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ABSTRACT
Intel Optane DC Persistent Memory (Optane PMM) is a new kind
of byte-addressable memory with higher density and lower cost
than DRAM. This enables the design of affordable systems that
support up to 6TB of randomly accessible memory. In this pa-
per, we present key runtime and algorithmic principles to consider
when performing graph analytics on extreme-scale graphs on Op-
tane PMM and highlight principles that can apply to graph analytics
on all large-memory platforms.

To demonstrate the importance of these principles, we evaluate
four existing shared-memory graph frameworks and one out-of-
core graph framework on large real-world graphs using a machine
with 6TB of Optane PMM. Our results show that frameworks using
the runtime and algorithmic principles advocated in this paper (i)
perform significantly better than the others and (ii) are competitive
with graph analytics frameworks running on production clusters.
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1. INTRODUCTION
Graph analytics systems must process graphs with billions of

nodes and trillions of edges. Since the main memory of most single
machines is limited to a few hundred GBs, shared-memory graph
analytics systems like Galois [44], Ligra [52], and GraphIt [64]
cannot perform in-memory processing of these large graphs. Two
approaches have been used to circumvent this problem: (i) out-of-
core processing and (ii) distributed-memory processing.

In out-of-core systems, the graph is stored in secondary storage
(SSD/disk), and portions of the graph are read into DRAM under
software control for in-memory processing. State-of-the-art sys-
tems in this space include GridGraph [66], X-Stream [49], Mo-
saic [38], and BigSparse [31]. Secondary storage devices do not
support random accesses efficiently: data must be fetched and writ-
ten in blocks. As a consequence, algorithms that perform well on
shared-memory machines often perform poorly in an out-of-core
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setting, and it is necessary to rethink algorithms and implementa-
tions when transitioning from in-memory graph processing to out-
of-core processing. In addition, the graph may need to be prepro-
cessed to organize the data into an out-of-core friendly layout.

Large graphs can also be processed using distributed-memory
clusters. The graph is partitioned among the machines in a clus-
ter using one of many partitioning policies in the literature [24].
Communication is required during the computation to synchronize
node updates. State-of-the-art systems in this space include D-
Galois [20] and Gemini [65]. Distributed-memory graph analytics
systems can scale out by adding new machines to provide addi-
tional memory and compute power. The overhead of communica-
tion can be reduced by choosing good partitioning policies, avoid-
ing small messages, and optimizing metadata, but communication
remains the bottleneck in these systems [20]. Obtaining access to
large clusters may also be too expensive for many users.

Intel R© OptaneTM DC Persistent Memory (Optane PMM) is new
byte-addressable memory technology with the same form factor
as DDR4 DRAM modules but with higher memory density and
lower cost. It has longer access times compared to DRAM, but it
is much faster than SSD. It allows a single machine to have up to
6TB of storage at relatively low cost, and in principle, it can run
memory-hungry applications without requiring the substantial re-
working of algorithms and implementations needed by out-of-core
or distributed-memory processing.

We explore the use and viability of Optane PMM for analytics
of very large graphs such as web-crawls up to 1TB in size. We
design and present studies conducted to determine how to run graph
analytics applications on Optane PMM and large-memory systems
in general. Our studies make the following points:

1. Non-uniform memory access (NUMA)-aware memory allo-
cation of graph data structures that maximizes near-memory
(DRAM treated as cache) usage is important on Optane PMM
as cache misses on the platform are significantly slower than
cache misses on DRAM. (Section 4)

2. Avoiding page management overhead while using Optane
PMM is key to performance as kernel overhead on Optane
PMM is higher due to higher access latency. (Section 4)

3. Algorithms must avoid high amounts of memory accesses on
large memory systems: graph frameworks should give users
the flexibility to write non-vertex, asynchronous programs
with efficient parallel data structures. (Section 5)

We evaluate four shared-memory graph analytics frameworks –
Galois [44], GAP [6], GraphIt [64], and GBBS (Ligra) [22] – on
Optane PMM to show the importance of these practices for graph
analytics on large-memory systems. We compare the performance
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Figure 1: Memory hierarchy of our 2 socket machine with 384GB
of DRAM and 6TB of Intel Optane PMM.

of the best of these frameworks, Galois (which uses our proposed
practices), with the state-of-the-art distributed graph analytics sys-
tem, D-Galois, and show that Galois running on Optane PMM
is competitive with D-Galois on 256 machines for many bench-
marks and inputs: as the Optane PMM system supports more ef-
ficient shared-memory algorithms which are difficult to implement
on distributed-memory machines, applications using the more ef-
ficient algorithms can outperform distributed-memory execution.
We also evaluate GridGraph [66], an out-of-core graph analytics
system, using Optane PMM as external storage in app-direct mode
and show that using Optane PMM as main memory in memory
mode (modes are explained in Section 2) is orders of magnitude
faster than app-direct as it allows for more sophisticated algorithms
from shared-memory graph analytics systems that out-of-core sys-
tems currently do not support (in particular, non-vertex programs
and asynchronous data-driven algorithms detailed in Section 5).

The paper is organized as follows. Section 2 introduces Op-
tane PMM. Section 3 describes the experimental setup. Section 4
describes how to efficiently use the memory hierarchy on large-
memory systems and Optane PMM for graph analytics. Section 5
discusses graph algorithm design for large-memory systems. Sec-
tion 6 presents our evaluation. Section 7 surveys related work.

2. Optane PMM
Optane PMM delivers a combination of affordable large capac-

ity and persistence (non-volatility). As shown in Figure 1, Optane
PMM adds a new level to the memory hierarchy. It comes in the
same form factor as a DDR4 memory module and has the same
electrical and physical interfaces. However, it uses a different pro-
tocol than DDR4 which means that the CPU must have Optane
PMM support in its memory controller. Similar to the DRAM dis-
tribution in non-uniform memory systems in which memory is di-
vided into sockets, the Optane PMM modules are distributed among
sockets. Figure 1 shows an example of a two socket machine with
6TB of Optane PMM split between sockets. Optane PMM can
be configured as volatile main memory (memory mode), persistent
memory (app-direct mode), or a combination of both (Figure 2).

Memory Mode: In memory mode, Optane PMM is treated as
as main memory, and DRAM acts as a direct-mapped (physically
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Optane DC Persistent Memory

Application

Volatile Memory Pool
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Figure 2: Modes in Optane PMM.

Table 1: Bandwidth (GB/s) of Intel Optane PMM (Rand: Random,
Seq: Sequential).

Mode Read Write
Local Remote Local Remote

Memory Rand 90.0 34.0 50.0 29.5
Seq 106.0 100.0 54.0 29.5

App-direct Rand 8.2 5.5 3.6 2.3
Seq 31.0 21.0 10.5 7.5

indexed and physically tagged) cache called near-memory. The
granularity of caching from Optane PMM to DRAM is 4KB. This
enables the system to deliver DRAM-like performance at substan-
tially lower cost and power with no modifications to the applica-
tion. Although the memory media is persistent, the software sees it
as volatile memory. This enables systems to provide up to 6TB of
randomly accessible storage, which is expensive to do with DRAM.

Traditional code optimization techniques can be used to tune ap-
plications to run well in this configuration. In addition, software
must consider certain asymmetries in machines with Optane PMM.
Optane PMM modules on a socket can use only the DRAM present
in its local NUMA node (i.e., socket) as near-memory. Therefore,
in addition to NUMA allocation considerations, software using Op-
tane PMM has to account for near-memory hit rate as the cost of a
local near-memory miss is higher than the remote near-memory hit
(discussed in Section 4). Therefore, it should allocate memory so
that the system can utilize more DRAM as near-memory even if it
means more remote NUMA accesses.

App-direct Mode: In app-direct mode, Optane PMM modules
are treated as byte-addressable persistent memory. One compelling
case for app-direct mode is in large memory databases where in-
dices can be stored in persistent memory to avoid rebuilding them
on reboot, achieving a significant reduction in restart time. Optane
PMM modules can be managed using an API or a command line in-
terface provided by the ipmctl [18] OS utility in Linux. ipmctl
can be used to configure the machine to use x% of Optane PMM
modules capacity in the memory mode and the rest in the app-direct
mode 1; for x > 0, all DRAM on the machine is used as the cache
(near-memory). When all the Optane PMM modules are in app-
direct mode, DRAM is the main volatile memory.

Specifications for the Optane PMM machine used in our study
are in Section 3. Tables 1 and 2 show the bandwidth and latency of
PMM observed on our machine. Although Optane PMM is slower
than DDR4, its large capacity enables us to analyze much larger
datasets on a single machine than previously possible. In this pa-
per, we focus on memory mode; we use app-direct mode only for
running the out-of-core graph analytics system, GridGraph [66].

1ipmctl create -goal MemoryMode=x
PersistentMemoryType=AppDirect



Table 2: Latency (ns) of Intel Optane PMM.

Mode Local Remote
Memory 95.0 150.0

App-direct 164.0 232.0

Table 3: Inputs and their key properties.

kron30 clueweb12 uk14 iso m100 rmat32 wdc12
|V | 1,073M 978M 788M 76M 4295M 3,563M
|E| 10,791M 42,574M 47,615M 68,211M 68,719M 128,736M
|E|/|V | 16 44 60 896 16 36
max Dout 3.2M 7,447 16,365 16,107 10.4M 55,931
max Din 3.2M 75M 8.6M 31,687 10.4M 95M
Est. diameter 6 498 2498 83 7 5274
Size (GB) 136 325 361 509 544 986

3. PLATFORMS AND GRAPH ANALYTICS
SYSTEMS

Optane PMM experiments were conducted on a 2 socket ma-
chine with Intel’s second generation Xeon scalable processor (“Cas-
cade Lake”) with 48 cores (96 threads with hyperthreading) with a
clock rate of 2.2 Ghz. The machine has 6TB of Optane PMM,
384GB of DDR4 RAM, and 32KB L1, 1MB L2, and 33MB L3
data caches (Figure 1). The system has a 4-way associative data
TLB with 64 entries for 2KB pages (small pages) and 32 entries
for 2MB pages (huge pages). Code is compiled with g++ 7.3. We
used the same machine for DRAM experiments by configuring it to
run entirely in app-direct mode, leaving DRAM as the main volatile
memory (equivalent to removing the Optane PMM modules). We
also use the machine in app-direct mode to run GridGraph, an out-
of-core graph analytics system: Optane PMM modules are used as
the external storage. Transparent Huge Pages (THP) [37], which
tries to allocate huge pages for an application without explicitly
reserving memory for huge pages, are enabled (default in Linux).
When we evaluated explicit Huge Pages allocation, we reserved
2TB and 360GB for Optane PMM and DRAM experiments respec-
tively. To collect hardware counters and analyze performance, we
used Intel’s Vtune Amplifier [17] and Platform Profiler [16].

To show that our study of algorithms for massive graphs (Sec-
tion 5) is independent of machine architecture, we also conducted
experiments on a large 4 socket DRAM machine we call Entropy.
Entropy uses Intel Xeon Platinum 8176 (“Skylake”) processors with
a total of 112 cores with a clock rate of 2.2 Ghz, 1.5TB of DDR4
DRAM, and 32KB L1, 1MB L2, and 38MB L3 data caches. Code
is compiled with g++ 5.4. For our experiments on Entropy, we use
56 threads, restricting our experiments to 2 sockets.

Distributed-memory experiments were conducted on the Stam-
pede [53] cluster at the Texas Advanced Computing Center using
up to 256 Intel Xeon Platinum 8160 (“Skylake”) 2 socket machines
with 48 cores with a clock rate of 2.1 Ghz, 192GB DDR4 RAM,
and 32KB L1, 1MB L2, and 33MB L3 data caches. The machines
are connected with a 100Gb/s Intel Omni-Path interconnect. Code
is compiled with g++ 7.1 and MPI MVAPICH2-X 2.3.

Table 3 specifies the input graphs: clueweb12 [48], uk14 [8, 7],
and wdc12 [42] are web-crawls (wdc12 is the largest publicly avail-
able one), and iso m100 [4] is a protein-similarity network (which
is the largest dataset in the IMG isolate genomes publicly avail-
able as part of the HipMCL software [4]). kron30 and rmat32
are randomized scale-free graphs generated using kron [34] and
rmat [10] generators (using weights of 0.57, 0.19, 0.19, and 0.05,
as suggested by graph500 [1]). Table 3 also lists graph sizes on
disk in Compressed Sparse Row (CSR) binary format. kron30 and
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Figure 3: Illustration of 3 different NUMA allocation policies on
a 4-socket system: each policy distributes blocks (size B, which is
the size of a page) of allocated memory among sockets differently.

clueweb12 fit into DRAM, so we use them to illustrate differences
in workloads that fit into DRAM and those that do not. The other
graphs – uk14, iso m100, rmat32, and wdc12 – do not fit in DRAM
on our Optane PMM machine. We observe that uk14 and wdc12
have non-trivial diameters, whereas rmat32 has a very small diam-
eter. We believe that rmat32 does not represent real-world datasets,
so we exclude it in all our experiments except to show the impact
of diameter in our study of algorithms (Section 5). iso m100 has
edge weights; for the other graphs, we generate random weights.

Our evaluation uses 7 benchmarks: single-source betweenness
centrality (bc) [29], breadth-first search (bfs) [15], connected com-
ponents (cc) [50, 51], k-core decomposition (kcore) [19], pagerank
(pr) [45], single-source shortest path (sssp) [43], and triangle count-
ing (tc) [28]. Only sssp uses edge weights. The source node for bc,
bfs, and sssp is the maximum out-degree node. The tolerance for
pr is 10−6. The k in kcore is 100. All benchmarks run until con-
vergence except pr, which is run for up to 100 rounds. We present
the mean of 3 runs for the main experiments.

The shared-memory graph analytics frameworks we use are Ga-
lois [44], GAP [6], GraphIt [64], and GBBS (Ligra) [22] (all de-
scribed in more detail in Section 6). D-Galois [20] is a distributed-
memory framework. GridGraph [66] is an out-of-core framework
that streams graph topology and data into memory from external
storage (in this case, Optane PMM in app-direct mode).

4. MEMORY HIERARCHY ISSUES
This section shows that on Optane PMM machines, the over-

head of memory operations such as non-uniform memory accesses
(NUMA) across memory sockets, cache miss handling, and page
table maintenance are higher than DRAM machines. These over-
heads are reduced by intelligent memory allocation and by reducing
the time spent in the kernel for page-table maintenance. We address
three issues: NUMA-aware allocation (Section 4.1), NUMA-aware
migration (Section 4.2), and page size selection (Section 4.3).

4.1 NUMA-aware Allocation
NUMA-aware allocation increases bandwidth and reduces la-

tency of accesses to memory by allocating memory on the same
NUMA nodes as the cores likely to access it. Allocation falls into
three main categories: (a) NUMA local, which allocates memory on
a node specified at allocation time (if there is not enough memory
available on the preferred node, other nodes are used), (b) NUMA
interleaved, which interleaves pages across nodes in a round-robin
fashion, and (c) NUMA blocked, which blocks the pages and dis-
tributes the blocks among nodes (illustrated in Figure 3).

There are several ways for application programs to specify the al-
location policy. The policy can be set globally by using OS utilities
such as numactl [36] on Linux. To allow different policies to be
used in different allocations, applications can use the OS-provided
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DDR4 DRAM using a micro-benchmark.

NUMA allocation library (numa.h in Linux), which contains a
variety of numa alloc functions. OS-based approaches, how-
ever, can only use the NUMA local or interleaved policies. Another
way to get fine-grained NUMA-aware allocation is to manually al-
locate memory using anonymous mmap [35] and have threads
on different sockets inside the application touch the pages (called
first-touch) to allocate them on the desired NUMA nodes.
This method, unlike OS-provided methods, allows applications to
implement application-specific NUMA-aware allocation policies.

To understand the differences in local, interleaved, and blocked
NUMA allocation policies on our Optane PMM setup, we use a
micro-benchmark that allocates different amounts of memory m
using different NUMA allocation policies and writes to it using t
threads such that thread i sequentially writes to the ith contigu-
ous block of size m

t
. To explore the effects of NUMA on different

platforms, we run this microbenchmark with two setups: one using
only DDR4 DRAM (by setting Optane PMM into app-direct mode)
and one using Optane PMM. The following micro-benchmark re-
sults show that on the Optane PMM machine, applications must not
only maximize local NUMA accesses, but must also use a NUMA
policy that maximizes the near-memory used in order to reduce
DRAM conflict misses (recall that DRAM is direct-mapped cache
called near-memory for Optane PMM in this mode, and the lim-
ited cache size increases the probability of conflict misses due to
physical addresses mapping to the same cache line).
NUMA Local. Figure 4(a) shows the execution time of the mi-
crobenchmark on DDR4 DRAM and Optane PMM for the NUMA
local allocation policy using t = 96 and different amounts of al-
locations. Using NUMA local, all the memory of socket 0 is used
before memory from socket 1 is allocated. We observe that going
from 80GB to 160GB increases the execution time by 2× for both
DRAM and Optane PMM: this is expected since we increase the
work by 2×. Going from 160GB to 320GB also increases the work
by 2×. For DRAM, a 320GB allocation spills to the other socket
(each socket has only 192GB), increasing the effective bandwidth
by 2×, so the execution time does not change much. In Optane
PMM, however, the 320GB is allocated entirely on socket 0 as our
machine has 3TB per socket. Since there is no change in band-
width, one would expect the performance to degrade by 2×, but
it degrades by 5.6×. This is because the machine can only use
192GB of DRAM as near-memory; this cannot fit 320GB, so the
conflict miss rate of the DRAM accesses increase by roughly 1.8×.
This illustrates that (i) near-memory conflict misses are detrimen-

tal to the performance for Optane PMM and (ii) NUMA local is not
suitable for allocations larger than 192GB on our setup.
NUMA Interleaved and Blocked. The execution times of the mi-
crobenchmark on DDR4 DRAM and Optane PMM for the NUMA
interleaved and blocked allocation policies using an allocation of
320GB and different thread counts are shown in Figure 4(b). For
DRAM, both policies are similar for different t. When t ≤ 24 on
Optane PMM, NUMA blocked only allocates memory on socket 0
(because it uses first-touch), so performance degrades 39×
compared to 48 thread execution as 320GB does not fit in the near-
memory of a single socket. This illustrates that the cost of local
near-memory misses is much higher than the cost of remote near-
memory hits. In contrast, the NUMA interleaved policy for 24
threads uses both sockets and improves performance by 9× over
NUMA blocked even though 50% of accesses are remote when
t ≤ 24. When t = 48, both allocation policies are able to fit 320GB
in the near-memory of 2 sockets (384GB). However, NUMA inter-
leaved is ∼ 2× slower than NUMA blocked because interleaved
results in more remote accesses as compared to blocked.

4.2 NUMA-aware Migration
When an OS-level NUMA allocation policy is not specified, the

OS can dynamically migrate data among NUMA nodes to increase
local NUMA accesses. NUMA page migrations are helpful for
multiple applications sharing a single system as they try to move
pages closer to the cores assigned to each application. However,
for a single application, this policy may not always be useful, espe-
cially when application has specified its own allocation policy.

NUMA migration has overheads: (a) it requires book-keeping
to track pages accesses for selecting migrated pages, and (b) it
changes the virtual-to-physical address mapping, making the Page
Table Entries (PTEs) cached in the CPU’s Translation Lookaside
Buffers (TLBs) stale which causes TLB shootdown to invalidate
stale entries. TLB shootdown increases TLB misses and involves
slow operations such as inter-processor interrupts (IPIs).

Graph analytics applications tend to have irregular access pat-
terns: accesses are arbitrary, so there may be many shared accesses
across NUMA nodes. To examine the effects of page migration
on graph analytics applications, we run breadth-first search (bfs)
(similar trends observed for other benchmarks) with Galois [44] us-
ing NUMA interleaved allocation on both Optane PMM and DDR4
DRAM with NUMA migration on and off. We also examine the ef-
fects of page migration for different page sizes (which affects the
number of pages migrated): (a) 4KB small pages and (b) 2MB huge
pages. The results suggest that NUMA migration should be turned
off for graph analytics applications on Optane PMM.

Figure 5 shows the effect of NUMA migration where the num-
ber on each bar presents the % change in the execution time when
NUMA migration is turned off. A positive number means turn-
ing migration off improves performance. Performance improves in
most cases if migration is turned off. Figure 6 shows that the time
spent in user code is not affected by the migrations, which shows
that they add kernel time overhead without giving significant ben-
efits. Another way to measure the efficacy of the migrations is to
measure the % of local near-memory (DRAM) accesses in Optane
PMM: if migration is beneficial, then it should increase. However,
this does not change by more than 1%. Figure 6 shows that migra-
tions hurt performance more on Optane PMM compared to DRAM
as kernel time spent is higher. This is due to (a) higher bookkeep-
ing cost as accesses to kernel data structures are more expensive on
Optane PMM and (b) higher cost of TLB shootdown as it increases
the access latency to the near-memory (DRAM) being used as a
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Figure 6: Breakdown of execution time of bfs in Galois using different page sizes for kron30 (left) and clueweb12 (right).

direct-mapped cache since TLB translation is on the critical path2.
Larger graphs exacerbate this effect as they use more pages.

4KB small page size shows more performance improvement than
2MB huge pages when turning page migrations off. We observe
that the number of migrations is in the millions for small pages
and in the hundreds for huge pages. The finer granularity of small
pages makes them more prone to migrations, leading to more TLB
shootdowns and data TLB misses. Therefore, for small pages, the
number of data TLB misses reduces by ∼ 2× by turning off the
migrations for all the graphs. The number of small pages being
512× the number of huge pages also increases the bookkeeping
overhead in the OS. This is reflected in time spent in the OS kernel
seen in Figure 6: the time spent in the kernel is more for the smaller
page size than for the larger page size if migration is turned on.

4.3 Page Size Selection
When memory sizes and workload sizes grow, the time spent

handling TLB misses can become a performance bottleneck since
large working sets need many virtual-to-physical address transla-
tions that may not be cached in the TLB. This bottleneck can be
tackled (a) by increasing the TLB size or (b) by increasing the page
size. The TLB size is determined by the micro-architecture and
cannot easily be changed by a user. On the other hand, processors
allow users to customize page sizes as different page sizes may

2Since near-memory is physically indexed and physically tagged
direct-mapped cache, virtual addresses are translated to physical
addresses before cache (near-memory) can be accessed.

work best for different workloads. For example, x86 supports tra-
ditional 4KB small pages as well as 2MB and 1GB huge pages.

We studied the impact of page size on graph analytics using a
4KB small page size and a 2MB huge page size. We did not include
the 1GB page size as it requires special setup; moreover, we do not
expect to gain from 1GB pages as our machine supports only 4 TLB
entries for 1GB page size. We run bfs (similar behavior observed
for other benchmarks) using Galois [44] with no NUMA migration
and NUMA interleaved allocation for various large graphs on (a)
Optane PMM and (b) DDR4 DRAM. The results suggest that a
page size of 2MB is good for graph analytics on Optane PMM.

Figure 5 shows bfs runtimes with various page sizes, and we ob-
serve that using huge pages is always beneficial on large graphs
as huge pages reduce the number of pages by 512×, reducing the
number of TLB misses (3.2× for clueweb12, 11.2× for uk14 and
1.9× for wdc12) and CPU cycles spent on page walking on TLB
misses (7.3× for clueweb12, 12.5× for uk14 and 8.8× for wdc12).
We also observe that the benefits of huge pages are higher on Op-
tane PMM than on DRAM because TLB misses increase the near-
memory access latency. Huge pages increase the TLB reach (TLB
size × page size), thereby reducing the TLB misses.

4.4 Summary
For high-performance graph analytics on Optane PMM, we rec-

ommend (i) NUMA interleaved or blocked allocation rather than
NUMA local, particularly for large allocations (> 192GB), (ii)
turning off NUMA page migration, and (iii) using 2MB huge pages.



5. EFFICIENT ALGORITHMS FOR MAS-
SIVE GRAPHS

Generally, there are many algorithms that can solve a given graph
problem; for example, the single-source shortest-path (sssp) prob-
lem can be solved using Dijkstra’s algorithm [15], the Bellman-
Ford algorithm [15], chaotic relaxation [11], or delta-stepping [43].
These algorithms may have different asymptotic complexities and
different amounts of parallelism. For a graph G = (V,E), the
asymptotic complexity of Dijkstra’s algorithm is O(|E|∗log(|V |))
while Bellman-Ford is O(|E|∗|V |), but for most graphs, Dijkstra’s
algorithm has little parallelism compared to Bellman-Ford. In ad-
dition, a given algorithm can usually be implemented in different
ways that can affect parallel performance dramatically; implemen-
tations with fine-grain locking, for example, usually perform better
than those with coarse-grain locking.

This section presents a classification of graph analytics algo-
rithms that is useful for understanding parallel performance [47]. It
also presents experimental results that provide insights into which
classes of algorithms perform well on large input graphs.

5.1 Classification of Graph Analytics
Algorithms

Operators. In graph analytics algorithms, each vertex has one or
more labels that are initialized at the start of the computation and
updated repeatedly during computation until a quiescence condi-
tion is reached. Label updates are performed by applying an op-
erator to active vertices in the graph. In some systems, such as
Galois [44], an operator may read and update an arbitrary portion
of the graph surrounding the active vertex; this portion is called
its neighborhood. Most shared-memory systems such as Ligra [52,
22] and GraphIt [64] only support vertex programs: operator neigh-
borhoods are only the immediate neighbors of the active vertex.
Non-vertex programs, conversely, have no restriction on an opera-
tor’s neighborhood. A push-style operator updates the labels of the
neighbors of the active vertex, while a pull-style operator updates
the label of only the active vertex. Direction-optimizing implemen-
tations [5] can switch between push and pull style operators dy-
namically but require a reverse edge for every forward edge in the
graph, doubling the memory footprint of the graph.
Schedule. To find active vertices in the graph, algorithms take
one of two approaches. A topology-driven algorithm executes in
rounds. In each round, it applies the operator to all vertices; an
example is Bellman-Ford algorithm for sssp. These algorithms are
simple to implement, but they may not be work-efficient if there are
few active vertices in a lot of rounds. To address this, data-driven
algorithms track active vertices explicitly and only apply the oper-
ator to these vertices. At the start of the algorithm, some vertices
are active; applying the operator to an active vertex may activate
other vertices, and operator application continues until there are no
active vertices in the graph. Dijkstra and delta-stepping sssp algo-
rithms are examples. Active vertices can be tracked using a bit-
vector of size V if there are V vertices in the graph: we call this a
dense worklist [52, 22, 64]. Other implementations keep an explicit
worklist of active vertices [44]: we call this a sparse worklist.

Some implementations of data-driven algorithms execute in bulk-
synchronous rounds: they keep a current and a next (dense or sparse)
worklist, and in each round, they process only vertices in the cur-
rent worklist and add activated vertices to the next worklist. In
contrast, asynchronous data-driven implementations have no no-
tion of rounds; they maintain a single sparse worklist, pushing
and popping active vertices from this worklist until it is empty.

5.2 Algorithms for Very Large Graphs
At present, very large graphs are analyzed using clusters or out-

of-core systems, but these systems are restricted to vertex programs
and round-based execution. This is not considered a serious limi-
tation for power-law graphs since they have a small diameter and
information does not have to propagate many hops in these graphs.
In fact, no graph analytics framework other than Galois provides
sparse worklists, so they do not support asynchronous data-driven
algorithms, and most of them are restricted to vertex programs.

Using Optane PMM, we use a single machine to perform analyt-
ics on very large graphs, and our results suggest that conventional
wisdom in this area needs to be revised. The key issue is highlighted
by Table 3: clueweb12, uk14, and wdc12, which are real-world
web-crawls, have a high diameter (shown in Table 3) compared
to kron30 and rmat32, the synthetic power-law graphs. We show
that for standard graph analytics problems, the best-performing al-
gorithms for these graphs may be (a) non-vertex programs and (b)
asynchronous data-driven algorithms, which require sparse work-
lists. These algorithms have better work-efficiency and make fewer
memory accesses, which is good for performance especially on Op-
tane PMM where memory accesses are more expensive.

Figure 7 shows the execution time of different data-driven al-
gorithms for bfs, cc, and sssp on Optane PMM using the rmat32,
clueweb12, and wdc12 graphs on the Galois system. For bfs, all
algorithms are bulk-synchronous. A vertex program with direction
optimization (that uses dense worklists) performs well for rmat32
since it has a low-diameter, but for the real-world web-crawls which
have higher diameter, it is outperformed by an implementation with
a push-style operator and sparse worklists since this algorithm has
a lower memory footprint and makes fewer memory accesses. For
cc, we evaluate bulk-synchronous label propagation [50] combined
with short-cutting (LabelProp-SC) [54], which uses a non-vertex
operator. It is a variant of the Shiloach-Vishkin (SV) algorithm [51]
where after a round of label propagation it jumps one level unlike
SV algorithm where it goes to the common ancestor. LabelProp-SC
exhibits better locality compared to SV algorithm and significantly
outperforms the bulk-synchronous algorithm that uses a simple la-
bel propagation vertex operator for the real-world web-crawls. For
sssp, the asynchronous delta-stepping algorithm, which maintains
a sparse worklist, significantly outperforms the bulk-synchronous
data-driven algorithm with dense worklists. These findings do not
apply only to Optane PMM: Figure 8 shows the same experiments
for bfs, sssp, and cc conducted on Entropy (DDR4 DRAM ma-
chine). The trends are similar to those on Optane PMM machine.
Summary. Large real-world web-crawls, which are the largest
graphs available today, have a high diameter unlike synthetically
generated rmat and kron graphs. Therefore, conclusions drawn
from experiments with rmat and kron graphs can be misleading.
On current distributed-memory and out-of-core platforms, one is
forced to use vertex programs, but on machines with Optane PMM,
it is advantageous to use algorithms with non-vertex operators and
sparse worklists of active vertices that allow for asynchronous exe-
cution. Frameworks with only vertex operators or no sparse work-
lists are at a disadvantage on this platform when processing large
real-world web-crawls, as we show next.

6. EVALUATION OF GRAPH
FRAMEWORKS

In this section, we evaluate several graph frameworks on Op-
tane PMM in the context of the performance guidelines presented
in Sections 4 and 5. In Section 6.1, four shared-memory graph ana-
lytics systems - Galois [44], GAP [6], GraphIt [64], and GBBS [22]
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Figure 7: Execution time of different data-driven algorithms in Galois on Optane PMM using 96 threads.
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Figure 8: Execution time of different data-driven algorithms in Galois on Entropy (1.5TB DDR4 DRAM) using 56 threads.

- are evaluated on the Optane PMM machine using several graph
analytics applications. Section 6.2 describes the experiments with
medium sized graphs stored either in Optane PMM or DRAM.
These experiments provide end-to-end estimates of the overhead
of executing applications with data in Optane PMM rather than
in DRAM. Section 6.3 describes experiments with large graphs
that fit only in Optane PMM, and performance is compared with
distributed-memory performance on a production cluster with up
to 128 machines. Section 6.4 presents our experiments with Grid-
Graph [66], an out-of-core graph analytics framework, using Op-
tane PMM’s app-direct mode to use it as external memory.

6.1 Galois, GAP and GraphIt on Optane PMM
Setup. To choose a shared-memory graph analytics system for our
experiments, we evaluate (1) Galois [44], which is a library and
runtime for graph processing, (2) GAP [6], which is a benchmark
suite of expert-written graph applications, (3) GraphIt [64], which
is a domain-specific language (DSL) and optimizing compiler for
graph computations, and (4) GBBS [22], which is a benchmark
suite of graph algorithms written in the Ligra [52] framework.

The choice of these frameworks was made as they exemplify
different approaches to shared-memory graph analytics. GraphIt is
a DSL that only supports vertex programs, and it has a compiler
that uses auto-tuning to generate optimized code; the optimizations
are controlled by the programmer. Galois is a C++-based general-
purpose programming system based on a runtime that permits opti-
mizations to be specified in the program at compile-time or at run-
time, giving the application programmer a large design space of im-
plementations that can be explored. GBBS programs are expressed

in a graph processing library and runtime, Ligra. Therefore, Galois
and GBBS require more programming effort than GraphIt. GBBS
includes theoretically efficient algorithms written by experts, while
Galois includes algorithms written using expert-provided concur-
rent data structures and operator schedulers. GAP is a benchmark
suite of graph analytics applications written by expert program-
mers; it does not provide a runtime or data structures like Galois.

The kcore application is not implemented in GAP and GraphIt,
so we omit it in the comparisons reported in this section. We
omit the largest graph wdc12 for GAP and GraphIt because nei-
ther can handle graphs that have more than 231−1 nodes (they use
a signed 32-bit int for storing node IDs). GAP, GraphIt,
and GBBS do not use NUMA allocation policies within their ap-
plications, so we use the OS utility numactl to use NUMA inter-
leaved. For Galois, we use the best-performing algorithm with a
runtime option, and we did not try different worklists or chunk-
sizes. Galois allows programmers to choose NUMA interleaved or
blocked allocation for each application by modifying a template ar-
gument in the program; we choose interleaved for bfs, cc, and sssp
and blocked for bc, and pr. For GraphIt, we used the optimizations
recommended by the authors in the GraphIt artifact [64].
Results. Figures 9 shows the execution times on Optane PMM
(GraphIt does not have bc). Galois is generally much faster than
GraphIt, GAP, and GBBS: on average, Galois is 3.8×, 1.9×, and
1.6× faster than GraphIt, GAP, and GBBS, respectively. There are
many reasons for these performance differences.

Algorithms and implementation choices affect runtime (discussed
in Section 5.2). For all algorithms, GAP, GBBS and GraphIt use a
dense worklist to store the frontier while Galois uses a sparse work-
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Figure 9: Execution time of benchmarks in GraphIt, GAP, GBBS, and Galois on Optane PMM using 96 threads.
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list except for pr (large diameter graphs tend to have sparse fron-
tiers). All systems use the same algorithm for pr. For bfs, all sys-
tems except Galois use direction-optimization which accesses both
in-edges and out-edges (increasing memory accesses). For sssp,
GAP, GBBS, and Galois use delta-stepping [43]; GraphIt does not
support such algorithms. For cc, GAP and GBBS use the Shiloach-
Vishkin [51] algorithm, Galois uses label propagation with short-
cutting [54] algorithm, and GraphIt uses label propagation [50] be-
cause it supports only vertex programs. Furthermore, Galois uses
asynchronous execution for sssp and cc unlike the others.

Another key difference is how the three systems perform mem-
ory allocations. Galois is the only framework that explicitly uses
huge pages of size 2MB whereas the others use small pages of size
4KB and rely on the OS to use Transparent Huge Pages (THP). As
discussed in Section 4, huge pages can significantly reduce the cost
of memory accesses over small pages even when THP is enabled.
Galois is also the only one to provide NUMA blocked allocation,
and we chose that policy because it performed observably better
than the interleaved policy for some benchmarks such as bc and pr
(the performance difference was within 18%). In general, we ob-
serve that NUMA blocked performs better for topology-driven al-
gorithms, while NUMA interleaved performs better for data-driven
algorithms. In addition, GAP, GBBS, and GraphIt allocate memory
for both in- and out-edges of the graph while Galois only allocates
memory only for the direction(s) needed by the algorithm. Allocat-
ing both increases the memory footprint and leads to conflict misses
in near-memory when both in-edges and out-edges are accessed.

To conclude, our experiments show that in order to acheive per-
formance for large graphs, a framework must support asynchronous,
non-vertex programs as well as allow users explicit control over
memory allocation. As Galois supports these features out-of-the-
box, we use it for the rest of our experiments.

6.2 Medium size graphs: Using Optane PMM
vs. DDR4 DRAM

Setup. In this subsection, we determine the overhead of using Op-
tane PMM over DRAM by examining the runtimes for graphs that
are small enough to fit in DRAM (384 GB). We use with kron30
and clueweb12 (Table 3) which both fit in DRAM. We use algo-
rithms in Galois that perform best on 96 threads.
Results. Figure 10 shows strong scaling on DRAM and on Optane
PMM with DRAM as cache. kron30 requires ∼ 136GB, which is
a third of the near-memory available, so Optane PMM is almost
identical to DRAM as it can cache the graph in near-memory effec-
tively. On the other hand, clueweb12 requires ∼ 365GB, which is
close to the near-memory available, so there are significantly more
conflict-misses (≈ 26%) in near-memory. On 96 threads, Optane
PMM can take up to 65% more execution time than DRAM, but on
average, it takes only 7.3% more time than DRAM.

Another trend is that if the number of threads is less than 24,
Optane PMM can be slower than DRAM because of the way Galois
allocates memory. Interleaved and blocked allocation policies in
Galois interleave and block among threads, not sockets. If threads
used is less than 24, all threads run on one socket, and all memory
is allocated there, leading to under-utilization of the DRAM in the
entire system: this results in more conflict-misses in near-memory.

The strong scaling for all the applications is similar whether
DRAM or Optane is used as main memory. We also measured
the performance of all applications for larger graphs on 8 and 96
threads of Optane. The geo-mean speedup of all applications on 96
threads over 8 threads is 4.3×, 4.2×, 4.7×, and 3.5× for kron30,
clueweb12, uk14, and wdc12 respectively. Thus, the strong scaling
speedup does not vary by much as the size of the graph grows.

Table 4: Execution time (sec) of benchmarks in Galois on Optane
PMM (OB) machine using efficient algorithms (non-vertex, asyn-
chronous) and D-Galois on Stampede cluster (DM) using vertex
programs with minimum # of hosts that hold the graph. Speedup of
Optane PMM over Stampede. Best times highlighted in green.

Graph App Stampede
(DM)

Optane PMM
(OB)

Speedup
(DM/OB)

clueweb12

bc 51.63 12.68 4.07×
bfs 10.71 6.43 1.67×
cc 13.70 11.08 1.24×
kcore 186.03 51.05 3.64×
pr 155.00 385.64 0.40×
sssp 33.87 16.58 2.04×

uk14

bc 172.23 11.53 14.9×
bfs 28.38 7.22 3.93×
cc 14.56 21.30 0.68×
kcore 56.08 7.94 7.06×
pr 82.77 254.95 0.32×
sssp 52.49 39.99 1.31×

iso m100

bc 6.97 11.57 0.60×
bfs 7.94 3.69 2.15×
cc 16.32 23.69 0.69×
kcore 1.21 0.48 2.52×
pr 191.21 824.54 0.23×
sssp 61.90 15.66 3.95×

wdc12

bc 775.84 56.48 13.7×
bfs 71.50 35.25 2.03×
cc 69.21 76.00 0.91×
kcore 105.42 49.22 2.14×
pr 118.01 1706.35 0.07×
sssp 136.47 118.81 1.15×

6.3 Very large graphs: Using Optane PMM
vs. a Cluster

Setup. For very large graphs that do not fit in DRAM, the con-
ventional choices are to use a distributed or an out-of-core sys-
tem. In this subsection, we compare execution of Galois on Op-
tane PMM to execution of the state-of-the-art distributed graph an-
alytics system D-Galois [20] on the Stampede [53] cluster to de-
termine the competitiveness of Optane PMM compared to a dis-
tributed cluster. We chose D-Galois because it is faster than exist-
ing distributed graph systems (like Gemini [65], PowerGraph [26],
and GraphX [60]) and it uses the same computation runtime as Ga-
lois, which makes the comparison fairer. To partition [27] graphs
among machines, we follow the recommendations of a previous
study [24] and use Outgoing Edge Cut (OEC) for 5 and 20 hosts
and Cartesian Vertex Cut (CVC) [9, 20] for 256 hosts. D-Galois
supports bulk-synchronous vertex programs3 with dense worklists
as they simplify communication. Therefore, it cannot support some
of the more efficient non-vertex programs in Galois. We exclude
graph loading, partitioning, and construction time in the reported
numbers. For logistical reasons, it is difficult to ensure that both
platforms use the exact same resources (threads and memory). For
a fair comparison, we limit the resources used on both platforms.

3D-Galois also supports bulk-asynchronous execution [21] (execu-
tion on each host is still round-based), but we did not use it here.



