
Phoenix: A Substrate for Resilient
Distributed Graph Analytics

Roshan Dathathri∗
University of Texas at Austin, USA

roshan@cs.utexas.edu

Gurbinder Gill∗
University of Texas at Austin, USA

gill@cs.utexas.edu

Loc Hoang
University of Texas at Austin, USA

loc@cs.utexas.edu

Keshav Pingali
University of Texas at Austin, USA

pingali@cs.utexas.edu

Abstract
This paper presents Phoenix, a communication and synchro-
nization substrate that implements a novel protocol for recov-
ering from fail-stop faults when executing graph analytics
applications on distributed-memory machines. The standard
recovery technique in this space is checkpointing, which
rolls back the state of the entire computation to a state that
existed before the fault occurred. The insight behind Phoenix
is that this is not necessary since it is sufficient to continue
the computation from a state that will ultimately produce the
correct result. We show that for graph analytics applications,
the necessary state adjustment can be specified easily by the
programmer using a thin API supported by Phoenix.

Phoenix has no observable overhead during fault-free ex-
ecution, and it is resilient to any number of faults while
guaranteeing that the correct answer will be produced at the
end of the computation. This is in contrast to other systems
in this space which may either have overheads even during
fault-free execution or produce only approximate answers
when faults occur during execution.

We incorporated Phoenix into D-Galois, the state-of-the-
art distributed graph analytics system, and evaluated it on
two production clusters. Our evaluation shows that in the ab-
sence of faults, Phoenix is ∼ 24× faster than GraphX, which
provides fault tolerance using the Spark system. Phoenix also
outperforms the traditional checkpoint-restart technique im-
plemented in D-Galois: in fault-free execution, Phoenix has
no observable overhead, while the checkpointing technique
has 31% overhead. Furthermore, Phoenixmostly outperforms
∗Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304056

checkpointing when faults occur, particularly in the common
case when only a small number of hosts fail simultaneously.

CCS Concepts • Software and its engineering→ Soft-
ware fault tolerance; • Computing methodologies →
Distributed programming languages.

Keywords fault tolerance, distributed-memory graph ana-
lytics, big data, self-stabilizing algorithms

ACM Reference Format:
Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.
2019. Phoenix: A Substrate for Resilient Distributed Graph Analyt-
ics. In 2019 Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19), April 13–17, 2019, Providence, RI,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3297858.3304056

1 Introduction
Graph analytics systems are now being used to analyze prop-
erties of very large graphs such as social networks with tens
of billions of nodes and edges. Most of these systems use clus-
ters: the graph is partitioned between the hosts of the cluster,
and a programming model such as BSP [63] is used to orga-
nize the computation and communication [25, 37, 49, 65, 73].

Fault tolerance is an important concern for long-running
graph analytics applications on large clusters. Some state-
of-the-art high-performance graph analytics systems such
as D-Galois [18] and Gemini [73] do not address fault tol-
erance; since the mean time between failures in medium-
sized clusters is of the order of days [56], the approach
taken by these systems is to minimize overheads for fault-
free execution and restart the application if a fault occurs.
Older distributed graph analytics systems rely on check-
pointing [2, 25, 35, 37, 51, 57, 65], which adds overhead to
execution even if there are no failures. Furthermore, all hosts
have to be rolled back to the last saved checkpoint if even
one host fails.
More recent systems such as GraphX [68], Imitator [65],

Zorro [49], and CoRAL [64] have emphasized the need to
avoid taking checkpoints and/or to perform confined recovery
in which surviving hosts do not have to be rolled back when
a fault occurs. The solution strategies used in these systems

https://doi.org/10.1145/3297858.3304056
https://doi.org/10.1145/3297858.3304056
https://doi.org/10.1145/3297858.3304056

A
F

E

I

B C

D
G

J

H

(a) Original graph.

A
F

E

I

B C

D
G

J

H

Host 1 Host 2

(b) Node partitioning.

A
F

E

I

B C

G

J

F

B C

D
G

J

H

Host 1 Host 2

(c) Edge partitioning.

Figure 1. An example of partitioning a graph for two hosts in two different ways.

are quite diverse and are described in Section 2. For exam-
ple, GraphX is built on top of Spark [71], which supports a
dataflow model of computation in which computations have
transactional semantics and only failed computations need
to be re-executed. Imitator requires an a priori bound on the
number of faulty hosts, and it uses replication to tolerate
failure, which constrains the size of graphs it can handle on
a cluster of a given size. Zorro provides zero overhead in
the absence of faults, but it may provide only approximate
results if faults happen. CoRAL takes asynchronous check-
points and performs confined recovery but it is applicable
only to certain kinds of graph applications.
In this paper, we present Phoenix, a communication and

synchronization substrate to provide fail-stop fault toler-
ance for distributed-memory graph analytics applications.
The insight behind Phoenix is that to recover from faults, it
is sufficient to restart the computation from a state that will
ultimately produce the correct result. These states, called valid
states in this paper, are defined formally in Section 3. All
states that are reached during fault-free execution are valid
states, but in general, there are valid states that are not reach-
able during fault-free execution. On failure, Phoenix sets the
state of revived hosts appropriately with the aid of the ap-
plication programmer so that the global state is valid and
continues execution, thus performing confined recovery in
which surviving hosts do not lose progress.

This paper makes the following contributions.
• We present Phoenix, a substrate that can be used to
achieve fault tolerance to fail-stop faults for distributed
graph analytics applications without any observable
overhead in the absence of faults. Phoenix does not
use checkpoints, but it can be integrated seamlessly
with global and local checkpointing.
• We describe properties of graph analytics algorithms
that can be exploited to recover efficiently from faults
and classify these algorithms into several categories
based on these properties (Section 3). The key notions
of valid states and globally consistent states are also
introduced in this section.
• We describe techniques for recovering from fail-stop
faults without losing progress of surviving hosts for

the different classes of algorithms and show how they
can be implemented by application developers using
the Phoenix API (Section 4).
• We show that D-Galois [18], the state-of-the-art dis-
tributed graph analytics system, can be made fault
tolerant without performance degradation by using
Phoenix while outperforming GraphX [68], a fault tol-
erant system, and Gemini [73], a fault intolerant sys-
tem, by a geometric mean factor of ∼ 24× and ∼ 4×, re-
spectively. In addition, when faults occur, Phoenix gen-
erally outperforms the traditional checkpoint-restart
technique implemented in D-Galois (Section 5).

2 Background and Motivation
Section 2.1 describes the programming model and execution
model used in current distributed graph analytics systems.
Prior work on fault tolerance in these systems is summarized
in Section 2.2.

2.1 Programming Model and Execution Model
Like other distributed graph analytics systems [25, 37, 73],
Phoenix uses a variant of the vertex programming model.
Each node has one or more labels that are updated by an
operator that reads the labels of the node and its neighbors,
performs computation, and updates the labels of some of
these nodes. Edges may also have labels that are read by
the operator. Operators are generally categorized as push-
style or pull-style operators. Pull-style operators update the
label of the node to which the operator is applied while
push-style operators update the labels of the neighbors. In
topology-driven algorithms, execution is in rounds, and in
each round, the operator is applied to all the nodes of the
graph; these algorithms terminate when no node label is
changed during a round. The Bellman-Ford algorithm for
single-source shortest-path (sssp) computation is an example.
Data-driven algorithms, on the other hand, maintain work-
lists of active nodes where the operator must be applied,
and they terminate when the work-list is empty. The delta-
stepping algorithm for sssp is an example [33, 45].

To execute these programs on a distributed-memory clus-
ter, the graph is partitioned among the hosts of the cluster,

and each host applies the operator to nodes in its partition.
Some systems implement a global address space in software.
Nodes are partitioned between hosts and edges may connect
nodes in different hosts. Figure 1a shows a graph used as the
running example in this paper, and Figure 1b shows a parti-
tioning of this graph between two hosts; the edges between
nodes B and C connect nodes in different hosts.
Most distributed graph analytics systems, however, are

implemented using disjoint address spaces [25, 37, 73]. Edges
are partitioned among hosts, and proxy nodes (or replicas)
are created for the end-points of each edge on a given host.
Thus, if the edges connected to a given node in the origi-
nal graph are assigned to multiple hosts in the cluster, that
node will have multiple proxies. Figure 1c shows an exam-
ple in which there are proxies for nodes B and C on both
hosts. Some systems execute bulk-synchronous parallel (BSP)
rounds and reconcile labels of proxies at the end of each
round, whereas other systems update proxy labels asyn-
chronously. Phoenix can be used with both executionmodels,
but for simplicity’s sake, we describe and evaluate Phoenix
using a proxy-based system with BSP-style computation.

2.2 Fault Tolerant Distributed Graph Analytics
A fail-stop fault in a distributed system occurs when a host
in the cluster fails without corrupting data on other hosts.
Such faults can be handled with a rebirth-based approach, in
which the failed host is replaced with an unused host in the
cluster, or amigration-based approach [58], which distributes
the failed host’s partition among the surviving hosts. We
describe and evaluate Phoenix using rebirth-based recovery,
but it can also be used with migration-based recovery.

Several fault tolerant distributed graph analytics systems
rely on checkpointing [2, 25, 35, 37, 51, 57, 65]: the state of
the computation is saved periodically on stable storage by
taking a globally consistent snapshot [14], and when a fail-
stop fault is detected, the computation is restarted from the
last checkpoint [70]. One disadvantage of checkpointing is
that every host has to be rolled back to the last checkpoint
even if only one host fails. Some existing distributed graph
analytics systems have devised ways to avoid taking global
checkpoints or rolling back live hosts, as described below.

GraphX [68] is built on Spark [71], and achieves fault tol-
erance by leveraging Resilient Distributed Datasets (RDD)
from Spark to store information on how to reconstruct graph
states in the event of failure; if the reconstruction infor-
mation becomes too large, it checkpoints the graph state.
GraphX is very general and can recover from failure of any
number of hosts, but unlike Phoenix, it does not exploit se-
mantic properties of graph applications to reduce overhead.

