Transactions
Transactional Memory

Chris Rossbach

Outline for Today

e Questions?
e Administrivia
* Keep working on those labs!

* Agenda
* Transactions
* Transactional Memory

e Acks: Yoav Cohen for some STM slides

Faux Quiz questions

* How are promises and futures related? Since there is disagreement
on the nomenclature, don’t worry about which is which—just
describe what the different objects are and how they function.

e How does HTM resemble or differ from Load-linked Stored-
Conditional?

* What are some pros and cons of HTM vs STM?
* What is Open Nesting? Closed Nesting? Flat Nesting?
* How does 2PL differ from 2PC?

* Define ACID properties: which, if any, of these properties does TM
relax?

Sequential Consistency Redux

* All operations are executed in some sequential order

* each process issues operations in program order
* Any valid interleaving is allowed

* All agree on the same interleaving
e Each process preserves its program order

P1: W{x)a P1: W(x)a

P2 Wx)b P2: Wix)b

P3 R(x)b R(x)a P3. R(x)b R(x)a

P4 R(X)b R(x)a P4 R(xJa R(x)b
(a) (b)

Are either of these SC?

Transactions and Transactional Memory

* 3 Programming Model Dimensions:
* How to specify computation
* How to specify communication
* How to specify coordination/control transfer

communication

Coordingtiop,

9
00((\
* Threads, Futures, Events etc.
* Mostly about how to express control

* Transactions
* Mostly about how to deal with shared state

Transactions

Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) { create(file, dir) {

delete(file, old-dir) alloc-disk(file, header, data)
add(file, new-dir) write(header)
} add (file, dir)
}

Problems: crash in the middle / visibility of intermediate state
* Modified data in memory/caches
* Even if in-memory data is durable, multiple disk updates

Problem: Unreliability

* Want reliable update of two resources (e.g. in two disks, machines...)

 Move file from Ato B
* Create file (update free list, inode, data block)

» Bank transfer (move $100 from my account to VISA account)

* Move directory from server Ato B

* Machines can crash, messages can be lost

Can we use messages? E.g.
with retries over unreliable
medium to synchronize with
guarantees?

* Even if all messages
delivered, can’t assume—

Genera "S pa radox maybe some message
didn’t get through.

* Two generals on separate mountains * No solution: one of the
few CS impossibility

e Can only communicate via messengers
results.
* Messengers can get lost or captured

* Need to coordinate attack
 attack at same time good, different times bad!

General A 2 General B: let’s attack at dawn
General B 2 General A: OK, dawn.

General A =2 General B: Check. Dawn it is.
General B 2 General A: Alright already—dawn.

Transactions can help

(but can’t solve it)

* Solves weaker problem:
2 things will either happen or not
* not necessarily at the same time

* Core idea: one entity has the power to say yes or no for all
 Local txn: one final update (TXEND) irrevocably triggers several

* Distributed transactions
e 2 phase commit
* One machine has final say for all machines
e Other machines bound to comply

What is the role of
synchronization here?

Transactional Programming Model

begin transaction;
x = read(“x-values”,);
y = read(“y-values”,);
Z = X+Y;
write(“z-values”, z,);
commit transaction;

What has changed from
previous programming
models?

ACID Semantics

* Atomic —all up \what are they?
* Consistent —sy 4 A

* Isolated —novie
* Durable —once s |

* Are subsets evie D
 When would ACI be usetul?
* ACD?
* |solation only?

0SS updates

begin transaction;

)

X = read(“x-values”,);

-

)

y = read(“y-values’,);

-

Z = X+Y;

write(“z-values”, z,);

commit transaction;

Transactions: Implementation

* Key idea: turn multiple updates into a single one

* Many implementation Techniques
* Two-phase locking
* Timestamp ordering
e Optimistic Concurrency Control
* Journaling
e 2,3-phase commit
* Speculation-rollback
* Single global lock
* Compensating transactions

Key problems:
* output commit
* synchronization

Implementing Transactions

BEGIN _TXN(); SEGIRL NG|
_ ’ LOCK(single-global-lock);

x = read(“x-values”,); }
vy = read(“y-values”,);

Z = X+y;
write(“z-values”, z,);
COMMIT_TXN(); COMMIT_TXN{){
UNLOCK(single-global-lock);
}

Pros/Cons?

Two-phase locking

B commits

* Phase 1: only acquire locks in changes that BEGIN_TXN() {
* Phase 2: unlock at commit depend on A’s rwset = Union(rset, wset);
e 3voids deadlock updates rwset = sort(rwset);
forall x in rwset
A: grab locks LOCK(x);
BEGIN TXN(); v modifyxy, }
Lock X, vV A: unlock y, x
X =X + 1 B: grab locks CJ?M?;”T.—TXN() {
y =y - 1 B: update x, orall x in rwset
unlock y, X , . Y UNLOCK(x);
COMMIT TXN(); B:unlocky, x)
- > B: COMMIT
A CRASH Pros/Cons?