Results. Table 4 compares the performance of Optane PMM (on
a single machine) running non-vertex, asynchronous Galois pro-
grams (referred to as OB) with the Stampede distributed cluster
running D-Galois vertex programs using the minimum number of
hosts required to hold the graph in memory (5 hosts for clueweb12,
and uk14, and 20 hosts for wdc12; 48 threads per host and re-
ferred to as DM). Optane PMM outperforms D-Galois in most
cases (best times highlighted), except for pr on clueweb12, uk14,
and wdc12 and cc on uk14, and wdc12. Optane PMM gives a
geomean speedup of 1.7× over D-Galois even though D-Galois
has more cores (240 cores for clueweb12 and uk14; 960 cores for
wdc12) and memory bandwidth. In pr, almost all nodes are up-
dated in every round (similar to the topology driven algorithms);
therefore, on the distributed cluster, it benefits from the better spa-
tial locality in D-Galois resulting from the partitioning of the graph
into smaller local graphs and more memory bandwidth.

Table 4 also shows the performance of many applications on Op-
tane for input graphs of different sizes (smallest to largest). Most
applications take more time for larger graphs. Although wdc12 is
∼ 3× larger (in terms of edges) than clueweb12, kcore and pr take
less time on wdc12 than clueweb12, but the other applications take
on average ∼ 7× more time on wdc12 than clueweb12. This pro-
vides an estimate for the weak scaling of these applications.
Further Analysis. The bars labeled O in Figure 11 show times on
the Optane PMM system with the following configurations:- OB:
Performance using the best algorithm in Galois for that problem
and all 96 threads (same as shown in Table 4); OA: Performance
using the best vertex programs in Galois for that problem and all
96 threads; OS: Same as OA but using only 80 threads. The bars
labeled D show times on the Stampede system with the follow-
ing configurations:- DB: Performance using D-Galois vertex pro-
grams on 256 machines (12,288 threads); DM: Performance using
D-Galois vertex programs using the minimum number of hosts re-
quired to hold graph in memory (same as shown in Table 4). DS:
Same as DM but using a total of 80 threads across all machines.
Results. Figure 11 shows the experimental results. For bars DS and
OS, the algorithm and resources are roughly the same, so in most
cases, OS is similar or better than DS. The notable exception to this
is pr (reason is explained above). On average, OS is 1.9× faster
than DS for all inputs and benchmarks. Bars OB and OA show
the advantages of using non-vertex, asynchronous programs on the
Optane PMM system. Bars DB and OB show that with the more
complex algorithms that can be implemented on the Optane PMM
system, performance on this system matches the performance of
vertex programs on a cluster with vastly more cores and memory
for bc, bfs, kcore, and sssp. The main takeaway is that Optane
PMM enables analytics on massive graphs using shared-memory
frameworks out-of-the-box while yielding performance compara-
ble or better than that of a cluster with the same resources as the
framework may support more efficient algorithms.

6.4 Out-of-core GridGraph in App-direct
Mode vs. Galois in Memory Mode

In addition to our main shared-memory experiments, we use an
out-of-core graph analytics system with app-direct mode on Optane
PMM to determine if an out-of-core system that uses Optane PMM
as external storage is competitive with a shared-memory framework
that uses it as main memory.
Setup. We used state-of-the-art out-of-core graph analytics frame-
work, GridGraph [66] (some out-of-core graph analytics frame-
works [63, 57] are faster than GridGraph but they optimize for a
subset of algorithms that GridGraph handles). We compare Grid-
Graph in Optane PMM’s app-direct (AD) with Galois in memory

Table 5: Execution time (sec) of benchmarks in Galois on Op-
tane PMM in Memory Mode (MM) and the out-of-core framework
GridGraph on Optane PMM in App-direct Mode (AD). Best times
highlighted in green. “—” indicates it did not finish in 2 hours.

Graph App GridGraph
(AD)

Galois
(MM)

Speedup
(AD/MM)

clueweb12 bfs 5722.75 6.43 890.0×
cc 5411.23 11.08 488.4×

uk14 bfs — 7.22 NA
cc 5700.48 21.30 267.6×

mode (MM). The Optane PMM machine was configured in AD
mode as described in Section 2. In AD, GridGraph manages the
available DRAM (memory budget given as 384GB) unlike in MM
where DRAM is managed by the OS as another cache level. The
input graphs (preprocessed by GridGraph) are stored on the Optane
PMM modules which are used by GridGraph during execution. We
used a 512 by 512 grid as the partitioning grid for GridGraph (the
GridGraph paper used larger grid partitions for larger graphs to bet-
ter fit blocks into cache). 4 GridGraph uses a signed 32-bit
int for storing the node IDs, making it impractical for large graphs
with > 231 − 1 nodes such as wdc12. We conduct a run of bfs and
cc: it does not have bc, kcore, or sssp, and we have observed pr
failing due to assertion errors in the code.
Results. Table 5 compares the performance of Optane PMM in
memory mode (MM) running shared-memory Galois and app-direct
mode (AD) running out-of-core GridGraph. We observe that Ga-
lois using MM is orders of magnitude faster than GridGraph (Grid-
Graph bfs on uk14 failed to finish in 2 hours). This can be at-
tributed to the more sophisticated algorithms (in particular, non-
vertex programs and asynchronous data-driven algorithms are sup-
ported in Galois using MM unlike out-of-core frameworks that only
support vertex-programs) and the additional IO overhead required
by out-of-core frameworks, especially for real-world web-crawls
with very high diameter such as clueweb12 (diameter ≈ 500). We
note that after a few rounds of computation on bfs for clueweb12,
very few nodes get updated: however, the blocks containing its
corresponding edges still must be loaded from the storage to be
processed. Note that other out-of-core systems [57, 63] that are op-
timized for a subset of graph algorithms are no more than an order
of magnitude faster than GridGraph; therefore, we expect Galois to
outperform those systems in Optane PMM as well.

In summary, although out-of-core graph analytics systems can
use Optane PMM via app-direct mode, the lack of expressibil-
ity and their IO requirement hurt runtime compared to a shared-
memory framework that does not have these limitations.