Table 1 compares the performance of GraphX and Phoenix
on 32 hosts of the Wrangler cluster (experimental setup
described in Section 5). The table also shows the performance
of D-Galois [18] and Gemini [73], which are state-of-the-
art distributed graph analytics systems that do not support

Table 1. Fault-free execution on 32 hosts of Wrangler.

App Input Total Time (s) Phoenix Speedup

GraphX Gemini D-Galois Phoenix GraphX Gemini

cc
twitter50 110.8 29.0 8.2 8.2 13.5 3.5
rmat28 166.5 80.0 20.6 20.6 8.1 3.9
kron30 1538.2 347.1 56.2 56.2 27.4 6.2

pr
twitter50 2111.6 75.1 31.6 31.6 66.7 2.4
rmat28 5355.5 180.9 47.7 47.7 112.3 3.8
kron30 797.6 426.4 78.9 78.9 10.1 5.4

sssp
twitter50 153.1 24.2 8.5 8.5 18.0 2.8
rmat28 158.1 77.7 11.1 11.1 14.3 7.0
kron30 1893.2 346.7 46.0 46.0 41.2 7.5

fault tolerance. The Phoenix system in Table 1 is D-Galois
made resilient by using the Phoenix substrate. In fault-free
execution, Phoenix performance is the same as D-Galois, and
the system does not have any observable overhead. Phoenix
programs also run on average ∼ 4× faster than the same
programs in Gemini. In addition, Phoenix programs are ∼ 24×
faster, on average, than GraphX programs in the absence of
faults while providing the same level of fault tolerance.
Imitator [65] is designed to tolerate a given number of

faults: if n-way fault tolerance is desired, the system ensures
that at least n+1 proxies are created for every graph node,
and it updates the labels of all these proxies at every round
to ensure that at least one proxy survives simultaneous host
failure. The memory requirements of Imitator grow pro-
portionately with n, and keeping these additional proxies
synchronized adds overhead even when there are no failures.
As shown in [65], the ability to tolerate a single fault results
in an overhead of ∼ 4% even if no faults occur; similarly, tol-
erating 3 faults increases the overhead to ∼ 8%. In contrast,
Phoenix does not require an a priori bound on the number
of simultaneous faults, and it does not require creating any
more proxies than are introduced by graph partitioning.

Like Imitator, Zorro [49] relies on node proxies for recov-
ery, but it only uses the proxies created by graph partitioning.
If no proxies of a given node survive failure, execution con-
tinues but may produce an incorrect answer. An advantage
of Zorro is that it does not have any overhead in the absence
of failures, unlike GraphX and Imitator in which fault toler-
ance comes at the cost of overhead even when no failures
occur. Phoenix shares this advantage with Zorro. While both
Phoenix and Zorro incur overhead when failures happen,
Phoenix is guaranteed to produce the correct answer unlike
Zorro. Specifically, for self-stabilizing and locally-correcting
algorithms (defined in Section 3), Zorro will yield the cor-
rect result if run till convergence1. However, for globally-
correcting algorithms, Zorro will yield an incorrect result
1The algorithms evaluated in Zorro [49] are self-stabilizing or locally-
correcting. They were only run for a fixed number of total iterations when
faults occur and a loss of precision was reported. However, if they were run
until convergence, they would have been precise.

even if run till convergence. With respect to Zorro, our con-
tributions are (1) defining the different classes of algorithms
and (2) designing recovery mechanisms, specific to that class,
that yield the correct result. For self-stabilizing algorithms,
Phoenix uses a simpler recovery mechanism than Zorro. For
locally-correcting algorithms, the recovery mechanisms of
Phoenix is similar to that of Zorro. For globally-correcting
algorithms, Phoenix uses a novel recovery approach with
the help of the programmer.

CoRAL [64] is based on asynchronous checkpointing [38,
61]: hosts take local checkpoints independently, so no global
coordination is required for checkpointing. Nonetheless, it
incurs overhead during fault-free execution. CoRAL is ap-
plicable only to a subset of the algorithms that can be han-
dled by Phoenix. Specifically, CoRAL can handle only self-
stabilizing or locally-correcting algorithms (defined in Sec-
tion 3). In CoRAL, like in other systems based on confined
recovery [37, 57], the surviving hosts wait for the revived
hosts to recover their lost state before continuing execution.
Phoenix, in contrast, performs confined recovery without
waiting for the revived hosts to recover their lost state.

3 Classes of Graph Analytics Algorithms
This section describes the key properties of graph analytics
algorithms that are exploited by Phoenix. Although Phoenix
handles fail-stop faults in distributed-memory clusters, these
algorithmic properties are easier to understand in the con-
text of data corruption errors2 [59] (or transient soft faults)
in shared-memory programming, so we introduce them in
that context. Section 3.1 introduces the key notions of valid
and globally consistent states. Section 3.2 shows how these
concepts can be used to classify graph analytics algorithms
into a small number of categories. Section 3.3 shows how this
classification is applicable to a distributed-memory setting.

3.1 Overview
In shared-memory execution, the state of the computation
can be described compactly by a vector of node labels in
which there is one entry for each node. If s is such a vector
andv is a node in the graph, let s (v) refer to the label of node
v in state s . For example, if the initial state in a breadth-first
search (bfs) computation is denoted by si and the source is
node r , then si (r) = 0 and si (v) = ∞ for all other nodes v in
the graph. During the computation, these labels are updated
by applying the relaxation operator to nodes in the graph to
change the state. When the algorithm terminates, the final
state sf will contain the bfs labels of all nodes. Therefore, the
evolution of the state can be viewed as a trajectory beginning
at si and ending at sf in the set S of all states. In general,
there are many such trajectories, and since the scheduler is

2Data corruption means some bits in the data are flipped. In this paper, we
consider fail-stop faults in distributed-memory and data corruption errors in
shared-memory. We do not consider data corruption in distributed-memory.

permitted to make non-deterministic choices in the order of
processing nodes, different executions of a given program for
a given input graph may follow different trajectories from si
to sf . Figure 2 shows a trajectory for an application.
We define these concepts formally below.

Definition 1. For a given graph analytics program and input
graph, let S be the set of states, and let si and sf denote the
initial and final states, respectively.

Definition 2. For sm , sn ∈ S , sn is said to be a successor state
of sm if applying the operator to a node when the computation
is in state sm changes the state to sn .

A trajectory is a sequence of states s0, s1, ..., sl such that for
all 0 ≤ j < l , sj+1 is a successor state of sj .

Two subsets of the set of states, which we call valid states
(SV) and globally consistent states (SGC), are of interest.

Definition 3. A state sд is globally consistent if there is a
trajectory si , ..., sд from the initial state si to sд . Denote SGC
the subset of globally consistent states in S.
A state sv is valid if there is a trajectory sv , ..., sf from sv

to the final state sf . Denote SV the subset of valid states in S.

Intuitively, a state is globally consistent if it is “reachable”
(along some trajectory) from the initial state, and a state is
valid if the final state (the “answer”) is reachable from that
state [21, 28, 44, 53, 54]. Every globally consistent state is
valid; otherwise, there is a state s reachable from si from
which sf is not reachable, which is impossible. Therefore,

SGC ⊆ SV ⊆ S (1)
In general, both containments can be strict, so there can

be valid states that are not globally consistent, and there can
be states that are not valid. This can be illustrated with bfs.
Consider a state sx in which the label of the root is 0, the
labels of its immediate neighbors are 2, and all other node
labels are∞. This is not a state reachable from si , so sx < SGC .
However, it is a valid state since applying the operator to the
root node changes the labels of the neighbors of the root to
their correct (and final) values. This shows that SGC ⊂ SV in
general. To show that not all states are valid, consider the
state sz where sz (v) = 0 for all nodes v . No other state is
reachable from this state; in particular, sf is not reachable,
so sz is not a valid state. Therefore, SV ⊂ S in general.

The recovery approach used in Phoenix can be explained
using the notions of valid states and globally consistent states.
Consider Figure 2, which shows a trajectory of states from
the initial state si to the final state sf in fault-free execution.
Every intermediate state in the trajectory between si and sf
is a globally consistent state. Checkpointing schemes save
(some) globally consistent states on stable storage and re-
cover from a fault by restoring the last globally consistent
state saved. Figure 2 shows this pictorially: sb is an invalid
state and a checkpoint-restart scheme, denoted by CR, re-
covers by restoring the state to a globally consistent state. In

S

SV

SGC
CR

si

sf

Faul
t

Ph
oe
ni
x

sb
S :All states
SV :Valid states
SGC:Globally consistent states
si :Initial state
sb :Faulty state
sf :Final state
 :Transition during
 algorithm execution

Figure 2. States during algorithm execution and recovery.

contrast, as illustrated in Figure 2, the key insight in Phoenix
is that for recovery, we can restart the computation from a
valid state that is not necessarily a globally consistent state.

3.2 Classification of Graph Algorithms
The way in which Phoenix generates a valid state for recov-
ery depends on the structure of the algorithm. There are four
cases, discussed below in increasing order of complexity.

Self-stabilizing graph algorithms: All states are valid.

SGC ⊂ SV = S (2)

Examples are topology-driven algorithms for collabora-
tive filtering using stochastic gradient descent (cf), belief-
propagation, pull-style pagerank, and pull-style graph color-
ing. In these algorithms, node labels are initialized to random
values at the start of the computation, and the algorithm con-
verges regardless of what those values are. Therefore, every
state is valid, and no correction of the state is required when
a data corruption error is detected in the shared-memory
case.

Locally-correcting graph algorithms: The set of valid sta-
tes is a proper superset of the set of globally consistent states
and a proper subset of the set of all states. In addition, each
nodev has a set of valid values Lv , and the set of valid states
SV is the Cartesian product of these sets.

