooted at node s: propagate dependencies ($\delta_s \cdot$) along DAG predecessors

BC from Dependencies of a Node

$$BC(v) = \sum_{s \neq v} \delta_s \cdot (v)$$

where

$$\delta_s \cdot (v) = \sum_{w: v \in P_s(w)} \frac{\sigma_{sv}}{\sigma_{sw}} \cdot (1 + \delta_s \cdot (w))$$

$P_s(w)$ are predecessors of w in DAG

- Brandes BC [1]: sum dependencies from all DAGs: $O(nm)$ operations (m is number of edges)
- All-pairs shortest paths (APSP) or k-source shortest paths (k-SSP, shortest paths for subset of k nodes) to find DAGs

Related APSP and BC Work

- **APSP**
 - $O(n)$ round undirected, unweighted APSP algorithms [2,3,4]
 - Lenzen-Peleg: prior best unweighted APSP

- **BC**
 - Hua et al.: distributed BC for undirected, unweighted graphs [7]

Motivation for Our Work

- Practical implementations of theoretical, distributed $O(n)$-round APSP/BC algorithms do not exist.
- Existing distributed BC mainly use SSSP/k-SSP with Brandes BC.
 - High amount of bulk-synchronous parallel (BSP) rounds with expensive communication barriers.
Tradeoff exploration: decreasing number of rounds at cost of increasing computation per round
Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality (MRBC) for directed and undirected unweighted graphs

- **CONGEST**: (known) n nodes, m edges, diameter D: APSP in $\min(n + O(D), 2n)$ rounds and $mn + O(m)$ messages

In systems that detect termination: k-SSP in at most $k + H$ rounds and $m \cdot k$ messages, H is largest finite shortest path distance for the k sources. BC: at most twice the rounds/messages as APSP/k-SSP.
Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality (MRBC) for directed and undirected unweighted graphs

- **CONGEST**: (known) n nodes, m edges, diameter D: APSP in $\min(n + O(D), 2n)$ rounds and $mn + O(m)$ messages

- In systems that detect termination: k-SSP in at most $k + H$ rounds and $m \cdot k$ messages, H is largest finite shortest path distance for the k sources
Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality (MRBC) for directed and undirected unweighted graphs

- **CONGEST:** (known) n nodes, m edges, diameter D: APSP in $\min(n + O(D), 2n)$ rounds and $mn + O(m)$ messages
- In systems that detect termination: k-SSP in at most $k + H$ rounds and $m \cdot k$ messages, H is largest finite shortest path distance for the k sources
- **BC:** at most twice the rounds/messages as APSP/k-SSP
Our Contributions: Practice

- MRBC implementation in D-Galois[8] with communication optimization exploiting MRBC properties
- MRBC evaluation
 - 3× faster than prior state-of-the-art MFBC
 - 2.8× speedup over Brandes BC on high diameter graphs

1. Introduction

2. MRBC
 - Min-Rounds APSP
 - Min-Rounds BC
 - D-Galois Model and Delayed Synchronization

3. Evaluation

4. Conclusion
CONGEST Model for Distributed Algorithms

- Machines are nodes, edges are communication channels
- Send message (constant number of words) per round to do updates
k-SSP Example: Initial State

- Left: Initial State of k-SSP where $k = 2$ sources A and B
- Vertices store current distance from a source to self in lexicographically sorted vector
- Every round, vertex chooses 1 (distance, source) pair to send along outgoing edges
Problem: sent distance may not be final distance associated with source
Problem: sent distance may not be final distance associated with source

Min-Rounds APSP New Insight: Message Send Rule
Send unsent distance \(d \) with position \(p \) on sorted vector with corresponding source in round \(r \) if \(p + d = r \)

- Like Dijkstra: sends only final distance
- Resulting algorithm pipelines messages: orchestrates updates across edges and reduces amount of messages sent
k-SSP Example: Round 1

Message Send Rule

Send unsent distance d with position p on sorted vector with corresponding source in round r if $p + d = r$

- Example: $(0, A)$ chosen because $0 + 1$ (1 is position on vector) equals round 1
k-SSP Example: Round 2

(distance, sourceID)
k-SSP Example: Round 3

(distance, sourceID)