6.5 Summary and Discussion
Our experiments show that graph analytics on Optane PMM is

competitive with analytics on both DRAM and distributed clusters.
In addition, the monetary cost of Optane PMM technology is much
less than that of DRAM5. Distributed clusters also have signifi-
cantly more operating cost. Furthermore, unlike distributed execu-
tion which requires a system designed for distributed analytics that

4We have tried larger grids, but preprocessing fails as GridGraph
opens more file descriptors than the machine supports.
5Based on the current pricing, Optane PMM is ∼ 4× cheaper than
DRAM for the same memory capacity due to much higher density
and cheaper manufacturing cost.



wdc12
bc

wdc12
bfs

wdc12
cc

wdc12
kcore

wdc12
pr

wdc12
sssp

uk14
bc

uk14
bfs

uk14
cc

uk14
kcore

uk14
pr

uk14
sssp

clueweb12
bc

clueweb12
bfs

clueweb12
cc

clueweb12
kcore

clueweb12
pr

clueweb12
sssp

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

D
B

D
M

D
S

O
S

O
A

O
B

0

10

20

30

40

50

0

50

100

150

0

250

500

750

0

100

200

300

400

500

0

100

200

300

400

0

1000

2000

0

100

200

300

0

25

50

75

100

125

0

200

400

600

0

5

10

15

20

0

10

20

30

0

100

200

300

0

5

10

0

20

40

60

0

100

200

300

0

20

40

60

0

50

100

150

200

0

1000

2000

Algo Type

T
im

e 
(s

ec
)

Stampede Cluster Optane PMM
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typically restricts algorithmic choices for graph applications, Op-
tane PMM allows running shared memory graph analytics without
changes to existing programs. In other words, writing graph appli-
cations for Optane PMM is as easy as that for DRAM, whereas pro-
gramming for distributed (or out-of-core) execution is much more
complicated. Thus, Optane PMM is easy-to-use, affordable, and
provides excellent performance for massive graph analytics.

Our study uses only a selection of graph benchmarks that exist
in current graph analytics systems, but our findings generalize to
other graph analytics benchmarks, including those with more at-
tributes similar to edge weights in sssp. Additional attributes will
increase the memory footprint and require more memory accesses:
therefore, our principles of reducing memory accesses with effi-
cient data-driven algorithms, accounting for near-memory cache
hit rates, and intelligent NUMA allocation would matter even more
with the increased memory footprint.

While our study was specific to Optane PMM, the guidelines
below apply to other large-memory analytics systems as well.

• Studies using synthetic power-law graphs like kron and rmat
can be misleading because unlike these graphs, large real-
world web-crawls have large diameters. (Section 5)

• For good performance on large diameter graphs, the pro-
gramming model must allow application developers to write
work-efficient algorithms that need not be vertex programs,
and the system must provide data structures for sparse work-
lists to enable asynchronous data-driven algorithms to be im-
plemented easily. (Section 5)

• On large-memory NUMA systems, the runtime must manage
memory allocation instead of delegating it to the OS. It must
exploit huge pages and NUMA blocked allocation. NUMA
migration is not useful. (Section 4)

Finally, our study identifies several avenues for future work. As
Optane PMM suffers if near-memory is not utilized well, tech-
niques can be developed to improve near-memory hit rate to in-
crease efficiency of graph analytics on Optane PMM. In addition,
this study focused on memory mode and showed graph analytics in
memory mode is faster than that in app-direct mode. Work remains
to be done to determine the best manner of using app-direct mode.

7. RELATED WORK
Shared-Memory Graph Processing. Shared-memory graph pro-
cessing frameworks such as Galois [44], Ligra [52, 22], and GraphIt
[64] provide users with abstractions to do graph computations that
leverage a machine’s underlying properties such as NUMA, mem-
ory locality, and multicores. Shared-memory frameworks are lim-
ited by the available main memory on the system in which it loads
the graph into memory for processing: if a graph cannot fit, then
out-of-core or distributed processing must be used. However, if the
graph fits in memory, the cost of shared memory systems is less
than out-of-core or distributed systems as they do not suffer disk
reading overhead or communication overhead, respectively.

Optane PMM increases the memory available to shared-memory
graph processing systems, and our evaluation shows that algorithms
run with Optane PMM are competitive or better than D-Galois [20],
a state-of-the-art distributed graph analytics system. This is con-
sistent with past work in which it was shown that shared-memory
graph processing on large graphs can be efficient [22], and our find-
ings extend to cases where a user has large amounts of main mem-
ory (it is not limited to Optane PMM).
Out-of-core Graph Processing. Out-of-core graph processing sys-
tems such as GraphChi [33], X-Stream [49], GridGraph [66], Mo-
saic [38], Lumos [57], CLIP [2], and BigSparse [31] compute by

loading appropriate portions of a graph into memory and writing
back out to disk in a disciplined manner to reduce disk overhead.
Therefore, these systems are not limited by the main memory like
shared-memory systems. The overhead of disk operations, how-
ever, greatly impacts performance compared to shared-memory sys-
tems.
Distributed Graph Processing. Distributed graph systems such as
PowerGraph [26], Gemini [65], D-Galois [20], and others [25, 39,
60] process large graphs by distributing the graph among many ma-
chines which increases both available memory and computational
power. However, communication among the machines is required,
and this can add significant runtime overhead. Additionally, getting
access to a distributed cluster can be expensive to an average user.
Persistent Memory. Prior work on non-volatile memory includes
persistent memory file systems [14, 61, 23, 12]; efficient, semanti-
cally consistent access to persistent memory [13, 56, 32, 41]; and
database systems in persistent memory [3, 62, 55].
Optane PMM Evaluation. Many studies have evaluated the po-
tential of Optane PMM for different application domains. Izraele-
vitz et al. [30] presented an analysis of the performance character-
istics of Optane PMM with evaluation on SPEC 2017 benchmarks,
various file systems, and databases. Optane PMM has also been
evaluated for HPC applications with high memory and I/O bottle-
necks [58, 59]. Malicevic et al. [40] use app-direct-like mode to
study graph analytics applications using emulated NVM system.
However, they only study vertex programs on very small graphs.
Peng et al. [46] evaluates the performance of graph analytics appli-
cations on Optane PMM in memory mode. However, they only use
artificial Kronecker [34] and RMAT [10] generated graphs, which,
as we have shown in this work, exhibit different structural proper-
ties compared to real-world graphs.

Our study evaluates graph applications on large real-world graphs
using efficient and sophisticated algorithms (in particular, non-ver-
tex programs and asynchronous data-driven algorithms) and is also
the first work, to our knowledge, to compare performance of graph
analytics applications on Optane PMM using Galois with the state-
of-the-art distributed graph analytics framework, D-Galois [20], on
a production level cluster (Stampede [53]) as well as to the out-of-
core framework, GridGraph [66], on Optane PMM.

8. CONCLUSIONS
This paper proposed guidelines for high-performance graph an-

alytics on Intel’s Optane PMM memory and highlighted the princi-
ples that apply to graph analytics for all large-memory settings. In
particular, our study shows the importance of NUMA-aware mem-
ory allocation at the application level and avoiding kernel over-
heads for Optane PMM because poor applications of both concepts
are more expensive on Optane PMM than on DRAM. In addition,
it shows the importance of non-vertex, asynchronous graph algo-
rithms for large memory systems as synchronous vertex programs
do not scale well as graphs grow. We believe that Optane PMM
is a viable alternative to clusters with similar computational power
for graph analytics because they support a wider range of efficient
algorithms while providing competitive end-to-end performance.
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