SGC ⊂ SV ⊂ S

SV = L1 × L2 × ... × LN
(3)

Some examples are breadth-first search (bfs), single-source
shortest path (sssp), connected components using label prop-
agation (cc), data-driven pagerank, and topology-driven k-
core. For example, in bfs, all values are valid for the root node
since the operator sets its label to 0. Therefore, Lr = [0,∞].
For an immediate neighbor v of the root node, Lv = [1,∞],
and so on for the neighbors of those nodes. Data corruption
in the shared-memory case can be handled by setting the
label of each corrupted node to ∞; the labels of all other
nodes can remain unchanged. This may produce a state that
is not globally consistent, but the properties of the algorithm

guarantee that the final state is reachable from this valid
state.

Globally-correcting graph algorithms: Valid states are
distinct from globally consistent states and from the set of all
states, but unlike in the previous case, validity of a state de-
pends on some global condition on the labels of all nodes and
cannot be reduced to the Cartesian product of valid values
for individual node labels.
These algorithms are usually more work-efficient than

their equivalent locally-correcting counterparts. Some ex-
amples are residual-based data-driven pagerank (pr), data-
driven k-core (kcore), and latent Dirichlet allocation. In these
algorithms, the label of a node is dependent not only on the
current labels of its neighbors but also on the history or
change of these labels. Hence, to recover from data corrup-
tion errors in shared-memory, re-initializing the label of each
corrupted node is insufficient. After re-initializing the cor-
rupted nodes, all nodes can re-compute their labels using
only the current labels of their neighbors. This restores a
valid state from which the work-efficient algorithm would
reach the final state.

Globally-consistent graph algorithms: Only a globally
consistent state is a valid state.

SGC = SV ⊂ S (4)

Betweenness centrality [27] is an example. Globally consis-
tent snapshots [14] are required for recovery. In such cases,
Phoenix may be used along with traditional checkpointing.
We list this class only for the sake of completeness, and we
do not discuss this class of algorithms further in this paper.

3.3 Distributed Graph Analytics
The concepts introduced in this section for shared-memory
can be applied to distributed-memory implementations of
graph analytics algorithms as follows. The main difference
from the shared-memory case is that a given node in the
graph can have proxies on several hosts that can be updated
independently during the computation. In BSP-style execu-
tion, all proxies of a given node are synchronized at the end
of every round, and at that point, they all have the same la-
bels. Therefore, in the distributed-memory case, we consider
a round to constitute one step of computation, and the global
state at the end of each round is simply the vector containing
the labels of the nodes at that point in time.

Definition 4. For sm , sn ∈ S , sn is said to be a successor state
of sm if a single BSP round transforms state sm to state sn .

A trajectory is a sequence of states s0, s1, ..., sl such that for
all 0 ≤ j < l , sj+1 is a successor state of sj .

Globally consistent states and valid states can be defined
as in Definition 3, and the classification of graph algorithms
in Section 3.2 can now be used in the context of distributed-
memory implementations.

Algorithm 1: Greedy graph coloring (self-stabilizing).
Input : Partition Gh = (Vh, Eh) of graph G = (V , E)
Output :A set of colors s (v) ∀v ∈ V

1 Let t (v) ∀v ∈ V be a set of temporary colors
2 Function Init(v , s):
3 s (v) = random color
4 foreach v ∈ Vh do
5 Init(v , s)
6 repeat
7 foreach v ∈ Vh do
8 t (v) = s (v)
9 foreach v ∈ Vh do

10 foreach u ∈ ad j (v) and u < v do
11 nc = nc ∪ {t (u) }
12 s (v) = smallest c such that c < nc
13 while Runtime.Sync(s) == Failed do
14 Phoenix.Recover(Init, s)
15 until ∀v ∈ V , s (v) = t (v);

Algorithm 2: Phoenix API for self-stabilizing algo-
rithms.

1 Function Recover(Init, s):
2 if h ∈ failed hosts Hf then
3 foreach v ∈ Vh do
4 Init(v , s)

A B C D E F G H I J

0 1 0 0 0 1 1 1 1 1

0 1 0 1 0 2 2 2 2 0

0 1 0 1 0 2 3 0 1 0

0 1 0 1 0 2 3 0 1 4

0 1 0 1 0 2 2 1 1 2

0 1 0 1 0 2 3 0 1 3Fa
ul
t

CR

Phoenixsi

sf

0 4 2 0 0 0 5 0 0 8

1 0 00 1 0 1 44 1

si :Initial state
sf :Final state
 :Transition during
 algorithm execution

Figure 3. States of the graph in Figure 1a, treated as an undi-
rected graph, during the execution of greedy graph coloring.

4 Fault Tolerance in Distributed-Memory
In this section, we describe how Phoenix performs confined
recovery when a fault occurs without incurring overhead
during fault-free execution. Section 4.1 presents Phoenix
in the context of distributed execution of graph analytics
applications. Sections 4.2, 4.3, and 4.4 illustrate Phoenix’s
recovery mechanisms for the three different classes of al-
gorithms introduced in Section 3. Section 4.5 summarizes
the Phoenix API and discusses how programmers can use it
when writing applications.

4.1 Overview
Fail-stop faults are detected and handled during the syn-
chronization phase of a BSP round. Once a fail-stop fault is
detected, the program passes the control to Phoenix using

the Phoenix API. Phoenix reloads graph partitions from sta-
ble storage on the revived hosts that replace the failed hosts.
Some of the nodes on these hosts may have proxies on sur-
viving or healthy hosts, and if so, their state can be recovered
from their proxies. In Phoenix, this is done using a minor
variation of the synchronization call used to reconcile prox-
ies during fault-free or normal execution. If the entire state
can be recovered in this way, execution continues. However,
if there are nodes for which no proxy exists on a healthy
host, Phoenix restores the global state to a valid state using
the approach described in detail in this section.
All algorithms presented use a generic interface called

Sync to synchronize the state of all proxies of all nodes.
Synchronization of different proxies of a node involves an
all-reduce operation, and different systems support this in
different ways. For example, the interface maps directly to
Gluon’s [18] Sync interface used in D-Galois. In Gather-
Apply-Scatter (GAS) models like PowerGraph [25], the inter-
face can be implemented using gather and scatter. During
normal execution, Sync only synchronizes proxies that have
been updated. In contrast, proxies of all nodes are synchro-
nized during Phoenix recovery. The reduction operation for
the same field could be different during normal execution
and Phoenix recovery (e.g., addition in normal execution cor-
responds to maximum during recovery). In addition, Gluon
exploits the structural invariants of partitioning policies to
avoid performing an all-reduce during normal execution, but
we do not use this during Phoenix recovery. We omit these
variations of Sync in the algorithms presented for the sake
of simplicity.
Algorithms for each class are presented in pseudocode

since they can be implemented in different programming
models or runtimes. Each host h executes the algorithm
on its partition of the graph. The work-list, when used, is
local to the host. The foreach loop denotes a parallel loop
that can be executed on multiple threads, using fine-grained
synchronization to update the local state. For example, the
loop can be implemented using the do_all construct in D-
Galois with atomic updates to the local state. All algorithms
use the generic interface, Sync or SyncW, to synchronize the
state of all proxies; SyncW is similar to Sync, but it also adds
nodes whose state is updated locally during synchronization
to the work-list. Without the explicit synchronization or
Phoenix calls, these algorithms can be executed on shared-
memory systems. Sync and SyncW fail when at least one host
has crashed, and when that occurs, the algorithms call a
generic API for Phoenix that recovers from the failure.
The Phoenix API calls Sync at the end of its recovery. In

the algorithms presented, we push this Sync call to the user
code and omit the loading of partitions on the hosts replacing
the crashed hosts. If the failures cascade, i.e., if failures occur
during recovery, then the Sync called at the end of Phoenix’s
recovery will fail and Phoenix’s recovery is re-initiated after
partitions are loaded on the hosts replacing the failed hosts.

Algorithm 3: Breadth first search (locally-correcting).
Input : Partition Gh = (Vh, Eh) of graph G = (V , E)
Input : Source vs
Output :A set of distances s (v) ∀v ∈ V

1 Function InitW(v , s ,Wn):
2 if v == vs then
3 s (v) = 0 ;Wn =Wn ∪ {v }
4 else
5 s (v) = ∞
6 foreach v ∈ Vh do
7 InitW(v , s ,Wn)
8 repeat
9 Wo =Wn ;Wn = ∅

10 foreach v ∈Wo do
11 foreach u ∈ outдoinд_ad j (v) do
12 if s (u) > s (v) + 1 then
13 s (u) = s (v) + 1 ;Wn =Wn ∪ {u }
14 while Runtime.SyncW(s ,Wn) == Failed do
15 Phoenix.Recover(InitW, s ,Wn)
16 until global_termination;

Algorithm 4: Phoenix API for locally-correcting algorithms.
1 Function Recover(InitW, s ,Wn):
2 if h ∈ failed hosts Hf then
3 foreach v ∈ Vh do
4 InitW(v , s ,Wn)

A B C D E F G H I J
0

0 1 1

0 1 12 2 2

0 1 12 2 2 33

0 1 12 2 2 34 43

Fau
lt

0 1 12 2 20 3
CR

Phoenix
8

0 1 12 2 2 3

si

sf

si :Initial state
sf :Final state
 :Transition during
 algorithm execution

0 1 12

0 1 12 2 2 3 43

Figure 4. State of the graph in Figure 1a during the execution
of data-driven breadth first search (locally-correcting).

4.2 Self-Stabilizing Graph Algorithms
To illustrate how self-stabilizing algorithms are handled by
Phoenix, Algorithm 1 shows greedy graph coloring for an
undirected or symmetric graph. Every node has a label to de-
note its color which is initialized randomly. Nodes and colors
are ordered according to some ranking function. The algo-
rithm is executed in rounds. In each round, every node picks
the smallest color that was not picked by any of its smaller
neighbors in the previous round. The algorithm terminates
when color assignments do not change in a round.

