
Parallel Architectures
Chris Rossbach

Outline for Today
• Questions?
• Administrivia
• Exam soon

• Agenda
• Parallel Architectures (GPU background)

Faux Quiz questions

• What is hardware multi-threading; what problem does it solve?
• What is the difference between a vector processor and a scalar?
• Implement a parallel scan or reduction
• How are GPU workloads different from GPGPU workloads?
• How does SIMD differ from SIMT?
• List and describe some pros and cons of vector/SIMD architectures.
• GPUs historically have elided cache coherence.Why? What impact does it

have on the the programmer?
• List some ways that GPUs use concurrency but not necessarily parallelism.

A modern GPU: Volta V100
• 80 SMs
• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores
• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

Roughly: all
of pfxsum

1,000s X/sec

How do you program a machine
like this? pthread_create()?

Also:
CU or ACE

GPUs: Outline

• Background from many areas
• Architecture

• Vector processors
• Hardware multi-threading

• Graphics
• Graphics pipeline
• Graphics programming models

• Algorithms
• parallel architectures à parallel algorithms

• Programming GPUs
• CUDA
• Basics: getting something working
• Advanced: making it perform

Architecture Review: Pipelines
Processor algorithm:

main() {
while(true)

do_next_instruction();
}

do_instructions() {
while(true) {

instruction = fetch();
enqueue(DECODE, instruction);

}}

do_decode() {
while(true) {

instruction = dequeue();
ops, regs = decode(instruction);
enqueue(EX, instruction);

}}

do_execute() {
while(true) {

instruction = dequeue();
execute_calc_addrs(ops, regs);
enqueue(MEM, instruction);

}}

….

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

main() {
pthread_create(do_instructions);
pthread_create(do_decode);
pthread_create(do_execute);
…
pthread_join(…);
…

}

Architecture Review: Pipelines
Processor algorithm:

main() {
while(true) {

do_next_instruction();
}

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

What is the name of this kind of parallelism?

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {
pthread_create(

do_instructions());
}

}
do_instructions() {

while(true) {
instruction = fetch();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}}
Other techniques extract

parallelism here, try to let the
machine find parallelism

• Pros: Simple
• Cons: programmer has to find the parallelism!

Superscalar processors main() {
for(i=0; i<CORES; i++)

pthread_create(decode_exec);
while(true) {

instruction = fetch();
enqueue(instruction);

}
}

decode_exec() {
instruction = dequeue();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Doesn’t look that different does it? Why do it?

independent

Remove extra
instruction streams

Enables independent instruction parallelism.

Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)
pthread_create(exec);
while(true) {

ops, regs = fetch_decode();
enqueue(ops, regs);

}
}

exec() {
ops, regs = dequeue();
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Single instruction stream, multiple computations

Why decode same instruction
sequence over and over?

But now all my instructions need multiple operands!

12

Vector Processors

• Process multiple data elements simultaneously.
• Common in supercomputers of the 1970’s 80’s and 90’s.
• Modern CPUs support some vector processing instructions

• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or,
• SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972 à 64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data à
Programming model has to change

Vector Processors
Implementation:
• Instruction fetch control logic shared
• Same instruction stream executed on
• Multiple pipelines
• Multiple different operands in parallel

GPUs: same basic idea

When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput?

Only helps if memory can keep the pipeline busy!

Hardware multi-threading

• Address memory bottleneck
• Share exec unit across
• Instruction streams
• Switch on stalls

• Looks like multiple cores to the OS
• Three variants:
• Coarse
• Fine-grain
• Simultaneous

Running example

Thread A Thread B Thread C Thread D

• Colors à pipeline full
• White à stall

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Does not cover short stalls
• Hardware support required

• PC and register file for each thread
• little other hardware
• Looks like another physical CPU to

OS/software

Fine-grained multithreading
• Threads interleave instructions

• Round-robin
• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread
• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses
• Pipeline runs with rare stalls

• Doesn’t make full use of multi-issue

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming
• dynamic scheduling facility of multi-

issue architecture

• Hardware support:
• Register files, PCs per thread
• Temporary result registers pre commit
• Support to sort out which threads get

results from which instructions

• Maximal util. of execution units

Skip A

Skip C

Why Vector and Multithreading Background?
GPU:
• A very wide vector machine
• Massively multi-threaded to hide memory latency
• Originally designed for graphics pipelines…

Graphics ~= Rendering
Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures à

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output
• 2D projection seen from the view-point

2510/6/21

Grossly over-simplified rendering algorithm

foreach(vertex v in model)
map vmodel à vview

fragment[] frags = {};
foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));
foreach fragment f in frags

choose_color(f);
display(visible_fragments(frags));

Dandelion 2610/6/21

Algorithm à Graphics Pipeline
foreach(vertex v in model)

map vmodel à vview

fragment[] frags = {};
foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));
foreach fragment f in frags

choose_color(f);
display(visible_fragments(frags));

Dandelion 27

OpenGL pipeline

To first order, DirectX looks the same!

10/6/21

Graphics pipeline à GPU architecture

Dandelion 28

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

10/6/21

Late Modernity: unified shaders

Dandelion 29

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count10/6/21

Mostly Modern: Pascal

Definitely Modern: Turing

Modern Enough: Pascal SM

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:
• Data

• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 33

Even as GPU architectures become more
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box

with colored dots

But what if my problem isn’t
painting a box?!!?!

10/6/21

The big ideas still present in GPUs
• Simple cores
• Single instruction stream
• Vector instructions (SIMD) OR
• Implicit HW-managed sharing (SIMT)

• Hide memory latency with HW multi-threading

Dandelion 3410/6/21

Programming Model

• GPUs are I/O devices, managed by user-code
• “kernels” == “shader programs”
• 1000s of HW-scheduled threads per kernel
• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)
• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel
• a group of blocks (or warps)

Dandelion 4110/6/21

Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

If you can express your
algorithm using these patterns,

an apparently fundamentally
sequential algorithm can be

made parallel

Map

• Inputs
• Array A
• Function f(x)

• map(A, f) à apply f(x) on all elements in A
• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);

}
map(points, findNearestCenter)

Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

Reduce

• Input
• Associative operator op
• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (map(sqr, point[i]))

}
accum = reduce(+, map(sqr, point))

Why must op be associative?

Scan (prefix sum)

• Input
• Associative operator op
• Ordered set s = [a, b, c, … z]
• Identity I

• scan(op, s) = [I, a, (a op b), (a op b op c) …]

• Scan is the workhorse of parallel algorithms:
• Sort, histograms, sparse matrix, string compare, …

Summary

• Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs

