Language-level

Concurrency Support:
Go

Chris Rossbach

Outline for Today

* Questions?
* Administrivia

* Lab 3 looms large: Go go go!
* Agenda

* Message Passing background

* Concurrency in Go
* Thoughts and guidance on Lab 3

* Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz questions

* How are promises and futures different or the same as goroutines
 What is the difference between a goroutine and a thread?

* What is the difference between a channel and a lock?

* How is a channel different from a concurrent FIFO?

* What is the CSP model?

* What are the tradeoffs between explicit vs implicit naming in
message passing?

* What are the tradeoffs between blocking vs. non-blocking
send/receive in a shared memory environment? In a distributed one?

Event-based Programming: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle
* Shared state requires locks =

* Priority inversion

y Remember
* Deadlock this slide?
* Incorrect synchronization

* Events: restructure programming model to have no threads!

. o o Mt ivat

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle

* Shared state requires locks =
* Priority inversion

Remember

* Deadlock this slide?
* Incorrect synchronization

* Events: restructure programming model to have no threads!

Message Passing: Motivation

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle

* Shared state requires locks =2

* Priority inversion
* Deadlock
* Incorrect synchronization

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning paraIIellsm for different environments
* Load bhs s/assignment brittle

hared state requires lock

* Priority inversion
e Deadlock
* Incorrect synchronization

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning paraIIellsm for different environments
* Load bals : ignment brittle

hared state requires lock

* Priority inversion
e Deadlock
* Incorrect synchronization

* Message passing:
e Threads aren’t the problem, shared memory is

e restructure programming model to avoid communication through shared memory
(and therefore locks)

Message Passing

Message

"

Object A Object B

Sending Object Receiving Object

Message Passing

Message Passing

* Threads/Processes send/receive messages

Message

Object A Object B
Sending Object Receiving Object

Message Passing

Message Passing

* Threads/Processes send/receive messages

* Three design dimensions
* Naming/Addressing: how do processes refer to each other?
* Synchronization: how to wait for messages (block/poll/notify)?
» Buffering/Capacity: can messages wait in some intermediate structure?

Message

7N\

Object A Object B

Sending Object Receiving Object

Message Passing

Naming: Explicit vs Implicit

Also: Direct vs Indirect

Naming: Explicit vs Implicit

Also: Direct vs Indirect

e Explicit Naming
e Each process must explicitly name the other party
* Primitives:
e send(receiver, message) ?
Eadl

* receive(sender, message)

Naming: Explicit vs Implicit

Also: Direct vs Indirect

e Explicit Naming
* Each process must explicitly name the other party
* Primitives:

* send(receiver, message) .
* receive(sender, message)
* Implicit Naming

* Messages sent/received to/from mailboxes
* Mailboxes may be named/shared

* Primitives: - m -

* send(mailbox, message)
* receive(mailbox, message)

Synchronization

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

Blocking:
+ simple
+ avoids wasteful spinning

Non-blocking:
+ maximal flexibility

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

 |f both send and receive block
e “Rendezvouz” Blocking:
Operation acts as an ordering primitive + simple .
. + avoids wasteful spinning
Sender knows receiver succeded
Receiver knows sender succeeded

Particularly appealing in distributed environment [EEAEIRIEIENI:S
+ maximal flexibility

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
* Non-buffered message passing

* No shared memory

* Send/recv are blocking
» Explicit naming of src/dest processes

* Also called direct naming

. pe sequential communication
* Receiver specifies source process o g -
e Alternatives: indirect
* Port, mailbox, queue, socket m single thread of control = synchronous
* Guarded commands to let processes wait ® autonomous m reliable
m cncapsulated m unidirectional
m named m point-to-point
m static m fixed topology

Communicating Sequential Processes
Hoare 1978

h 4

CSP: language for multi-processor machines
* Non-buffered message passing
* No shared memory
* Send/recv are blocking v
» Explicit naming of src/dest processes
* Also called direct naming
* Receiver specifies source process
e Alternatives: indirect

sequential communication
process channel

v

* Port, mailbox, queue, socket m single thread of control ®m synchronous
* Guarded commands to let processes wait ® autonomous m reliable
m cncapsulated m unidirectional
m named m point-to-point
m static m fixed topology

< Transputer!

An important problem in the CSP model:

An important problem in the CSP model:

* Processes need to receive messages from different senders

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders

* Only primitive: blocking receive(<name>, message)

Q;

R
S

P

recv_multi(Q) {

}

receive(Q, message)
receive(R, message)
receive(S, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

. . recv_multi(Q) {

receive(Q, message)
- receive(R, message)

- / receive(S, message)
}

Is there a problem
with this?

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

. . recv_multi(Q) {

receive(Q, message)

X
- receive(R, message)
e

/ receive(S, message)
}

Is there a problem
with this?

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

Q
R| P | receive(port, message)
S|

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

P | receive(port, message)

OK to block (good)
Requires indirection (less good)

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming

while(...) {

* Requires receiver to poll senders

a
Q)

R
S

}

try_receive(Q, message)
try_receive(R, message)
try_receive(S, message)

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

while(...) {
. try_receive(Q, message)
try_receive(R, message)
. . try_receive(S, message)

s | }

Polling (bad)

No indirection (good)

Blocking and Direct Naming

Blocking and Direct Naming

e How to achieve it?