The programmer calls the Phoenix API (line 14) if Sync
fails. Figure 3 shows possible state transitions after each
round of algorithm execution for the graph in Figure 1a. In
this figure, colors are encoded as integers. Suppose that faults
are detected in the fourth round when performing the Sync

operation. To recover, Phoenix will initialize the colors of the
proxies of the nodes on each failed host to a random color us-
ing the programmer supplied function. Some of these nodes
might have proxies on healthy hosts, which will be recov-
ered by the subsequent Sync call (line 13). The nodes which
do not have any proxies on healthy hosts are shaded red in
Figure 3. Algorithm execution then continues, converging in
three more rounds. Phoenix supports such confined recov-
ery by providing a thin API defined in Algorithm 2. Phoenix
recovers a valid state for all self-stabilizing algorithms in this
way because any state is a valid state (Equation 2).

4.3 Locally-Correcting Graph Algorithms
We use data-driven breadth-first search (bfs), shown in Al-
gorithm 3, to explain how locally-correcting algorithms are
handled by Phoenix. Every node has a label that denotes its
distance from the source, which is initialized to 0 for the
source and ∞ for every other node. The algorithm is exe-
cuted in rounds, and in each round, the relaxation operator
is applied to nodes on the bfs frontier, which is tracked by
work-lists. Initially, only the source is in the work-list. If the
neighbor’s distance changes when relaxed, then it is added
to the work-list for the next round. The algorithm terminates
when there are no nodes in the work-list on any host.

The program calls the Phoenix API (line 15) when SyncW
fails. When a fault occurs, Phoenix uses the given function
to initialize the labels of the proxies on the failed hosts and
update the work-list. Some of the nodes on the failed host
may have proxies on healthy hosts, which are recovered in
the subsequent SyncW call (line 14). This call also adds the
proxies whose labels were recovered to the work-list. For all
locally-correcting algorithms, the state is now valid because
(i) the initial label of a node is a valid value (Equation 3) and
(ii) the work-list ensures that all values lost will be recov-
ered eventually. Phoenix supports such confined recovery
by providing a thin API defined in Algorithm 4.
Figure 4 illustrates this for the graph in Figure 1a. Hosts

fail during the third round. CR would restore the state to
that at the end of round 2, and this will need three more
rounds to converge. Consider the nodes on the failed hosts
that do not have proxies on the healthy hosts (shaded in red).
Phoenix will initialize the distances of their proxies to ∞
since none of them is the source. The incoming neighbors
of these nodes that have proxies on the healthy hosts will
be recovered by the subsequent SyncW call and added to the
work-list. Phoenix will resume execution and converge in
three more rounds.

4.4 Globally-Correcting Graph Algorithms
To illustrate how Phoenix handles globally-correcting graph
algorithms, we use degree-decrementing, data-driven k-core
(kcore), shown in Algorithm 5. The k-core problem is to find
the sub-graphs of an undirected or symmetric graph in which
each node has degree at least k . Most k-core algorithms

Algorithm 5: Data-driven k-core (global-correcting).
Input : Partition Gh = (Vh, Eh) of graph G = (V , E)
Input :k
Output :A set of flags and degrees s (v) ∀v ∈ V

1 Function DecrementDegree(v , s):
2 foreach u ∈ outдoinд_ad j (v) do
3 s (u).deдr ee = s (u).deдr ee − 1
4 Function ReInitW(v , s ,Wn):
5 s (v).deдr ee = ��outдoinд_ad j (v)��
6 Wn =Wn ∪ {v }
7 Function InitW(v , s ,Wn):
8 s (v).f laд = T rue
9 ReInitW(v , s ,Wn)

10 Function ComputeW(v , s ,Wn):
11 if s (v).deдr ee < k then
12 s (v).f laд = False
13 DecrementDegree(v , s)
14 else
15 Wn =Wn ∪ {v }
16 Function ReComputeW(v , s ,Wn):
17 if s (v).f laд = False then
18 DecrementDegree(v , s)
19 else
20 Wn =Wn ∪ {v }
21 foreach v ∈ Vh do
22 InitW(v , s ,Wn)
23 repeat
24 Wo =Wn ;Wn = ∅

25 foreach v ∈Wo do
26 ComputeW(v , s ,Wn)
27 while Runtime.SyncW(s ,Wn) == Failed do
28 Phoenix.Recover(InitW, ReInitW, ReComputeW, s ,Wn)
29 until global_termination;

Algorithm 6: Phoenix API for globally-correcting algo-
rithms.

1 Function Recover(InitW, ReInitW, ReComputeW, s ,Wn):
2 if h ∈ failed hosts Hf then
3 foreach v ∈ Vh do
4 InitW(v , s ,Wn)
5 else
6 foreach v ∈ Vh do
7 ReInitW(v , s ,Wn)
8 if Runtime.SyncW(s ,Wn) == Failed then
9 return

10 Wo =Wn ;Wn = ∅

11 foreach v ∈Wo do
12 ReComputeW(v , s ,Wn)

execute by removing nodes with fewer than k neighbors in
the graph since these nodes cannot be part of a k-core. The
removal of these nodes lowers the degrees of other nodes,
which may enable more nodes to be removed from the graph.

Since explicitly deleting nodes and edges from the graph is
expensive, implementations usually just mark a node as dead
and decrement the degree of its neighbors. Therefore, each
node has two labels, a flag and a degree, that denote whether

A B C D E F G H I J
CR

Phoenix

si

sf

1 1 11 1 1 1 1 1 1
2 6 75 3 3 8 3 3 4

0 1 11 0 0 1 0 0 1
2 4 54 2 2 5 2 2 2

0 1 11 0 0 1 0 0 0
2 4 44 2 2 4 1 1 2

Fa
ul
t

0 1 0 0 1
2 4 2 2 4

0
9

1
1

1
9

0
2

0
5

0 1 11 0 0 1 1 0 1
2 4 54 3 2 6 2 2 3

si :Initial state
sf :Final state
 :Transition during
 algorithm execution

Figure 5. State of the graph in Figure 1a, treated as undi-
rected, during the execution of data-driven k-core (k = 4).

the node is dead or alive and the number of edges it has to
other alive nodes in the graph. A work-list maintains the
currently alive nodes. The algorithm is executed in rounds.
In each round, every node in the work-list marks itself as
dead if its degree is less than k or adds itself to the work-list
for the next round otherwise. When a node is marked as
dead, it decrements the degrees of its immediate neighbors.
The algorithm terminates (global_termination) when no node
is marked as dead in a round on any host.
To present the fault recovery strategy for this algorithm,

we first note that the state is valid if and only if (i) the degree
of each node is equal to the number of the edges it has to
currently alive nodes and (ii) all the currently alive nodes
are in the work-list. During algorithm execution, a node’s
degree is updated only when its neighbor changes (its flag)
from alive to dead. Hence, when a node is lost, re-initializing
its flag and degree does not restore the state to a valid state:
the degree of all nodes needs to be recalculated based on
currently alive nodes. To do so, new functions are required to
reinitialize the degree of a healthy node and recompute the
degree of a node using only the current flags (alive or dead)
of its neighbors (in Algorithm 5, ReInitW and ReComputeW).

Figure 5 shows state transitions after each round of execu-
tion for the graph in Figure 1a. Consider detection of a fault
after two rounds. CR restores the state to that at the end of
the first round. In contrast, Phoenix resets both the flag and
the degree of proxies on failed hosts to the initial value and
resets only the degree of the proxies on healthy hosts to the
initial value. All proxies are added to the work-list in both.
SyncW is called to recover the flags of nodes on failed hosts
that have proxies on healthy hosts. After that, all the dead
nodes decrement the degree of their outgoing-neighbors and
all the alive nodes are added to the work-list. The subse-
quent SyncW will synchronize the degrees of the proxies and
restore the state to a valid state. Algorithm execution then
converges in a round.
For all globally-correcting algorithms, a node’s state is

updated using the change of its neighbors’ state. In kcore,
degree is updated using the change in flag, while in residual-
based pagerank (pr), residual is updated using the change in
rank. Due to this, re-initializing the labels of failed proxies
is insufficient. Some labels of healthy proxies must also be

reinitialized. In kcore and pr, only degree and residual are
reinitialized, respectively, which ensures that the progress of
flag and rank, respectively, on healthy proxies is not lost. The
new state must be recomputed using only the current state.
In kcore and pr, degree and residual must be recomputed
using only the current flag and rank, respectively. Given re-
initialization and re-computation functions, the Phoenix API,
defined in Algorithm 6, supports such confined recovery.

4.5 Phoenix API
The Phoenix API is specific to the class of algorithm, as de-
fined in Algorithms 2, 4, and 6. For self-stabilizing algorithms,
the API takes the initialization function as input and updates
the state. For locally-correcting algorithms, the API takes the
initialization function as input and updates both the state and
the work-list. For globally-correcting algorithms, the API
updates the state and the work-list by taking functions for
initialization, re-initialization, and re-computation as input.
Instrumenting self-stabilizing and locally-correcting al-

gorithms to enable Phoenix is straight-forward because the
initialization function required by the API would be used
in fault-free execution regardless. On the other hand, for
globally-correcting algorithms, the programmer must write
new re-initialization and re-computation functions to use
the Phoenix API. These functions can be written by consid-
ering algorithm execution in shared-memory where node
labels are corrupted, which is much simpler than considering
algorithm execution in distributed-memory with synchro-
nization of proxies. This typically involves writing a naive
topology-driven algorithm instead of the data-driven, work-
efficient algorithm used by default. This can be learned from
the pattern in Algorithm-5.

While we described Phoenix using BSP-style rounds, the
recovery mechanisms of Phoenix do not assume that the
execution preceding or following the recovery is BSP-style.
Phoenix recovery itself is BSP-style and involves at least one
computation and communication round. Phoenix restores
the state to a valid state, regardless of whether the prior up-
dates to the state were bulk-synchronous or asynchronous.

The Phoenix API replaces the checkpoint and restore func-
tions in Checkpoint-Restart (CR) systems, and it can be in-
corporated into existing synchronous or asynchronous dis-
tributed graph analytics programming models or runtimes.
Phoenix can also be combined with existing checkpointing
techniques that take globally consistent or locally consis-
tent snapshots [37, 64]. In this case, the failed hosts initialize
their labels from the saved checkpoint instead of calling the
initialization function, thereby leading to faster recovery of
nodes for which no proxy exists on a healthy host.