What happens on failures?

Two-phase commit

* N participants agree or don’t (atomicity)

* Phase 1: everyone “prepares”

* Phase 2: Master decides and tells everyone to actually commit
* What if the master crashes in the middle?

2PC: Phase 1

Coordinator sends REQUEST to all participants
Participants receive request and

Execute locally

Write VOTE_COMMIT or VOTE_ABORT to local log
Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: C>S1: delete foo from /, C=>S2: add foo to /

A S

Failure case: Success case:

S1 writes rm /foo, VOTE_COMMIT to log S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT S1 sends VOTE_COMMIT

S2 decides permission problem S2 writes add foo to /

S2 writes/sends VOTE_ABORT S2 writes/sends VOTE_COMMIT

2PC: Phase 2

* Case 1: receive VOTE_ABORT or timeout

* Write GLOBAL_ABORT to log
* send GLOBAL_ABORT to participants

* Case 2: receive VOTE_COMMIT from all

* Write GLOBAL_COMMIT to log
* send GLOBAL_COMMIT to participants

* Participants receive decision, write GLOBAL * to log

2PC corner cases

Phase 1 Phase 2

1 Coordinator sends REQUEST to all participants Y° Case 1: receive VOTE_ABORT or timeout
* Write GLOBAL_ABORT to log
* send GLOBAL _ABORT to participants

3. Execute locally
. * Case 2: receive VOTE_COMMIT from all
4. Write VOTE_COMMIT or VOTE_ABORT to local log + Write GLOBAL COMMIT to log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator * send GLOBAL_COMMIT to participants

X 2. Participants receive request and

Z- Participants recv decision, write GLOBAL_* to log

What if participant crashes at X?
e Coordinator crashes at Y?
Participant crashes at Z?

* Coordinator crashes at W?

2PC limitation(s)

* Coordinator crashes at W, never wakes up

* All nodes block forever!

e Can participants ask each other what happened?
e 2PC: always has risk of indefinite blocking

* Solution: (yes) 3 phase commit!
* Reliable replacement of crashed “leader”
* 2PC often good enough in practice

3 basic flavors:
* Flat: subsume inner transactions

Nested Transactions * @necek subsue v seial ol

* Open: pause transactional context

 Composition of transactions

e E.g. interact with multiple organizations, each supporting txns
* Travel agency: canonical example

* Nesting: view transaction as collection of:
* actions on unprotected objects
e protected actions that my be undone or redone
* real actions that may be deferred but not undone
e nested transactions that may be undone

* Open Nesting details:
* Nested transaction returns name and parameters of compensating transaction
* Parent includes compensating transaction in log of parent transaction
* Invoke compensating transactions from log if parent transaction aborted
* Consistent, atomic, durable, but not isolated

Transactional Memory: ACI

remove(list, x) {

lock(list);
Transactional Memory : p?? B glnd(llSt’ R)E
_ _ if(pos
Make multiple memory accesses atomic erase(list, pos);:
* All or nothing — Atomicity unlock(list);

* No interference — Isolation }

* Correctness — Consistency ,
- . remove(list, x) {
* No durability, for obvious reasons

TXBEGIN();
pos = find(list, x);
* Keywords : Commit, Abort, Speculative if(pos)
access, erase(list, pos);
Checkpoint TXEND() ;

¥

The Real Goal

remove(list, x) {
atomic {
pos = find(list, x);
if(pos)
erase(list, pos);

Transactions: super-awesome

Transactional Memory: also super-awesome, but:
Transactions '=TM

TM is an implementation technique

Often presented as programmer abstraction }
Remember Optimistic Concurrency Control

erase(list, pd

D();

remove(list, x) {
begin_tx();

. pos = find(list, x);
IA Simple TM 17 (065
erase(list, pos);
end_tx();
pthread mutex t g global lock; }

begin tx() {
T pthread mutex lock(g global lock);

}
end Ex() {1
T pthread mutex unlock(g global lock);
}
aboreEf{) 4
T // can't happen
} Actually, this

works fine...

But how can we
improve it?