Blocking and Direct Naming

* How to achieve it?
» CSP provides abstractions/primitives for it

Alternative / Guarded Commands

Guarded command is delayed until either Alternative command:

e guard succeeds - cmd executes or e |ist of one or more guarded commands

e guard fails > command aborts e separated by ”||”
e surrounded by square brackets
Guarded Commands

<guard>— <command list>
i [x=2y->max:i=x || y=2x->max:=y]

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

n <10—Alindex(n); n :=n + 1;
n < 10; A?index(n) —next = MyArray(n);

Alternative / Guarded Commands

Guarded command is delayed until either Alternative command:

e guard succeeds > cmd executes or e |ist of one or more guarded commands
e guard fails > command aborts e separated by ”||”

Gunrded Commands e surrounded by square brackets

<guard>— <command list>
i [x=2y->max:=x || y=2x->max:=y]

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

* Enable choice preserving concurrency

n <10—Alindex(n); n :=n + 1; * Hugely influential
n <10; A?index(n) —next = MyArray(n);

* goroutines, channels, select, defer:
* Trying to achieve the same thing

Go Concurrency

e CSP: the root of many languages
* Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

* Go is a Newsqueak-Alef-Limbo derivative
 Distinguished by first class channel support
* Program: goroutines communicating through channels
e Guarded and alternative-like constructs in select and defer

A boring function

func boring(msg string) {
for 1 :=0; ; i++ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

}

func main() {
boring("boring!")
}

A boring function

func boring(msg string) {
for 1 :=0; ; 1++ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

}

func main() {
boring("boring!")
}

lgnoring a boring function

Go statement runs the function
Doesn’t make the caller wait
Launches a goroutine

Analagous to & on shell command

package main

import (
" fmtu
"math/rand"
L1 t lmE' n

)

func main() {
go boring("boring!")
}

lgnoring a boring function

package main

* Go statement runs the function import (

’ . "fl‘f‘lt"
* Doesn’t make the caller wait T
* Launches a goroutine "time"

* Analagous to & on shell command)

func main() {
go boring("boring!")
}

func main() {

« Keep main() around a while go boring(*boring!®)
) . fmt.Println("I'm listening.")
e See goroutine actually running time.Sleep(2 * time.Second)

fmt.Println("You're boring; I'm leaving.")

lgnoring a boring function

Go statement runs the function
Doesn’t make the caller wait
Launches a goroutine

Analagous to & on shell command

* Keep main() around a while
e See goroutine actually running

package main
I'm listening.

import (boring! 0
" fmt" boring!
"math/rand" boring!
"time" boring!

) boring!

boring! 5
You're boring; I'm leaving.

func main() {
go boring("bor
}

Program exited.

func main() {
go boring("boring!")
fmt.Println("I'm listening.")
time.Sleep(2 * time.Second)
fmt.Println("You're boring; I'm leaving.")

Goroutines

Goroutines

* Independently executing function launched by go statement

Goroutines

* Independently executing function launched by go statement
* Has own call stack

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

* Not a thread
* One thread may have 1000s of go routines!

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

* Not a thread
* One thread may have 1000s of go routines!

* Multiplexed onto threads as needed to ensure forward progress
e Deadlock detection built in

Channels

* Connect goroutines allowing them to communicate

// Declaring and initializing.
var c¢ chan int

c = make(chan int)

// or

c := make(chan int)

// Sending on a channel.
c <-1

// Receiving from a channel.
// The "arrow" indicates the direction of data flow.
value = <-c

Channels

* Connect goroutines allowing them to communicate

Channels

* Connect goroutines allowing them to communicate

func main() {

c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5;: 1++ {

fmt.Printf("You say: %g\n", <-c) // Receive expression is just a value.
}

fmt.Println("You're boring; I'm leaving.")

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any suitable value.
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

Channels

* Connect goroutines allowing them to communicate

func main() {

c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5;: 1++ {

fmt.Printf("You say: %g\n", <-c) // Receive expression is just a value.
}

fmt.Println("You're boring; I'm leaving.")

You say: "boring! 0"
You say: "boring! 1"
You say: "boring! 2"
You say: "boring! 3"

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any s
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

You say: "boring! 4"
You're boring; I'm leaving.

Program exited.

Channels

, , * When main executes <-c, it blocks
* Connect goroutines allowing tf , _
* When boring executes c <- value it blocks

func main() { * Channels communicate and synchronize
c := make(chan string)
go boring("boring!", c)
for i := 0; 1 <5; i++ {
fmt.Printf("You say: %g\n", <-c) // Receive expression is just a value.
}

fmt.Println("You're boring; I'm leaving.")

You say: "boring!
You say: "boring!
You say: "boring!
You say: "boring!

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any s
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

You say: "boring!
You're boring; I'm leaving.

Program exited.