(distance, sourceID)
A

B

D

C

E

F

G

(0, A)

(1, A)

(1, B)

(2, A)

(2, B)

(2, A)

(2, B)

(distance, sourceID)
APSP for Brandes BC

Min-Rounds APSP as subroutine for Brandes BC backward accumulation

Three Additions to APSP

- Send shortest path count with distance/source ID in APSP
- Timestamp round number in which message is sent
- Track predecessors of shortest path DAG for each source
Min-Rounds BC: Reversing Global Delays

Insight: leverage saved timestamps, send final values

Timestamp Pipelining By Reversing Global Delay

Send source’s dependency value to predecessors in source’s DAG in reverse round order: total rounds + 1 - timestamp
Backward Accumulation: Round 1

Brandes formulation to propagate finalized dependencies

(distance, sourceID, #shortpaths, dependency),sendround
Backward Accumulation: Round 2

(distance, sourceID, #shortpaths, dependency), sendround
Backward Accumulation: Round 3

(distance, sourceID, #shortpaths, dependency), sendround
Backward Accumulation: Round 4

(distance, sourceID, #shortpaths, dependency), sendround
Final Result

Add source dependencies to get BC contribution

To get BC, use APSP rather than \(k \)-SSP
D-Galois and the Execution Model

- **D-Galois**: distributed graph analytics system using shared-memory Galois and Gluon communication substrate

![Graph Diagram]

- Distribute edges from graph; cached-copies (proxies) of endpoints created
- Execution in bulk-synchronous parallel (BSP) rounds: computation then communication to sync proxies
Example Execution in D-Galois: Round 1 Compute

Computation: CONGEST “message sends” along edges

(distance, sourceID, #shortpaths), sentround
Synchronization of proxies D and E after computation

(distance, sourceID, #shortpaths), sentround
Redundant Synchronization (I)

Beginning of Round 3: Synchronize all data on proxy G

(distance, sourceID, #shortpaths), sentround
Redundant Synchronization (II)

After compute, stale value on host 2: needs synchronization again!

(distance, sourceID, #shortpaths), sentround
Optimization: Delayed Synchronization in D-Galois

Delayed Synchronization

Synchronize updated data associated with a source on a proxy only if that data meets the message send rule's conditions

- Intuition: data not read until round it is sent
- Availability of proxies allows delaying synchronization
Delayed Synchronization Example Continued (I)

Round 3 compute

Host 1

A
(0, A, 1),1

B
(0, B, 1),1

C
(1, A, 1),2
(2, B, 1)

D
(1, A, 1),2
(1, B, 1),3
(2, B, 1)

E
(1, B, 1),2

F
(2, A, 1),3
(2, B, 1)

G
(2, A, 1),3
(2, B, 2)

Host 2

G
(3, A, 1)

H
(2, A, 1),3
(3, A, 1)

(distance, sourceID, #shortpaths), sentround
Delayed Synchronization Example Continued (II)

Beginning of Round 4: synchronize source B data on proxy G (distance 2 + position 2 = round 4)

Delayed sync reduces network congestion and communication volume
Outline

1. Introduction

2. MRBC
 - Min-Rounds APSP
 - Min-Rounds BC
 - D-Galois Model and Delayed Synchronization

3. Evaluation

4. Conclusion
Experimental Setup: Evaluated Algorithms

1. Asynchronous Brandes BC (ABBC)
2. Maximal Frontier BC (MFBC), sparse-matrix-based
3. Synchronous Brandes BC (SBBC), Brandes in D-Galois
4. Min-Rounds BC (MRBC)

<table>
<thead>
<tr>
<th>System</th>
<th>(A)synchronous?</th>
<th>Distributed?</th>
<th>Batching?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBC</td>
<td>Galois</td>
<td>Async</td>
<td>N</td>
</tr>
<tr>
<td>MFBC</td>
<td>CTF</td>
<td>Sync</td>
<td>Y</td>
</tr>
<tr>
<td>SBBC</td>
<td>D-Galois</td>
<td>Sync</td>
<td>Y</td>
</tr>
<tr>
<td>MRBC</td>
<td>D-Galois</td>
<td>Sync</td>
<td>Y</td>
</tr>
</tbody>
</table>