5 Experimental Evaluation
D-Galois [3, 18] is the state-of-the-art distributed graph an-
alytics system, but it does not support fault tolerance. The

Phoenix fault tolerance approach presented in this paper was
implemented in D-Galois (adding ∼ 500 lines of code); for
brevity, the resulting system is called Phoenix too. We also
implemented a checkpoint-restart technique in D-Galois,
and this is termed CR. We compare these with GraphX [68]
and Gemini [73], which are fault tolerant and fault intolerant
distributed graph analytics systems respectively. Section 5.1
describes the experimental setup, including implementation
details of Phoenix and CR. Sections 5.2 and 5.3 present the
results in the presence and absence of faults respectively.

5.1 Experimental Setup
Experimentswere conducted on the Stampede [60] andWran-
gler clusters at the Texas Advanced Computing Center [5].
The configurations used are listed in Table 2. We used Wran-
gler to compare Phoenix with D-Galois, Gemini, and GraphX
(GraphX cannot be installed on Stampede). All other experi-
ments were conducted on 128 KNL hosts of Stampede.
Table 3 specifies the input graphs: wdc12 [40, 41] and

clueweb12 [7, 8, 48] are the largest publicly available web-
crawls; kron30 [34] and rmat28 [13] are randomized syn-
thetic scale-free graphs (we used weights of 0.57, 0.19, 0.19,
and 0.05, as suggested by graph500 [1]); twitter50 [32] is a
social network graph; amazon [26, 39] is the largest publicly
available bipartite graph. Smaller inputs are used for com-
parison with GraphX because it exhausts memory quickly.

Our evaluation uses 5 benchmarks: connected components
(cc), k-core decomposition (kcore), pagerank (pr), single-
source shortest path (sssp), and collaborative filtering using
stochastic gradient descent (cf). In D-Galois (consequently,
Phoenix and CR), cf is a self-stabilizing algorithm, cc and
sssp are locally-correcting algorithms, and kcore and pr are
globally-correcting algorithms. We used GraphX and Gem-
ini implementations of the same benchmarks (they use self-
stabilizing algorithm for pr); they do not have kcore or cf.
GraphX does not use edge-weights in its sssp, so Gemini
and Phoenix also do not use it when compared with it. We
present cf results only with the amazon graph because it
requires a bipartite graph. The tolerance used for cf is 10−9.
The source node for sssp is the maximum out-degree node.
The tolerance for pr is 10−7 for kron30, 10−4 for clueweb12,
and 10−3 for wdc12. The k in kcore is 100. All benchmarks
are run until convergence. We present the mean of 3 runs.
We implemented Phoenix recovery for each benchmark

depending on the class of its algorithm. Most of the effort
was spent for kcore and pr, which are globally-correcting
algorithms. They took an estimated day’s worth of program-
ming with ∼ 150 lines changed or added (original code was
∼ 300 lines). The rest of the benchmarks were self-stabilizing
or locally-correcting algorithms, so they took little time and
needed only ∼ 30 lines of changes or additions.
CR only checkpoints the graph node labels and not the

graph topology (which is read-only). Since D-Galois is bulk-
synchronous parallel (BSP), CR takes a globally consistent

Table 2. Configuration of clusters.

Stampede Wrangler

NIC Omni-path Infiniband
Machine Intel Xeon Phi KNL Intel Xeon Haswell
No. of hosts 128 32
Threads per host 272 48
Memory 96GB DDR4 128GB DDR4
Compiler g++ 7.1 g++ 4.9.3

Table 3. Inputs and their key properties.

amazon twitter50 rmat28 kron30 clueweb12 wdc12

|V | 31M 51M 268M 1,073M 978M 3,563M
|E | 82.5M 1,963M 4,295M 10,791M 42,574M 128,736M
|E |/ |V | 2.7 38 16 16 44 36
max Dout 44,557 779,958 4M 3.2M 7,447 55,931
max Din 25,366 3.5M 0.3M 3.2M 75M 95M
Size on Disk (GB) 1.2 16 35 136 325 986

Table 4. Fault-free execution of Phoenix and CR (R stands
for the number of BSP-style rounds).

App Input R Total Time (s) Execution Time (s)

Phoenix CR-50 CR-500 Phoenix CR-50 CR-500

cc
kron30 7 52.1 52.8 62.6 2.5 3.9 5.5

clueweb12 24 73.1 72.8 78.5 12.6 14.8 17.4
wdc12 401 303.8 356.5 306.1 90.5 146.0 95.5

kcore
kron30 6 89.0 95.7 125.3 2.7 5.7 16.9

clueweb12 680 254.5 309.3 266.9 166.4 221.7 177.6
wdc12 270 563.6 625.7 573.0 269.5 334.2 279.5

pr
kron30 120 245.3 256.1 269.6 210.0 219.8 220.6

clueweb12 570 290.8 326.8 303.0 243.7 280.6 249.8
wdc12 747 871.4 1012.8 893.2 732.2 875.1 748.4

sssp
kron30 11 40.2 42.3 47.0 3.1 4.3 5.8

clueweb12 200 85.1 87.6 85.3 26.0 32.8 30.5
wdc123779 777.8 1183.7 822.2 620.1 1020.2 659.2

cf amazon 908 266.1 342.2 273.3 254.1 330.5 262.3

cc kcore pr sssp cf

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

am
az

on

0

30

60

90

To
ta

l t
im

e
ov

er
he

ad
 (%

)

Ph CR-50

Figure 6. Overheads in total time (%) of different fault sce-
narios with Phoenix and CR over fault-free execution.

snapshot soon after bulk-synchronization and checkpoints
it to the Lustre network filesystem [4] using stripe count
22 and stripe size 2 MB (Asynchronous checkpointing tech-
niques like CoRAL [64] that do not take a globally consistent
snapshot cannot be used because it is not applicable for all
benchmarks we evaluate). The periodicity of checkpointing
can be specified at runtime. We evaluated checkpointing
after every 5, 50, and 500 rounds of BSP-style execution, and
these are called CR-5, CR-50, and CR-500 respectively.

5.2 Fault-free performance
Table 1 compares the performance of GraphX, Gemini, D-
Galois, and Phoenix on Wrangler in the absence of faults.
All systems read the graph from a single file on disk and
partition it among hosts. The total time includes the time to
load and partition the graph. Phoenix is on average ∼ 24× and
∼ 4× faster than GraphX and Gemini, respectively. Using the
Phoenix substrate to make D-Galois resilient adds no overhead
during fault-free execution. GraphX is more than an order of
magnitude slower than Phoenix during fault-free execution,
and Gemini and D-Galois do not tolerate faults, so we do not
evaluate them with different fault scenarios.

For the rest of our experiments, we assume that the graph
is already partitioned, and we load graph partitions directly
from disk. Table 4 compares the fault-free performance of
Phoenix and CR on Stampede (D-Galois is omitted as it is
identical to Phoenix). We present the total time and execu-
tion time separately. Execution time includes the algorithm
time and checkpointing time, while total time includes graph
loading time and execution time. Phoenix has 0% overhead
in the absence of faults. We omit CR-5 from the table since
its overhead is too high. CR-5, CR-50, CR-500 have an execu-
tion time overhead of 542%, 31%, and 8%, respectively, on the
average, over Phoenix in the absence of faults.

5.3 Overhead of fault tolerance
To evaluate the behavior of Phoenix and CR when fail-stop
faults occur, we simulate a fault by clearing all in-memory
data structures on the failed hosts and running recovery
techniques on the failed hosts (rebirth-based recovery). We
simulate various fault scenarios by varying the number of
failed hosts (1, 4, 16, 64 hosts) as well as by causing the
hosts to fail at different points in the algorithm execution
(failing after executing 25%, 50%, 75%, 99% of rounds). These
fault scenarios are used for all results presented in this section,
including Figures 6, 7, 8, 9, and 10. The number of failed hosts
does not impact CR because all hosts rollback to the last
checkpoint (the graph partition re-loading time does not
vary much because we are limited by the host’s bandwidth,
not the network’s bandwidth). Note that these scenarios
are designed to test the best and worst fault scenarios for
Phoenix, and we do not choose the point of failure to test
the best or worst fault scenarios for checkpointing.

NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

kron30
cluew

eb12
w

dc12

P
h

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

0

2

4

0

10

20

0

50

100

150

Fault tolerance techniques (# of faults in parentheses)

E
xe

cu
tio

n
Ti

m
e

(s
)

Algorithm Recovery Checkpointing

(a) cc

NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

kron30
cluew

eb12
w

dc12

P
h

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

0.0

2.5

5.0

7.5

10.0

0

100

200

300

0

200

400

Fault tolerance techniques (# of faults in parentheses)

E
xe

cu
tio

n
Ti

m
e

(s
)

Algorithm Recovery Checkpointing

(b) kcore

NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

kron30
cluew

eb12
w

dc12

P
h

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

0

100

200

300

400

0

100

200

300

400

0

500

1000

1500

Fault tolerance techniques (# of faults in parentheses)

E
xe

cu
tio

n
Ti

m
e

(s
)

Algorithm Recovery Checkpointing

(c) pr

NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

kron30
cluew

eb12
w

dc12

P
h

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

0

2

4

6

0

20

40

0

250

500

750

1000

1250

Fault tolerance techniques (# of faults in parentheses)

E
xe

cu
tio

n
Ti

m
e

(s
)

Algorithm Recovery Checkpointing

(d) sssp

Figure 7. Execution time (s) of Phoenix (Ph) and CR with different fault scenarios.

cc kcore pr sssp cf

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

am
az

on

0

25

50

75

100

N
o.

 o
f r

ou
nd

s
ov

er
he

ad
(%

)

Ph CR-50

cc kcore pr sssp cf

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

kro
n3

0

clu
ew

eb
12

wdc
12

am
az

on

0

25

50

75

100

C
om

m
. v

ol
um

e
ov

er
he

ad
 (%

)

Ph CR-50

Figure 8. Overheads of different fault scenarios with Phoenix and CR over fault-free execution.