Select: Handling Multiple Channels

* All channels are evaluated

* Select blocks until one communication can proceed
e Cf. Linux select system call, Windows WaitForMultipleObjectsEx
e Cf. Alternatives and guards in CPS

* |f multiple can proceed select chooses randomly

* Default clause executes immediately if no ready channel

select {
case vl := <-cl:

fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)
default:
fmt.Printf("no one was ready to communicate\n")

¥

Select: Handling Multiple Channels

* All channels are evaluated

* Select blocks until one communication can proceed
e Cf. Linux select system call, Windows WaitForMultipleObjectsEx
e Cf. Alternatives and guards in CPS

* |f multiple can proceed select chooses randomly

* Default clause executes immediately if no ready channel

select {
case vl := <-cl:

fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:

fmt.Printf("sent %v to c3\n", 23)
default:

fmt.Printf("no one was ready to communicate\n")

Without default clause becomes rendezvous!

¥

Google Search

* Workload:
* Accept query
e Return page of results (with ugh, ads)
* Get search results by sending query to
* Web Search
* Image Search
* YouTube
* Maps
* News, etc

* How to implement this?

Search 1.0

* Google function takes query and returns a slice of results (strings)
* Invokes Web, Image, Video search serially

func Google(query string) (results []JResult) {
results = append(results, Web(query))
results = append(results, Image(query))
results = append(results, Video(query))
return

Search 2.0

* Run Web, Image, Video searches concurrently, wait for results
* No locks, conditions, callbacks

func Google(query string) (results []Result) {
c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

for 1 :=0; 1 < 3; i++ {

result := <-c

results = append(results, result)
}
return

Search 2.1

 Don’t wait for slow servers: No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

timeout := time.After(80 * time.Millisecond)
for 1 := 0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return

¥
}

return

Search 3.0

e Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)

go func() { c <- First(query, Web1, Web2) } ()

go func() { c <- First(query, Imagel, Image2) } ()
go func() { c <- First(query, Videol, Video2) } ()

timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {

select {

case result := <-c:

results = append(results, result)
case <-timeout:

fmt.Println("timed out")

return

}
¥

return

func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { ¢ <- replicas[i](query) }
for 1 := range replicas {
go searchReplica(i)

}

return <-c

Other tools in Go

e Goroutines and channels are the main primitives

* Sometimes you just need a reference counter or lock
* “sync” and “sync/atomic” packages
* Mutex, condition, atomic operations

* Sometimes you need to wait for a go routine to finish
* Didn’t happen in any of the examples in the slides
* WaitGroups are key

WaitGroups

testQ() {

wg sync.WaitGroup
wg.Add(4)
ch := make(int)
for 1:=0; i<4; i++ {
g0 (id int) {
aval, amore := <- ch

if(amore) {
fmt.Printf("reader #%d got %d value\n", id, aval)

} else {
fmt.Printf("channel reader #%d terminated with nothing.\n", id)

}
wg .Done()

H(1)
}

time.Sleep (1000 * time.Millisecond)

close(ch)
wg.Wait()

WaitGroups

testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(int)
for 1:=0; i<4; i++ {
g0 (id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)

} else {
fmt.Printf("channel reader #%d terminated with nothing.\n", id)

~

by
wg.Done()

H(1)
}

time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

Go: magic or threadpools and concurrent Qs?

 \We’ve seen several abstractions for

* Control flow/exection
* Communication

* Lots of discussion of pros and cons
* Ultimately still CPUs + instructions

* Go: just sweeping issues under the language interface?
* Why is it OK to have 100,000s of goroutines? VON NEUMANN ARCHITECTURE
 Why isn’t composition an issue? MEMORY

CPU
INPUT > * OUTPUT

CONTROL ||ARITHMETIC/
UNIT LOGIC UNIT

Go implementation details

Go implementation details

* M = “machine” =2 OS thread

Go implementation details

* M = “machine” = OS thread
| e P = (processing) context

Go implementation details

* M = “machine” = OS thread
| e P = (processing) context
i * G = goroutines

Go implementation details

* M = “machine” = 0OS thread
| | * P = (processing) context
i * G = goroutines
| e Each ‘M’ has a queue of goroutines

Go implementation details

* M = “machine” =2 OS thread

T - | * P = (processing) context
P | r —{ ¢ * G = goroutines
| | | * Each ‘M’ has a queue of goroutines
G = G G
|

e Goroutine scheduling is cooperative
e Switch out on complete or block
* Very light weight (fibers!)
e Scheduler does work-stealing

Go implementation details

s | struct
(6 :/ G h"l {

S - bytex
N bytex
s bytex
bytex
voidx*
int 16

int32
M

N

* M = “machine” > OS thread
* P =(processing) context

* G = goroutines

G

stackguard; // stack guard information

stackbase;
stack(;
entry;
param;
status;
goid;
lockedm:;

// base of stack

// current stack pointer

// initial function

// passed parameter on wakeup

// status

// unique id
// used for locking M’s and G'’s

Go implementation details

* M = “machine” =2 OS thread

T - | * P = (processing) context
P | r —{ ¢ * G = goroutines
| | | * Each ‘M’ has a queue of goroutines
G = G G
|

e Goroutine scheduling is cooperative
e Switch out on complete or block
* Very light weight (fibers!)
e Scheduler does work-stealing