Concurrency Control Revisited

Consider a hash-table

00— 0B -G -0

1 b @

2 wmmpd

3 =

4 ===

5 =0 -0

Concurrency Control Revisited

thread T1 thread T2
ht.add();

ht.add();

if(ht.contains(({))
if(ht.contains((@l))

ht.del(@) ;
ht.del(.);x

Concurrency Control Revisited

TN

thread T1 thread T2
ht.lock() ht.lock();
ht.add(); ht.add();

if(ht.contains(({))
if(ht.contains((@l))

ht.del(@®);

ht.del (@B);
ht.unlock(); ht.unlock();

Pessimistic concurrency control

thread T1 thread T2

ht.lock(); ht.lock();
ht.add({)); ht.add({));

if(ht.contains(@))) if(ht.contains({C])))

ht.del(@m); ht.del(@) ;
ht.unlock(); ht.unlock();

Optimistic concurrency control

What do we do when
same data is accessed?

thread T1 thread T2
ht.lock(); ht.lock();

ht.add({)); ht.add({T));

if(ht.contains(@))) if(ht.contains({C])))
ht.del(@m); ht.del(@) ;

-
_EH ht.unlock(); ht.unlock();

TM Primer

Key ldeas:

Critical sections
execute concurrently
Conflicts are
detected dynamically

If conflict
serializability is
violated, rollback

Key Abstractions:

* Primitives
* xbegin, xend, xabort

e Conflict
& =+ {Wa} M {Rb U Wb}

» Contention Manager
* Need flexible policy

TM basics: example

Working Set Working Set
R{} 0: xbegin 0: xbegin; R{}
W{ 1: read A 1: read A W{

2:read B 2:read B
3: if(cpu % 2) 3: if(cpu % 2)
4: write C 4: write C
5: else 5: else
6: read C 6: read C
7 ... 7 ...
8: xend 8: xend
Assume Contention
B RO Rl
cpu%)', and in the write
sptibfrofia back

cpul commits

TM Implementation

i

* Eager Versioning
* Lazy Versioning

* Pessimistic Concurrency Control
* Optimistic Concurrency Control

* Object Granularity
* Word Granularity
* Cache line Granularity

PC:0 |

| Worklng Set |

‘ O xbegin

I'({\é e
wg o

hv4

1:read A
2 read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7 ...
8:xeqd

|:> 0: xbegin;

1:read A
2 read B

3: if(cpu % 2)
4: write C
5: else
6: tead C
e oae

= 8:xend

ﬂ|

| Working Set

cpu 1

PC: 8

Ry
Wi

TM Design Alternatives

 Hardware (HTM)
* Caches track RW set, HW speculation/checkpoint

» Software (STM)

* [nstrument RW
* Inherit TX Object

— oN (9]
© © ©
© O (¢°)
v ()] Q
. S | .
5C nC =C
= — =

Hardware Hardware

Hardware Transactional Memory

 |dea: Track read / write sets in HW
 commit / rollback in hardware as well

* Cache coherent hardware already manages much of this

* Basic idea: cache == speculative storage
e HTM ~= smarter cache

e Can support many different TM paradigms
* Eager, lazy
* optimistic, pessimistic

Hardware TM

e L. Key ideas
* “Small” modification to cache y

* Checkpoint architectural state
* Caches: ‘versioning’ for memory

e Change coherence protocol

Transactional
Accesses

Regular

Accesses * Conflict detection in hardware

e ‘Commit’ transactions if no conflict
e Abort’ on conflict (or special cond)
e ‘Retry’ aborted transaction

Pros/Cons?

Case Study: SUN Rock

* Major challenge: diagnosing cause of Transaction aborts
* Necessary for intelligent scheduling of transactions

* Also for debugging code

» debugging the processor architecture / parchitecture

* Many unexpected causes of aborts

* Rock v1 diagnostics unable to distinguish distinct failure modes

I Mask Name Description and example cause
Ox001 EXOG Exogenous - Intervening code has run: cps register contents are invalid.
0x002 | COH Coherence - Conflicting memory operation
0x004 | TCC Trap Instruction - A tap instruction evaluates o “taken™
Ox008 | INST Unsupported Instruction - Instruction not supported inside transactions.
Ox010 | PREC Precise Exception - Execution generated a precise exception.
0x020 | ASYNC | Async - Received an asynchronous interrupt.
Ox040 | S1IZ Size - Transactuion write set exceeded the size of the store quewe
Ox080 | LD Load - Cache line in read set evicted by wransaction.
0x100 | ST Store - Data TLB miss on a store.
0x200 | CTI Control transfer - Mispredicted branch
0x400 | FP Floating point - Divide instruction.
Ox300 | UCTI Unresolved control transfer - branch executed withouwt resolving load on which it depends

Table 1. cp= register: bit definttions and example failure reasons that set them

remove(list, x) {
begin_ tx();

A Slmp\e STM pos = find(list, x);

if(pos)
pthread mutex t g global lock; erase(list, pos);
end_tx();
begin tx() { }
T pthread mutex lock(g global lock);
}
end tx() { Is this
} pthread mutex unlock(g global lock); Transactional
Memory?
abort () {
// can't happen
T} oy TM is a deep area:

consider it for your
project!