NoFault Faults at 25% Faults at 50% Faults at 75% Faults at 99%

am
azon

P
h

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

P
h(

1)
P

h(
4)

P
h(

16
)

P
h(

64
)

C
R

-5
0

C
R

-5
00

0

2500

5000

7500

10000

Fault tolerance techniques (# of faults in parentheses)

E
xe

cu
tio

n
Ti

m
e

(s
)

Algorithm Recovery Checkpointing

Figure 9. Execution time (s) of Phoenix (Ph) and CR with
different fault scenarios for cf.

Faults at 25% Faults at 50% Faults at 75% Faults at 99%

cc
kcore

pr
sssp

P
h(

64
)

C
R

-5
0

C
R

-5
00

C
P

h(
64

)

P
h(

64
)

C
R

-5
0

C
R

-5
00

C
P

h(
64

)

P
h(

64
)

C
R

-5
0

C
R

-5
00

C
P

h(
64

)

P
h(

64
)

C
R

-5
0

C
R

-5
00

C
P

h(
64

)

0

50

100

150

0

200

400

0

500

1000

1500

0
250
500
750

1000
1250

Fault tolerance techniques (# of faults in parentheses)

E
xe

cu
tio

n
Ti

m
e

(s
)

Checkpointing

Recovery

Algorithm

Figure 10. Execution time (s) of Phoenix (Ph), CR, and
Checkpointing with Phoenix (CPh): 64 faults for wdc12.

For each benchmark and input, Figure 6 shows the total
time overhead of faults for Phoenix and CR-50 over fault-
free execution of Phoenix using a box-plot3 to summarize all
3The box represents the range of 50% of the values, the line dividing the
box is the median of those values, and the circles are outliers.

fault scenarios. We omit CR-5 and CR-500 because the over-
heads are more than 100% in several cases. Phoenix has lower
overhead than CR-50 in most cases. For all benchmarks, the
overhead reduces as the size of the graph increases. Smaller
graphs have very little computation, so almost all of the re-
covery overhead is from re-loading the partitions from disk
on the failed hosts. Except for the smaller kron30, Phoenix
has at most 50% overhead when faults occurs in most cases.

We now analyze the overhead of faults with Phoenix and
CR in more detail by comparing execution time, which ex-
cludes initial loading of graph partitions as well as re-loading
of graph partitions on failed hosts. Figures 7 and 9 compare
the execution time of Phoenix and CR in different fault sce-
narios, including no faults. Execution time is divided into
algorithm, recovery, and checkpointing time. Recovery time
in Phoenix and CR is the time to restore the state to a valid
state and globally consistent state, respectively. We omit
CR-5 in the figure because its overhead is too high. We ob-
serve that for realistic fault scenarios [56] such as up to 16
hosts failing, Phoenix outperforms CR-50 and CR-500, ex-
cept for kcore on clueweb12. When 4 hosts fail, the mean
execution time overhead over fault-free execution of Phoenix,
CR-50, and CR-500 is ∼14%, ∼48.5%, and ∼59%, respectively.
CR-500 is worse than CR-50 in many cases because it loses
more progress when faults occur due to less frequent check-
pointing. For Phoenix, as we increase the number of failed
hosts, the execution overhead increases. The mean execution
time overhead for 16 failed hosts is ∼20.8%, and it increases
to ∼44% when 64 hosts fail. In contrast, the point of failure
does not increase the overhead of CR by much in most cases.
The takeaway is that even in the worst case scenario for
Phoenix (64 hosts fail after 99% of rounds), the performance
of Phoenix is comparable or better than CR.
When some state is lost due to faults, Phoenix and CR-

50 restore the state to a valid and globally consistent state,
respectively. However, the algorithm may need to execute
more computation and communication to recover the lost
state. For Phoenix and CR-50, Figure 8 shows the % increase

in rounds and communication volume due to failures over
fault-free execution of Phoenix (box-plot summarizes all
fault scenarios). The overhead is under 100% for Phoenix and
CR-50; therefore, both schemes of fault tolerance are better
than simply re-executing applications in case of failure. In
most cases, Phoenix has lower overhead than CR-50. Fur-
thermore, the overhead of Phoenix is less than 50% in almost
all cases.

Combining Phoenix with checkpointing: As observed in
our analysis of CR-50 and CR-500, reducing the frequency
of checkpointing reduces overhead in fault-free execution,
but it can lead to high overheads in case of failure as more
progress can be lost. On the other hand, Phoenix has no
overhead in fault-free execution, but in worst case scenar-
ios (such as 64 hosts crashing after 99% of execution), it
can have considerable overhead. To overcome this, we can
combine Phoenix with checkpointing (CPh) so that we take
checkpoints less frequently (every 500 rounds), but in case of
failures, crashed hosts can rollback to the last saved check-
point, and all hosts can use Phoenix to help crashed hosts
recover faster. Figure 10 shows the evaluation of CPh in
case of 64 hosts crashing at different points of execution for
all benchmarks on wdc12. CPh is similar to or faster than
CR-500 in all cases, as expected.

6 Related Work
System-level checkpointing: Many systems [6, 17, 22, 24,
31, 36, 38, 43, 50, 52] implement checkpointing or message
logging to rollback and recover from faults [23]. Although
these system-level mechanisms are transparent to the pro-
grammer, exploiting application properties like Phoenix does
can reduce the execution time with or without faults.

Application-level checkpointing: Instead of checkpoint-
ing the entire state or memory footprint of the application
like in system-level checkpoint-restart approaches, many
checkpointing approaches [42, 62, 72] allow the program-
mer to instrument their code to checkpoint only the live
application state; Bronevetsky et al. [10–12] automate this
using a compiler. Some of these approaches checkpoint to
memory [62, 72] or use a combination of memory, local disk,
and network filesystem [42]. In Section 5, we showed that in
the presence of faults, Phoenix generally outperforms even
a checkpoint-restart (CR) approach that checkpoints only
node labels (and not the graph topology) to the network
filesystem. Although CR can be further improved by using
in-memory or multi-level checkpointing, there will always
be overhead even in fault-free execution, unlike in Phoenix.

Fault tolerant data-parallel systems: Some data-parallel
systems [20, 30, 46, 71] save sufficient information trans-
parently to re-execute computation and restore lost data
when faults occur. Schelter et al. [55] allow users to specify
functions that can recover state when faults occur, but their

technique is applicable only to self-stabilizing and locally-
correcting algorithms. Phoenix, in contrast, does not require
the user to define new functions for these classes of algo-
rithms, and it supports globally-correcting algorithms with
user-defined functions. Moreover, Phoenix does not store
any additional state information in memory or stable storage.

Fault tolerant graph-analytical systems: Many systems
for distributed graph analytics [2, 25, 35, 37, 46, 47, 49, 57, 58,
64, 65, 68] support fault tolerance transparently. Greft [47] is
the only one that tolerates Byzantine (data corruption) faults;
the rest tolerate only fail-stop faults. Section 2.2 contrasts
Phoenix with other fail-stop fault tolerant systems in detail.

Fault tolerant algorithms: Algorithm-Based Fault Toler-
ance (ABFT) approaches [9, 15, 16, 19, 29, 66, 67, 69] have
modified several computational science algorithms to tol-
erate faults without checkpointing. In a similar vein, many
iterative solvers [28, 44, 54] have used self-stabilization [21]
to tolerate failures. Sao et al. [53] build on this to design and
implement a self-correcting topology-driven connected com-
ponents algorithm. Some of these algorithms detect and re-
cover from data corruptions (transient soft faults) in shared-
memory systems. Phoenix generalizes the concept of self-
stabilizing and self-correcting algorithms as explained in
Section 3. In addition, Phoenix provides a simple API to
implementing such algorithms on distributed-memory as
explained in Section 4.

7 Conclusions
We presented Phoenix, a communication and synchroniza-
tion substrate used to provide fail-stop fault tolerance in
distributed graph analytics applications. The key observa-
tion it uses is that recovery from failure can be accomplished
by continuing the computation from a state that will ulti-
mately produce the correct result. We presented three classes
of graph algorithms and the mechanisms used to adjust the
state after failure for each class. Experiments showed that
D-Galois augmented with Phoenix has no overhead during
fault-free execution and outperforms GraphX by an order
of magnitude. Furthermore, Phoenix almost always outper-
forms traditional checkpoint-restart recovery in the presence
of faults because it performs confined recovery such that sur-
viving hosts do not lose their progress. We believe Phoenix-
style recovery can be used in other application domains to
tolerate faults without fault-free execution overheads.

Acknowledgments
This research was supported by NSF grants 1337217, 1337281,
1406355, 1618425, 1725322 and by DARPA contracts FA8750-
16-2-0004 and FA8650-15-C-7563. This work used the XSEDE
grant ACI-1548562 through allocation TG-CIE170005. We
used the Stampede system at Texas Advanced Computing
Center, University of Texas at Austin.

References
[1] 2010. Graph 500 Benchmarks. http://www.graph500.org
[2] 2013. Apache Giraph. http://giraph.apache.org/
[3] 2018. The Galois System. http://iss.ices.utexas.edu/?p=projects/galois
[4] 2018. Lustre File System. http://lustre.org/
[5] 2018. Texas Advanced Computing Center (TACC), The University of

Texas at Austin. https://www.tacc.utexas.edu/
[6] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira.

2004. Adaptive Incremental Checkpointing for Massively Parallel
Systems. In Proceedings of the 18th Annual International Conference on
Supercomputing (ICS ’04). ACM, New York, NY, USA, 277–286. https:
//doi.org/10.1145/1006209.1006248

[7] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.
Layered Label Propagation: A MultiResolution Coordinate-Free Or-
dering for Compressing Social Networks. In Proceedings of the 20th
international conference on World Wide Web, Sadagopan Srinivasan,
Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and
Ravi Kumar (Eds.). ACM Press, 587–596.

[8] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework
I: Compression Techniques. In Proc. of the Thirteenth International
World Wide Web Conference (WWW 2004). ACM Press, Manhattan,
USA, 595–601.