Go implementation details

* M = “machine” =2 OS thread

- i e P = (processing) context
P F G P —. * G = goroutines
| J | struct M oo ’
G : G G G | {
- G curg; // current running goroutine
|_ int32 id ; // unique id
£ - int32 locks; // locks held by this M
. MCache xmcache; // cache for this thread
- G lockedg; // used for locking M’s and G’s
uintptr createstack [32]; // Stack that created this thread
M nextwaitm; // next M waiting for lock

Go implementation details

* M = “machine” =2 OS thread

[| [struct Schea{
am [T 4 Lock; // global sched lock.
P —1 & | P —. // must be held to edit G or M queues
| . -) ‘ ¢ G xgfree; // available g’s (status == Gdead)
" I.--f"fG -eare _:-/ o) . G *ghe_ad; // q’ s waiting to run queue
) W G xgtail; // tail of g’s waiting to run queue
| | int32 gwait; // number of g’s waiting to run
A int32 gcount; // number of g’s that are alive
e Qo int32 grunning; // number of g’s running on cpu
’ . // or in syscall .
ad

M xmhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

Go implementation details

* M = “machine” =2 OS thread

[| [struct Sched {

am [T 4 Lock; // global sched lock.
P —1 & | P —. // must be held to edit G or M queues
| . -) ‘ G xgfree; // available g’s (status == Gdead)
- I.--f"fG A (& _:-/ o) G *ghead; // 9’s waiting to run queue

) W G xgtail; // tail of g’s waiting to run queue

| | int32 gwait; // number of g’s waiting to run
A int32 gcount; // number of g’s that are alive
e Qo int32 grunning; // number of g’s running on cpu

— // or in syscall

M xmhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

Go implementation details

* M = “machine” =2 OS thread

[| [struct Sched {

am [T 4 Lock; // global sched lock.
P —1 & | P —. // must be held to edit G or M queues
| . -) ‘ G xgfree; // available g’s (status == Gdead)
- I.--f"fG A (& _:-/ o) G *ghead; // 9’s waiting to run queue

) W G xgtail; // tail of g’s waiting to run queue

| | int32 gwait; // number of g’s waiting to run
A int32 gcount; // number of g’s that are alive
e Qo int32 grunning; // number of g’s running on cpu

— // or in syscall

M xmhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

1000s of go routines?

testQ(consumers int) {
startTimes["testQ"] = time.Now()
wg sync.WaitGroup
wg.Add(consumers)
ch := make(int)
for i:=0; i<consumers; i++ {
go (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()
F(1)

}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

1000s of go routines?

* Creates a channel
testo(int) { e Creates “consumers” goroutines
es consumers in .
startTimes[“testQ"] = time.Now() . Each of them tries to read from the channel
wg sync.WaitGroup * Main either:
wg.Add(consumers) * Sleeps for 1 second, closes the channel

el "= makeg i)) * sends “consumers” values
for i:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)

}
time.Sleep(1000 * time.Millisecond)

close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

1000s of go routines?

* (Creates a channel
— int) { * Creates “consumers” goroutines
es consumers 1n .
startTimes[“testQ"] = time.Now() * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) * Sleeps for 1 second, closes the channel

el "= makeg i)) * sends “consumers” values
for i:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else { PS C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 10
info("channel readé¢estQ: 1.0016706s
} PS C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 100
wg.Done() testQ: 1.0011655s
(1) PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000
} testQ: 1.0084796s
time.Sleep(1000 * time.Millise®S C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 10000
close(ch) testQ: 1.0547925s
wg.Wait() PS C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 100000
stopTimes["testQ"] = time.Now(testQ: 1.3907835s
PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000000
test(Q: 4.2485814s

7 NPy POINT TOr C <- X Trom COMpIIED CO0E
//goznosplit

124 func chansendl(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

Ix
* generic single channel send/recy
* If block is not nil,

* then the protocol will not
* sleep but return if it could
* not complete.

*

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
148 func chansend(c *hchan, ep unsafe.Pointer, block boel, callerpc uintptr) bool {
. 0 if € ==nil {
L] if Iblock {
o You Can Just read It- return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

if debugChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/1 Fast path: check for failed non-blocking eperation without acquiring the lock.

I

{1 After cbserving that the channel is not closed, we observe that the channel is

{f not ready for sending. Each of these observations is & single word-sized read

/f (first c.closed and second c.recvg.first or c.qcount depending on kind of channel).
/1 Because a closed channel cannot transiticn from ‘ready for sending' to

ff 'not ready for sending', even if the channel is closed between the two cbservations,
{1 they imply a moment between the two when the channel was both not yet closed

/1 and not ready for sending. We behave as if we observed the channel at that mement,
/f and report that the send cannot proceed.

1

ff It is okay if the reads are reordered here: if we observe that the chamnel is not
/f ready for sending and then observe that it is not closed, that implies that the

/1 channel wasn't closed during the first observation.