We focus on SBBC and MRBC

- ABBC excellent for high diameter graphs if fits in memory
- MFBC performs moderately well, slows as graphs grow
Experimental Setup: Platform

- Platform: Stampede2’s Skylake cluster
 - Intel Xeon Platinum 8160, 48 cores on 2 sockets per machine
 - 2.1GHz clock rate, 192GB DDR4 RAM
- Graphs run on up to 256 machines
- **Low diameter** graphs ≤ 25, **high diameter** greater than 25
 - Web crawls (such as clueweb12) also high-diameter

<table>
<thead>
<tr>
<th></th>
<th>Low Diameter</th>
<th>High Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>livejournal rmat24</td>
<td>kron30</td>
</tr>
<tr>
<td></td>
<td>friendster</td>
<td>indochina04 road-europe</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>4.8M 17M 66M 1,073M</td>
<td>7.4M 174M 988M 978M</td>
</tr>
<tr>
<td></td>
<td>69M 268M 3,612M 17,091M</td>
<td>194M 348M 33,877M 42,574M</td>
</tr>
<tr>
<td></td>
<td>17 9 25 9</td>
<td>45 22541 103 501</td>
</tr>
</tbody>
</table>
Execution Times, Low Diameter Graphs

SBBC: $O(k \cdot H)$ BSP rounds
MRBC: $O(k + H)$ BSP rounds

$H =$ largest shortest path distance for k sources

- MRBC round reduction (which leads to communication improvements) does not outweigh compute overhead
Execution Times, High Diameter Graphs

SBBC: $O(k \cdot H)$ BSP rounds
MRBC: $O(k + H)$ BSP rounds

$H = \text{largest shortest path distance for } k \text{ sources}$

* MRBC outperforms SBBC (**2.8× faster**): round reduction and communication improvement more significant
Execution Time of SBBC/MRBC from 64 to 256 Hosts

Both SBBC and MRBC scale as number of hosts increase.
Communication time of SBBC does not scale as well compared to MRBC.
Conclusion

- Presented round-efficient distributed APSP and BC algorithm (MRBC) that improves communication by pipelining message sends
- MRBC in D-Galois over Brandes BC: $14 \times$ reduction in rounds, $2.8 \times$ speedup for high-diameter graphs

Source Code:
https://github.com/IntelligentSoftwareSystems/Galois/

Artifact:
https://zenodo.org/record/2399798
Backup Slides
Execution Time of SBBC/MRBC at 256 Hosts, Breakdown

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Computation</th>
<th>Non-overlapped Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>kron30</td>
<td>35.3 GB</td>
<td>29.8 GB</td>
</tr>
<tr>
<td>gsh15</td>
<td>29.9 GB</td>
<td>15.2 GB</td>
</tr>
<tr>
<td>clueweb12</td>
<td>25.9 GB</td>
<td>12.8 GB</td>
</tr>
</tbody>
</table>

Bar graphs showing the time (sec) and GB for computation and non-overlapped communication for kron30, gsh15, and clueweb12 datasets.
More Topics Covered in the Paper

- Termination detection routine for Min-Rounds APSP which reduces the round complexity and termination detection in D-Galois
- Proofs of correctness for the algorithm and its optimizations
- More detailed analysis of experiments
Effect of D-Galois Optimization

Note difference in CONGEST model and D-Galois model

- **Number of Rounds**
 - MRBC reduces rounds over SBBC in both models (same bounds apply)

- **Messages Sent**
 - CONGEST: messages sent along edges in SBBC/MRBC are same (only final value is sent)
 - D-Galois
 - SBBC: proxy distance from source updated/sent only once (updated value is final value)
 - MRBC: proxy distance updated multiple times before finalization, i.e. communicate every update, not just when value is finalized

Without optimization, MRBC may send more messages; expected to perform worse
Best Execution Times (1, 32 Hosts) on Small Graphs (I)

- MRBC is $3 \times$ faster than MFBC on average
- SBBC also outperforms MFBC
Best Execution Times (1, 32 Hosts) on Small Graphs (II)

- SBBC best for graphs with low-diameter
- MRBC better for high-diameter
Best Execution Times (1, 32 Hosts) on Small Graphs (III)

- ABBC fast on high diameter graphs
- ABBC extremely slow otherwise