[9] George Bosilca, Remi Delmas, Jack Dongarra, and Julien Langou.
2009. Algorithm-based fault tolerance applied to high performance
computing. J. Parallel and Distrib. Comput. 69, 4 (2009), 410 – 416.
https://doi.org/10.1016/j.jpdc.2008.12.002

[10] Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Keshav Pingali,
and Paul Stodghill. 2006. Recent Advances in Checkpoint/Recovery
Systems. In Proceedings of the 20th International Conference on Parallel
and Distributed Processing (IPDPS’06). IEEE Computer Society, Wash-
ington, DC, USA, 282–282. http://dl.acm.org/citation.cfm?id=1898699.
1898802

[11] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill.
2003. Automated Application-level Checkpointing of MPI Programs.
In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’03). ACM, New York, NY,
USA, 84–94. https://doi.org/10.1145/781498.781513

[12] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill.
2004. C3: A System for Automating Application-Level Check-
pointing of MPI Programs. 357–373. https://doi.org/10.1007/
978-3-540-24644-2_23

[13] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A Recursive Model for Graph Mining. 442–446. https://doi.org/
10.1137/1.9781611972740.43

[14] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots:
Determining Global States of Distributed Systems. ACMTrans. Comput.
Syst. 3, 1 (Feb. 1985), 63–75. https://doi.org/10.1145/214451.214456

[15] Zizhong Chen. 2013. Online-ABFT: An Online Algorithm Based Fault
Tolerance Scheme for Soft Error Detection in Iterative Methods. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’13). ACM, New York, NY,
USA, 167–176. https://doi.org/10.1145/2442516.2442533

[16] Zizhong Chen, Graham E. Fagg, Edgar Gabriel, Julien Langou, Thara
Angskun, George Bosilca, and Jack Dongarra. 2005. Fault Tolerant
High Performance Computing by a Coding Approach. In Proceedings
of the Tenth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’05). ACM, New York, NY, USA, 213–223.
https://doi.org/10.1145/1065944.1065973

[17] Ge-Ming Chiu and Cheng-Ru Young. 1996. Efficient Rollback-Recovery
Technique in Distributed Computing Systems. IEEE Trans. Parallel
Distrib. Syst. 7, 6 (June 1996), 565–577. https://doi.org/10.1109/71.
506695

[18] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A

Communication-optimizing Substrate for Distributed Heterogeneous
Graph Analytics. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2018).
ACM, New York, NY, USA, 752–768. https://doi.org/10.1145/3192366.
3192404

[19] Teresa Davies, Christer Karlsson, Hui Liu, Chong Ding, and Zizhong
Chen. 2011. High Performance Linpack Benchmark: A Fault Tolerant
Implementation Without Checkpointing. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS ’11). ACM, New York, NY,
USA, 162–171. https://doi.org/10.1145/1995896.1995923

[20] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data
processing on large clusters. In OSDI’04.

[21] Edsger W. Dijkstra. 1974. Self-stabilizing Systems in Spite of Dis-
tributed Control. Commun. ACM 17, 11 (Nov. 1974), 643–644. https:
//doi.org/10.1145/361179.361202

[22] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. 1992. Manetho:
Transparent Roll Back-Recoverywith LowOverhead, Limited Rollback,
and Fast Output Commit. IEEE Trans. Comput. 41, 5 (May 1992), 526–
531. https://doi.org/10.1109/12.142678

[23] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. 2002. A Survey of Rollback-recovery Protocols in Message-
passing Systems. ACM Comput. Surv. 34, 3 (Sept. 2002), 375–408.
https://doi.org/10.1145/568522.568525

[24] L. A. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka. 2010.
Distributed Diskless Checkpoint for Large Scale Systems. In 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting. 63–72. https://doi.org/10.1109/CCGRID.2010.40

[25] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-
los Guestrin. 2012. PowerGraph: Distributed Graph-parallel Computa-
tion on Natural Graphs. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI’12). USENIX
Association, Berkeley, CA, USA, 17–30. http://dl.acm.org/citation.
cfm?id=2387880.2387883

[26] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling
the Visual Evolution of Fashion Trends with One-Class Collaborative
Filtering. In Proceedings of the 25th International Conference on World
Wide Web (WWW ’16). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, Switzerland,
507–517. https://doi.org/10.1145/2872427.2883037

[27] Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill,
Bozhi You, Keshav Pingali, and Vijaya Ramachandran. 2019. A Round-
Efficient Distributed Betweenness Centrality Algorithm. In Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’19) (PPoPP). 15. http://doi.acm.org/10.
1145/3293883.3295729

[28] Mark Frederick Hoemmen and Michael Allen Heroux. 2011. Fault-
tolerant iterative methods. Technical Report. Sandia National Labora-
tories (SNL-NM), Albuquerque, NM (United States).

[29] Kuang-Hua Huang and Abraham. 1984. Algorithm-Based Fault Toler-
ance for Matrix Operations. IEEE Trans. Comput. C-33, 6 (June 1984),
518–528. https://doi.org/10.1109/TC.1984.1676475

[30] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. 2007. Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007 (EuroSys ’07). ACM, New
York, NY, USA, 59–72. https://doi.org/10.1145/1272996.1273005

[31] R. Koo and S. Toueg. 1987. Checkpointing and Rollback-Recovery for
Distributed Systems. IEEE Transactions on Software Engineering SE-13,
1 (Jan 1987), 23–31. https://doi.org/10.1109/TSE.1987.232562

[32] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media?. In Proceedings of
the 19th International Conference onWorldWideWeb (WWW ’10). ACM,
New York, NY, USA, 591–600. https://doi.org/10.1145/1772690.1772751

[33] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. 2016. Parallel
Graph Analytics. Commun. ACM 59, 5 (April 2016), 78–87. https:

http://www.graph500.org
http://giraph.apache.org/
http://iss.ices.utexas.edu/?p=projects/galois
http://lustre.org/
https://www.tacc.utexas.edu/
https://doi.org/10.1145/1006209.1006248
https://doi.org/10.1145/1006209.1006248
https://doi.org/10.1016/j.jpdc.2008.12.002
http://dl.acm.org/citation.cfm?id=1898699.1898802
http://dl.acm.org/citation.cfm?id=1898699.1898802
https://doi.org/10.1145/781498.781513
https://doi.org/10.1007/978-3-540-24644-2_23
https://doi.org/10.1007/978-3-540-24644-2_23
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/2442516.2442533
https://doi.org/10.1145/1065944.1065973
https://doi.org/10.1109/71.506695
https://doi.org/10.1109/71.506695
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/1995896.1995923
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202
https://doi.org/10.1109/12.142678
https://doi.org/10.1145/568522.568525
https://doi.org/10.1109/CCGRID.2010.40
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883
https://doi.org/10.1145/2872427.2883037
http://doi.acm.org/10.1145/3293883.3295729
http://doi.acm.org/10.1145/3293883.3295729
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1109/TSE.1987.232562
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/2901919
https://doi.org/10.1145/2901919

//doi.org/10.1145/2901919
[34] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Falout-

sos, and Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach
to Modeling Networks. J. Mach. Learn. Res. 11 (March 2010), 985–1042.
http://dl.acm.org/citation.cfm?id=1756006.1756039

[35] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo
Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the Cloud. Proc.
VLDB Endow. 5, 8 (April 2012), 716–727. https://doi.org/10.14778/
2212351.2212354

[36] David E. Lowell, Subhachandra Chandra, and Peter M. Chen. 2000.
Exploring Failure Transparency and the Limits of Generic Recovery.
In Proceedings of the 4th Conference on Symposium on Operating System
Design & Implementation - Volume 4 (OSDI’00). USENIX Association,
Berkeley, CA, USA, Article 20. http://dl.acm.org/citation.cfm?id=
1251229.1251249

[37] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:
a system for large-scale graph processing. In Proc. ACM SIGMOD
Intl Conf. on Management of Data (SIGMOD ’10). 135–146. https:
//doi.org/10.1145/1807167.1807184

[38] D. Manivannan and M. Singhal. 1999. Quasi-synchronous check-
pointing: Models, characterization, and classification. IEEE Transac-
tions on Parallel and Distributed Systems 10, 7 (July 1999), 703–713.
https://doi.org/10.1109/71.780865

[39] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den
Hengel. 2015. Image-Based Recommendations on Styles and Substi-
tutes. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’15). ACM,
New York, NY, USA, 43–52. https://doi.org/10.1145/2766462.2767755

[40] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian
Bizer. 2012. Web Data Commons - Hyperlink Graphs. http:
//webdatacommons.org/hyperlinkgraph/

[41] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian
Bizer. 2014. Graph Structure in the Web — Revisited: A Trick of the
Heavy Tail. In Proceedings of the 23rd International Conference onWorld
Wide Web (WWW ’14 Companion). ACM, New York, NY, USA, 427–432.
https://doi.org/10.1145/2567948.2576928

[42] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. 2010. De-
sign, Modeling, and Evaluation of a Scalable Multi-level Checkpoint-
ing System. In SC ’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1–11. https://doi.org/10.1109/SC.2010.18

[43] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. 2011. Fast Crash Recovery in RAMCloud. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP ’11). ACM, New York, NY, USA, 29–41. https://doi.
org/10.1145/2043556.2043560

[44] Carlos Pachajoa and Wilfried N. Gansterer. 2018. On the Resilience
of Conjugate Gradient andÂăMultigrid Methods to Node Failures. In
Euro-Par 2017: Parallel Processing Workshops. Springer International
Publishing, Cham, 569–580.

[45] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. 2011. The TAO of parallelism in algorithms. In Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI ’11). 12–25. https://doi.org/10.1145/1993498.1993501

[46] Russell Power and Jinyang Li. 2010. Piccolo: Building Fast, Distributed
Programs with Partitioned Tables. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, Berkeley, CA, USA, 293–306. http://dl.acm.org/
citation.cfm?id=1924943.1924964

[47] D. Presser, L. C. Lung, and M. Correia. 2015. Greft: Arbitrary Fault-
Tolerant Distributed Graph Processing. In 2015 IEEE International Con-
gress on Big Data. 452–459. https://doi.org/10.1109/BigDataCongress.