171 if Iblock &% c.closed == @ & ((c.datagsiz == B && c.recvq.first == nil) ||

172 (c.datagsiz » @ && c.goount == c.datagsiz)) {

73 refurn false

}

6 var 1@ ints4

177 if blockprofilerate > @ {
178 te = cputicks()
. }

lock(&c. lock)

183 if c.closed =0 {
134 unlock{&c, lock)
1 panic{plainError{"send on closed channel"))

}

if sg := c.recvg.dequeued); sg != nil {
// Found a waiting receiver. We pass the value we want to send

/{ directly to the receiver, bypassing the channel buffer (if any).
candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !block {
return false

¥

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
o S throw("unreachable™)

if debugChan {
print("chansend: chan=", ¢, "\n")

if raceenabled {

racereadpc{unsafe.Pointer(c), callerpc, funcPC({chansend))

7 NPy POINT TOr C <- X Trom COMpIIED CO0E

//goznosplit

func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

Ix
* generic single channel send/recy

* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

x

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
8 func chansend(c *hchan, ep unsafe.Pointer, block boel, callerpc uinfptr) bool {
if c=nil {
if Iblock {

return false
1
gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

}

if debugChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/1 Fast path: check for failed non-blocking eperation without acquiring the lock.
I
{1 After cbserving that the channel is not closed, we observe that the channel is
{f not ready for sending. Each of these observations is & single word-sized read
/f (first c.closed and second c.recvg.first or c.qcount depending on kind of channel).
/1 Because a closed channel cannot transiticn from ‘ready for sending' to
ff 'not ready for sending', even if the channel is closed between the two cbservations,
{1 they imply a moment between the two when the channel was both not yet closed
/1 and not ready for sending. We behave as if we observed the channel at that mement,
/f and report that the send cannot proceed.
1
ff It is okay if the reads are reordered here: if we observe that the chamnel is not
/f ready for sending and then observe that it is not closed, that implies that the
/1 channel wasn't closed during the first observation.
if Iblock &% c.closed == @ & ((c.datagsiz == B && c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ ints4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c. lock)

if c.closed =0 {
unlock{&c, lock)
panic{plainError{"send on closed channel"))

}

if sg := c.recvg.dequeued); sg != nil {
// Found a waiting receiver. We pass the value we want to send

/{ directly to the receiver, bypassing the channel buffer (if any).
candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !block {
return false

¥

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
o S throw("unreachable™)

if debugChan {
print("chansend: chan=", ¢, "\n")

} Race detection! Cool!

I
L

racereadpc(unsafe.Pointer(c), c

if raceenabled

lerpc, funcPC{chansend))

7 NPy POINT TOr C <- X Trom COMpIIED CO0E

//goznosplit

func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

Ix
* generic single channel send/recy

* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

x

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
8 func chansend(c *hchan, ep unsafe.Pointer, block boel, callerpc uinfptr) bool {
if c=nil {
if Iblock {

return false
1
gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

}

if debugChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/1 Fast path: check for failed non-blocking eperation without acquiring the lock.
I
{1 After cbserving that the channel is not closed, we observe that the channel is
{f not ready for sending. Each of these observations is & single word-sized read
/f (first c.closed and second c.recvg.first or c.qcount depending on kind of channel).
/1 Because a closed channel cannot transiticn from ‘ready for sending' to
ff 'not ready for sending', even if the channel is closed between the two cbservations,
{1 they imply a moment between the two when the channel was both not yet closed
/1 and not ready for sending. We behave as if we observed the channel at that mement,
/f and report that the send cannot proceed.
1
ff It is okay if the reads are reordered here: if we observe that the chamnel is not
/f ready for sending and then observe that it is not closed, that implies that the
/1 channel wasn't closed during the first observation.
if Iblock &% c.closed == @ & ((c.datagsiz == B && c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ ints4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c. lock)

if c.closed =0 {
unlock{&c, lock)
panic{plainError{"send on closed channel"))

}

if sg := c.recvg.dequeued); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send
/{ directly to the receiver, bypassing the channel buffer (if any).
candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

7 NPy POINT TOr C <- X Trom COMpIIED CO0E
//goznosplit

124 func chansendl(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

Ix
* generic single channel send/recy
* If block is not nil,

* then the protocol will not
* sleep but return if it could
* not complete.

*

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
148 func chansend(c *hchan, ep unsafe.Pointer, block boel, callerpc uintptr) bool {
. 0 if € ==nil {
L] if Iblock {
o You Can Just read It- return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

if debugChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/1 Fast path: check for failed non-blocking eperation without acquiring the lock.

I

{1 After cbserving that the channel is not closed, we observe that the channel is

{f not ready for sending. Each of these observations is & single word-sized read

/f (first c.closed and second c.recvg.first or c.qcount depending on kind of channel).
/1 Because a closed channel cannot transiticn from ‘ready for sending' to

ff 'not ready for sending', even if the channel is closed between the two cbservations,
{1 they imply a moment between the two when the channel was both not yet closed

/1 and not ready for sending. We behave as if we observed the channel at that mement,
/f and report that the send cannot proceed.