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:
= Write!(L,v) - thread i writes v to L
= Readi(L,v) - thread i reads v from L
= LLi(L,v) - thread i reads v from L, marks L read by |

= SC(L,v) - thread i writes v to L
= returns success if Lis marked as read by i.
= Otherwise it returns failure.

Memory

Thread 2

STM Design Overview

Threads: Rec Objects

class Rec {
boolean stable = false;
boolean, int status= (false,®); //can have two values..
boolean allWritten = false;
int version = 0;

'!.nt size = 0; Each thread =2
int locs[] = {null}; instance of Rec class
int oldValues[] = {null}; (short for record).

Rec instance defines
current transaction on thread

Memory: STM Object

public class STM {
int memory[];
Rec ownerships[];

public boolean, int[] startTranscation(Rec rec, int[] dataSet){...};

private void initialize(Rec rec, int[] dataSet)

private void transaction(Rec rec, int version, boolean isInitiator) {...};
private void acquireOwnerships(Rec rec, int version) {...};

private void releaseOwnershipd(Rec rec, int version) {...};

private void agreeOldValues(Rec rec, int version) {...};

private void updateMemory(Rec rec, int version, int[] newvalues) {...};

Flow of a transaction

STM

Threads

Success

A

Initiate
helping
transaction L

Failure

“To failed loc
(isInitiator:=F)

(Null, 0) (Failure,failed loc)

»

Implementation

public boolean, int[] startTranscation(Rec .
initialize(rec, dataSet);
rec.stable = true;
transaction(rec, rec.version
rec.stable = false;
rec.version++;
if (rec.status) return (true, rec.oldValues);
else return false;

true);

Implementation

private void transaction(Rec rec, int version, boolea
acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);

if (status == null) { // success in acquireOwnerships
if (versoin != rec.version) return;
SC(rec.status, (true,));

(status, failedLoc) = LL(rec.status);

if (status == true) { // execute the transaction
agreeOldValues(rec, version);
int[] newVals = calcNewVals(rec.oldvalues);
updateMemory(rec, version);
releaseOwnerships(rec, version);

b
else { // failed in acquireOwnerships
releaseOwnerships(rec, version);
if (isInitiator) {
Rec failedTrans = ownerships[failedlLoc];
if (failedTrans == null) return;
else { // execute the transaction that owns th on you w
int failedVer = failedTrans.version;
if (failedTrans.stable) transaction(failedTrang4 failedVer, false);
3
3
b

Implementation

private void acquireOwnerships(Rec rec, int version) {
for (int j=1; j<=rec.size; j++) {
while (true) do {
int loc = locs[j];

if LL(rec.status) != null return; // transaction completed by some
other thread

Rec owner = LL(Cownerships[loc]);
if (rec.version != version) return;
if (owner == rec) break; // location is already mine
if (owner == null) { acquire location
if (SC(rec.status, (null,
if (SCCownerships[loc], re
break;

}
}
}

else {// location is taken by someone else
if (SC(rec.status, (false, j))) return;

}

Implementation

private void agreeOldValues(Rec rec, int version) {
for (int j=1; j<=rec.size; j
int loc = locs[j];
if (LL(rec.oldvalues[loc]) !'= null) {
if (rec.version != version) return;

SC(rec.oldvalues[loc], memory[loc]);

private void updateMemory(Rec rec, int version, int[] newvalues) {
for (int j=1; j<=rec.size; j++) {
int loc = locs[j];
int oldValue = LL(memory[loc]);

if (rec.allWritten) return; // work _a
if (rec.version != version) return;
if (oldValue !'= newValues[j]) SC(memory[loc], newValues[j]);
ks
if (! LLCrec.allWritten)) {
if (rec.version != version) SC(rec.allWritten, true);
ks

HTM vs. STM

Hardware _____ softwae

Fast (due to hardware operations) Slow (due to software validation/commit)
Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

How would you get the best of both?

Hybrid-TM

* Best-effort HTM (use STM for long trx)

e Possible conflicts between HW,SW and HW-SW Trx
 What kind of conflicts do SW-Trx care about?
 What kind of conflicts do HW-Trx care about?

* Some initial proposals:

 HyTM: uses an ownership record per memory location
(overhead?)

* PhTM: HTM-only or (heavy) STM-only, low instrumentation

Questions?