2015.73
[48] The Lemur Project. 2013. The ClueWeb12 Dataset. http://lemurproject.

org/clueweb12/
[49] Mayank Pundir, Luke M. Leslie, Indranil Gupta, and Roy H. Camp-

bell. 2015. Zorro: Zero-cost Reactive Failure Recovery in Distributed
Graph Processing. In Proceedings of the Sixth ACM Symposium on
Cloud Computing (SoCC ’15). ACM, New York, NY, USA, 195–208.
https://doi.org/10.1145/2806777.2806934

[50] Feng Qin, Joseph Tucek, Yuanyuan Zhou, and Jagadeesan Sundaresan.
2007. Rx: Treating Bugs As Allergies - a Safe Method to Survive
Software Failures. ACM Trans. Comput. Syst. 25, 3, Article 7 (Aug.
2007). https://doi.org/10.1145/1275517.1275519

[51] Semih Salihoglu and Jennifer Widom. 2013. GPS: A Graph Processing
System. In Proceedings of the 25th International Conference on Scientific
and Statistical Database Management (SSDBM). ACM, New York, NY,
USA, Article 22, 12 pages. https://doi.org/10.1145/2484838.2484843

[52] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Vishal Sahay,
Andrew Lumsdaine, Jason Duell, Paul Hargrove, and Eric Roman.
2005. The Lam/Mpi Checkpoint/Restart Framework: System-Initiated
Checkpointing. The International Journal of High Performance Com-
puting Applications 19, 4 (2005), 479–493. https://doi.org/10.1177/
1094342005056139

[53] Piyush Sao, Oded Green, Chirag Jain, and Richard Vuduc. 2016. A
Self-Correcting Connected Components Algorithm. In Proceedings of
the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS
’16). ACM, New York, NY, USA, 9–16. https://doi.org/10.1145/2909428.
2909435

[54] Piyush Sao and Richard Vuduc. 2013. Self-stabilizing Iterative Solvers.
In Proceedings of the Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems (ScalA ’13). ACM, New York, NY, USA,
Article 4, 8 pages. https://doi.org/10.1145/2530268.2530272

[55] Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl.
2013. "All Roads Lead to Rome": Optimistic Recovery for Distributed
Iterative Data Processing. In Proceedings of the 22Nd ACM Interna-
tional Conference on Information & Knowledge Management (CIKM
’13). ACM, New York, NY, USA, 1919–1928. https://doi.org/10.1145/
2505515.2505753

[56] B. Schroeder and G. Gibson. 2010. A Large-Scale Study of Failures in
High-Performance Computing Systems. IEEE Transactions on De-
pendable and Secure Computing 7, 4 (Oct 2010), 337–350. https:
//doi.org/10.1109/TDSC.2009.4

[57] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A Distributed
Graph Engine on a Memory Cloud. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’13). ACM, New York, NY, USA, 505–516. https://doi.org/10.1145/
2463676.2467799

[58] Yanyan Shen, Gang Chen, H. V. Jagadish, Wei Lu, Beng Chin Ooi,
and Bogdan Marius Tudor. 2014. Fast Failure Recovery in Distributed
Graph Processing Systems. Proc. VLDB Endow. 8, 4 (Dec. 2014), 437–448.
https://doi.org/10.14778/2735496.2735506

[59] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Fer-
reira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi. 2015. Mem-
ory Errors in Modern Systems: The Good, The Bad, and The Ugly. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’15). ACM, New York, NY, USA, 297–310. https://doi.org/10.1145/
2694344.2694348

[60] Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither, Chris Hempel,
Tommy Minyard, S. Mehringer, Eric Wernert, H. Tufo, D. Panda, and P.
Teller. 2017. Stampede 2: The Evolution of an XSEDE Supercomputer.
In Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact (PEARC17). ACM,
New York, NY, USA, Article 15, 8 pages. https://doi.org/10.1145/

https://doi.org/10.1145/2901919
http://dl.acm.org/citation.cfm?id=1756006.1756039
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
http://dl.acm.org/citation.cfm?id=1251229.1251249
http://dl.acm.org/citation.cfm?id=1251229.1251249
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/71.780865
https://doi.org/10.1145/2766462.2767755
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
https://doi.org/10.1145/2567948.2576928
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1145/2043556.2043560
https://doi.org/10.1145/2043556.2043560
https://doi.org/10.1145/1993498.1993501
http://dl.acm.org/citation.cfm?id=1924943.1924964
http://dl.acm.org/citation.cfm?id=1924943.1924964
https://doi.org/10.1109/BigDataCongress.2015.73
https://doi.org/10.1109/BigDataCongress.2015.73
http://lemurproject.org/clueweb12/
http://lemurproject.org/clueweb12/
https://doi.org/10.1145/2806777.2806934
https://doi.org/10.1145/1275517.1275519
https://doi.org/10.1145/2484838.2484843
https://doi.org/10.1177/1094342005056139
https://doi.org/10.1177/1094342005056139
https://doi.org/10.1145/2909428.2909435
https://doi.org/10.1145/2909428.2909435
https://doi.org/10.1145/2530268.2530272
https://doi.org/10.1145/2505515.2505753
https://doi.org/10.1145/2505515.2505753
https://doi.org/10.1109/TDSC.2009.4
https://doi.org/10.1109/TDSC.2009.4
https://doi.org/10.1145/2463676.2467799
https://doi.org/10.1145/2463676.2467799
https://doi.org/10.14778/2735496.2735506
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/3093338.3093385

3093338.3093385
[61] Rob Strom and Shaula Yemini. 1985. Optimistic Recovery in Distributed

Systems. ACM Trans. Comput. Syst. 3, 3 (Aug. 1985), 204–226. https:
//doi.org/10.1145/3959.3962

[62] Xiongchao Tang, Jidong Zhai, Bowen Yu,Wenguang Chen, andWeimin
Zheng. 2017. Self-Checkpoint: An In-Memory Checkpoint Method
Using Less Space and Its Practice on Fault-Tolerant HPL. In Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’17). ACM, New York, NY, USA, 401–413.
https://doi.org/10.1145/3018743.3018745

[63] Leslie G. Valiant. 1990. A bridging model for parallel computation.
Commun. ACM 33, 8 (1990), 103–111. https://doi.org/10.1145/79173.
79181

[64] Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu. 2017. CoRAL:
Confined Recovery in Distributed Asynchronous Graph Processing.
In Proceedings of the Twenty-Second International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’17). ACM, New York, NY, USA, 223–236. https:
//doi.org/10.1145/3037697.3037747

[65] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan. 2014. Replication-
Based Fault-Tolerance for Large-Scale Graph Processing. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. 562–573. https://doi.org/10.1109/DSN.2014.58

[66] R. Wang, E. Yao, M. Chen, G. Tan, P. Balaji, and D. Buntinas. 2011.
Building algorithmically nonstop fault tolerant MPI programs. In 2011
18th International Conference on High Performance Computing. 1–9.
https://doi.org/10.1109/HiPC.2011.6152716

[67] Panruo Wu and Zizhong Chen. 2014. FT-ScaLAPACK: Correcting Soft
Errors On-line for ScaLAPACK Cholesky, QR, and LU Factorization
Routines. In Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing (HPDC ’14). ACM,

New York, NY, USA, 49–60. https://doi.org/10.1145/2600212.2600232
[68] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.

2013. GraphX: A Resilient Distributed Graph System on Spark. In First
International Workshop on Graph Data Management Experiences and
Systems (GRADES ’13). ACM, New York, NY, USA, Article 2, 6 pages.
https://doi.org/10.1145/2484425.2484427

[69] E. Yao, R. Wang, M. Chen, G. Tan, and N. Sun. 2012. A Case Study
of Designing Efficient Algorithm-based Fault Tolerant Application
for Exascale Parallelism. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium. 438–448. https://doi.org/10.1109/
IPDPS.2012.48

[70] John W. Young. 1974. A First Order Approximation to the Optimum
Checkpoint Interval. Commun. ACM 17, 9 (Sept. 1974), 530–531. https:
//doi.org/10.1145/361147.361115

[71] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=2228298.2228301

[72] G. Zheng, Xiang Ni, and L. V. KalÃľ. 2012. A scalable double in-memory
checkpoint and restart scheme towards exascale. In IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshops
(DSN 2012). 1–6. https://doi.org/10.1109/DSNW.2012.6264677

[73] Xiaowei Zhu,Wenguang Chen,Weimin Zheng, and XiaosongMa. 2016.
Gemini: A Computation-centric Distributed Graph Processing System.
In Proceedings of the 12th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI’16). USENIX Association, Berkeley, CA,
USA, 301–316. http://dl.acm.org/citation.cfm?id=3026877.3026901

https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/3959.3962
https://doi.org/10.1145/3959.3962
https://doi.org/10.1145/3018743.3018745
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3037697.3037747
https://doi.org/10.1145/3037697.3037747
https://doi.org/10.1109/DSN.2014.58
https://doi.org/10.1109/HiPC.2011.6152716
https://doi.org/10.1145/2600212.2600232
https://doi.org/10.1145/2484425.2484427
https://doi.org/10.1109/IPDPS.2012.48
https://doi.org/10.1109/IPDPS.2012.48
https://doi.org/10.1145/361147.361115
https://doi.org/10.1145/361147.361115
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1109/DSNW.2012.6264677
http://dl.acm.org/citation.cfm?id=3026877.3026901

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Programming Model and Execution Model
	2.2 Fault Tolerant Distributed Graph Analytics

	3 Classes of Graph Analytics Algorithms
	3.1 Overview
	3.2 Classification of Graph Algorithms
	3.3 Distributed Graph Analytics

	4 Fault Tolerance in Distributed-Memory
	4.1 Overview
	4.2 Self-Stabilizing Graph Algorithms
	4.3 Locally-Correcting Graph Algorithms
	4.4 Globally-Correcting Graph Algorithms
	4.5 Phoenix API

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Fault-free performance
	5.3 Overhead of fault tolerance

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