1

ff It is okay if the reads are reordered here: if we observe that the chamnel is not
/f ready for sending and then observe that it is not closed, that implies that the

/1 channel wasn't closed during the first observation.

171 if Iblock &% c.closed == @ & ((c.datagsiz == B && c.recvq.first == nil) ||

172 (c.datagsiz » @ && c.goount == c.datagsiz)) {

73 refurn false

}

6 var 1@ ints4

177 if blockprofilerate > @ {
178 te = cputicks()
. }

lock(&c. lock)

183 if c.closed =0 {
134 unlock{&c, lock)
1 panic{plainError{"send on closed channel"))

}

if sg := c.recvg.dequeued); sg != nil {
// Found a waiting receiver. We pass the value we want to send

/{ directly to the receiver, bypassing the channel buffer (if any).
candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

TIT [ey POINT TOr C <- X Trom COMpILED CO0E

23 [fgo:nosplit

func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

Ix
* generic single channel send/recy
* If block is not nil,

* then the protocol will not
* sleep but return if it could

* not complete.
*

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
8 func chansend(c *hchan, ep unsafe.Pointer, block boel, callerpc uinfptr) bool {
. 0 : if € ==nil {
L] 142 if Iblock {
i You Can Just read It- 143 return false
144 1

145 gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)

* https://golang.org/src/runtime/chan.go o e

149 if debugChan {
o . print(“"chansend: chan=", ¢, "\n")
P Some h Igh I Ig if sg := c.recvq.dequeue(); sg != nil { }
// Found a waiting receiver. We pass the value we want to send if raceenabled { ‘
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))
J/ directly to the receiver, bypassing the channel buffer (if any). !
/1 Fast path: check for failed non-blocking eperation without acquiring the lock.
send(c, sg, ep, func() { unlock(&c.lock) }, 3) !
return true {1 After cbserving that the channel is not closed, we observe that the channel is
{f not ready for sending. Each of these observations is & single word-sized read
} /f (first c.closed and second c.recvg.first or c.qcount depending on kind of channel).

/1 Because a closed channel cannot transiticn from ‘ready for sending' to
ff 'not ready for sending', even if the channel is closed between the two cbservations,
154 {1 they imply a moment between the two when the channel was both not yet closed
55 /1 and not ready for sending. We behave as if we observed the channel at that mement,
/f and report that the send cannot proceed.
1
ff It is okay if the reads are reordered here: if we observe that the chamnel is not
/f ready for sending and then observe that it is not closed, that implies that the
/1 channel wasn't closed during the first observation.
if Iblock &% c.closed == @ & ((c.datagsiz == B && c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ ints4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c. lock)

if c.closed =0 {
unlock{&c, lock)
panic{plainError{"send on closed channel"))

if sg := c.recvg.dequeued); sg != nil {
// Found a waiting receiver. We pass the value we want to send

/{ directly to the receiver, bypassing the channel buffer (if any).
candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

7 NPy POINT TOr C <- X Trom COMpIIED CO0E
//goznosplit

124 func chansendl(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

Ix
* generic single channel send/recy
* If block is not nil,

* then the protocol will not
* sleep but return if it could
* not complete.

*

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
148 func chansend(c *hchan, ep unsafe.Pointer, block boel, callerpc uintptr) bool {
. 0 if € ==nil {
L] if Iblock {
o You Can Just read It- return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

if debugChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/1 Fast path: check for failed non-blocking eperation without acquiring the lock.

I

{1 After cbserving that the channel is not closed, we observe that the channel is

{f not ready for sending. Each of these observations is & single word-sized read

/f (first c.closed and second c.recvg.first or c.qcount depending on kind of channel).
/1 Because a closed channel cannot transiticn from ‘ready for sending' to

ff 'not ready for sending', even if the channel is closed between the two cbservations,
{1 they imply a moment between the two when the channel was both not yet closed

/1 and not ready for sending. We behave as if we observed the channel at that mement,
/f and report that the send cannot proceed.

1

ff It is okay if the reads are reordered here: if we observe that the chamnel is not
/f ready for sending and then observe that it is not closed, that implies that the

/1 channel wasn't closed during the first observation.

171 if Iblock &% c.closed == @ & ((c.datagsiz == B && c.recvq.first == nil) ||

172 (c.datagsiz » @ && c.goount == c.datagsiz)) {

73 refurn false

}

6 var 1@ ints4

177 if blockprofilerate > @ {
178 te = cputicks()
. }

lock(&c. lock)

183 if c.closed =0 {
134 unlock{&c, lock)
1 panic{plainError{"send on closed channel"))

}

if sg := c.recvg.dequeued); sg != nil {
// Found a waiting receiver. We pass the value we want to send

/{ directly to the receiver, bypassing the channel buffer (if any).
candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

TIT [ey POINT TOr C <- X Trom COMpILED CO0E
123 //go:nosplit

124 func chansendl(c *hchan, elem unsafe.Pointer) {
135 chansend(c, elem, true, getcallerpe())

126 }

Ix
123 * generic single channel send/recy
138 * If block is not nil,

[] []
131 * then the protocol will mot
132 * sleep but return if it could
133 * not complete,
3 x
135 * sleep can wake up with g.param == nil
136 * when a channel involved in the sleep has

137 * been closed. it is easiest to loop and re-run
132 * the operation; we'll see that it's now closed.

:— 'F;;c chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
0 . 141 if € ==nil {
o d . 142 i Iblock
You Can JUSt rea It' 295 ff Sends and receives on unbuffered or empty-buffered channels are the
296 ff only operations where one running goroutine writes to the stack of &
. []
httpS.//gOlang.Org/S 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 f/ happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
388 ff wviolating that assumption, but the write barrier has to work.)
381 ff typedmemmove will call bulkBarrierPrekWrite, but the target bytes B
382 ff are not in the heap, so that will not help. We arrange to call e e

at the channel is

// memmove and typeBitsBulkBarrier instead. + word-sized read
. 1§ on kind of channel}.
384 :ﬁding‘ to
. . . n the two chservations,
385 func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { I et yet closed
iannel at that mement,
386 // src 1s on our stack, dst is a slot on another stack.
3 ;E: 7 it the channel is not
- B . it implies that the
388 // Once we read sg.elem out of sg, it will no longer ‘
1 == nil)
389 // be updated if the destination’s stack gets copied (shrunk).
318 /f/ S50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)
313 memmove(dst, src, t.size)
314 }

134 unlock{&c, lock)
185 panic{plainError{"send on closed channel"))

}

188 if sg := c.recvg.dequeued); sg != nil {

139 /{ Found a waiting receiver. We pass the value we want to send

198 /{ directly to the receiver, bypassing the channel buffer (if any).
1a1 candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

TIT [ey POINT TOr C <- X Trom COMpILED CO0E
123 //go:nosplit

124 func chansendl(c *hchan, elem unsafe.Pointer) {
135 chansend(c, elem, true, getcallerpe())

126 }

Ix
123 * generic single channel send/recy
138 * If block is not nil,

[] []
131 * then the protocol will mot
132 * sleep but return if it could
133 * not complete,
3 x
135 * sleep can wake up with g.param == nil
136 * when a channel involved in the sleep has

137 * been closed. it is easiest to loop and re-run
132 * the operation; we'll see that it's now closed.

:— 'F;;c chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
0 . 141 if € ==nil {
o d . 142 i Iblock
You Can JUSt rea It' 295 ff Sends and receives on unbuffered or empty-buffered channels are the
296 ff only operations where one running goroutine writes to the stack of &
. []
httpS.//gOlang.Org/S 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 f/ happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
388 ff wviolating that assumption, but the write barrier has to work.)
381 ff typedmemmove will call bulkBarrierPrekWrite, but the target bytes B
382 ff are not in the heap, so that will not help. We arrange to call e e

at the channel is

// memmove and typeBitsBulkBarrier instead. + word-sized read
. 1§ on kind of channel}.
384 :ﬁding‘ to
. . . n the two chservations,
385 func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { I et yet closed
iannel at that mement,
386 // src 1s on our stack, dst is a slot on another stack.
3 ;E: 7 it the channel is not
- B . it implies that the
388 // Once we read sg.elem out of sg, it will no longer ‘
1 == nil)
389 // be updated if the destination’s stack gets copied (shrunk).
318 /f/ S50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)
313 memmove(dst, src, t.size)
314 }

134 unlock{&c, lock)
185 panic{plainError{"send on closed channel"))

}

188 if sg := c.recvg.dequeued); sg != nil {

139 /{ Found a waiting receiver. We pass the value we want to send

198 /{ directly to the receiver, bypassing the channel buffer (if any).
1a1 candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

TIT [ey POINT TOr C <- X Trom COMpILED CO0E
123 //go:nosplit

124 func chansendl(c *hchan, elem unsafe.Pointer) {
135 chansend(c, elem, true, getcallerpe())

126 }

Ix
123 * generic single channel send/recy
138 * If block is not nil,

[] []
131 * then the protocol will mot
132 * sleep but return if it could
133 * not complete,
3 x
135 * sleep can wake up with g.param == nil
136 * when a channel involved in the sleep has

137 * been closed. it is easiest to loop and re-run
132 * the operation; we'll see that it's now closed.

:—C 'F;;c chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
0 . 141 if € ==nil {
o d . 142 i Iblock
You Can JUSt rea It' 295 ff Sends and receives on unbuffered or empty-buffered channels are the
296 ff only operations where one running goroutine writes to the stack of &
. []
httpS.//gOlang.Org/S 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 f/ happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
388 ff wviolating that assumption, but the write barrier has to work.)
381 ff typedmemmove will call bulkBarrierPrekWrite, but the target bytes B
382 ff are not in the heap, so that will not help. We arrange to call e e

at the channel is

""""""""""""" // memmove and typeBitsBulkBarrier instead. + word-sized read
: 304 et
G15ta(:k f,t.i?.(,:.k. 385 func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { ot
- : ‘Iv 386 // src 1s on our stack, dst is a slot on another stack. e s e
: ‘ 387 it the channel is not
G2stack : [T """" 388 // Once we read sg.elem out of sg, it will no longer pmeE
309 // be updated if the destination’'s stack gets copied (shrunk). s
per-goroutine stacks heap 318 /f/ S50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)
G1 writes to G2's stack! 1 } memmove(dst, src, t.size)
154 © umlock(Ee.lock)
: panic(plaingrrer{"send on closed channel™))
: if sg i= c.recvg.dequeue(); sg != nil {
189 /{ Found a waiting receiver. We pass the value we want to send

198 /{ directly to the receiver, bypassing the channel buffer (if any).
1a1 candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

TIT [ey POINT TOr C <- X Trom COMpILED CO0E
123 //go:nosplit

124 func chansendl(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}
=

* generic single channel send/recy
* If block is not nil,

[] [] L
131 * then the protocol will mot
132 * sleep but return if it could
133 * not complete,

e e s
BEERBRR

x
* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run

* the operation; we'll see that it's now closed.

139 *

148 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if € ==nil {

* You can just read it: ...

Sends and receives on unbuffered or empty-buffered channels are the

[
(]
LN

° htt .// I / 296 ff only operations where one running goroutine writes to the stack of
ps' go ang'org S 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 f/ happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
388 ff wviolating that assumption, but the write barrier has to work.)
381 ff typedmemmove will call bulkBarrierPrekWrite, but the target bytes B
382 ff are not in the heap, so that will not help. We arrange to call qwmﬂmm%
""""""""""""" 383 f/ memmove and typeBitsBulkBarrier instead. e
1§ on kind of channel}.
384 :ﬁding‘ to :
. . n the two observations,
stack| 385 func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { I et yet closed

iannel at that mement,

L
(= y]

// src 1s on our stack, dst is a slot on another stack.

it the channel is not
it implies that the

.
1
—
.

[R W)
1

a8 // Once we read sg.elem out of sg, it will no longer !
1 == nil)
[y 389 // be updated if the destination’s stack gets copied (shrunk).
per-goroutine stacks P 318 /f/ S50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)
. 313 memmove(dst, src, t.size
G1 writes to G2's stack! 314} £8% e :
154 © umlock(Ee.lock)
panic{plainError{"send on closed channel"))
}
Tra nsputers did this in hardwa re in the 905 btW- : e =J5rsﬁ:::Eg:i::r(]éjrﬁel]:e:ﬂui pass the value we want to send

199 /{ directly to the receiver, bypassing the channel buffer (if any).
1a1 candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:

* https://golang.org/src/runtime/chan.go

* Some highlights:

Race detection built in

Fast path just write to receiver stack
Often has no capacity = scheduler hint!
Buffered channel implementation fairly standard

[T EMry POINT T0 C {- X Trom COMpIIED COOE
f/goinosplit

func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

generic single channel send/recv
If block is not nil,

then the protocol will not
sleep but return if it could
not complete.

sleep can wake up wi
* when a channel i ed in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

x

th g.param == nil

/

func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

if c=nil {
if Iblock {
return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

if debugChan {
print("chansend: chan=", ¢, "\n")

if raceenabled {
racereadpc(unsafe.Peinter(c), callerpc, funcPC{chansend))

{/ Fast path: check for failed non-blocking operation witheut acquiring the lock.

i

// After cbserving that the channel is not closed, we observe that the channel is

{f not ready for sending. Each of these observations is a single word-sized read

/! (first c.closed and second c.recvg.first or c.qcount depending on kind of channel).
Because a closed channel cannot transition from 'ready for sending' to

‘not ready for sending', even if the channel is closed between the two chservatiens,
they imply a moment between the two when the channel was both not yet closed

and net ready for sending. We behave as if we observed the channel at that mement,
and report that the send cannot proceed.

It is okay if the reads are reordered here: if we observe that the chamnel is not
ready for sending and then observe that it is not closed, that implies that the

/1 channel wasn't closed during the first observation.

if Iblock &% c.closed == @ & ((c.datagsiz == @ && c.recvq.first == nil) |
(c.datagsiz » @ && c.grount == c.datagsiz)) {

refurn false

var 1@ ints4
if blockprofilerate > @ {
te = cputicks()

lock(&c. lock)

if c.closed =0 {
unlock{&c, lock)
panic{plainError{"send on closed channel"))

if sg := c.recvg.dequeued); sg != nil {

Found a waiting receiver. We pass the value we want to send

/{ directly to the receiver, bypassing the channel buffer (if any).
candfr co an Eunedt T ooanlerbiBr Tarky 1 3%

https://golang.org/src/runtime/chan.go

Go: Sliced Bread 2.0?

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

e Limit Go’s use in systems programming compared to languages with manual memory
management

33

Go: Sliced Bread 2.0?

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

Pauses and overhead of garbage collection

e Limit Go’s use in systems programming compared to languages with manual memory
management

Right tradeoffs? None of these problems have to do with concurrency!

33

Questions?

34

