GPUs going once...
GPUs going twice...
you get the idea

Chris Rossbach
cs3/8

e Qutline for Today

* (Questions?

IIIIIIII
EEEEEEN
QEIIIIIIII
EEEEEEN
IIIIIIII
g [[11 [[
IIIIIIII
g (11| []|

FF T I
e Administrivia
‘ Start thinking about Projects!
* Agenda
D/ LD/ SFU LD * GPU performance
3T ST | &7 * GPU advanced topics

* Divergence

e Device APIs vs Dataflow

* Coherence
Acknowledgements:

e http://developer.download.nvidia.com/compute/developertrainingmaterials/presentatio
ns/cuda language/Introduction to CUDA C.pptx

e http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx

e http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

e Tor Aamodt’s 2013 paper

ey,

i 232
3E 3
EREEE
8
§ 8
IHEENI
INEEEA

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

Faux Quiz Questions

* How is occupancy defined (in CUDA nomenclature)?
* What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?

* Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under
what conditions might you want to use or not use it and why?

* What is control flow divergence? How does it impact performance?

* What is a bank conflict?

* What is work efficiency?

* What is the difference between a thread block scheduler and a warp scheduler?
* How are atomics implemented in modern GPU hardware?

* Howis _shared__ memory implemented by modern GPU hardware?

* Whyis shared _memory necessary if GPUs have an L1 cache? When will an L1 cache provide
all the benefit of __shared memory and when will it not?

* |Is cudaDeviceSynchronize still necessary after copyback if | have just one CUDA stream?

How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Launc on_ GPU
add<k< >>»(d_a, d_ b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

e Usually things are correct if grid*block dims >= input size

* Getting good performance is another matter

I Review: Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks Remaining TBs are queued

Register File

SMs

Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMis split blocks into warps
* Unit of HW scheduling for SM

e 32 threads each

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared

* how to reason about resource demands of a CUDA kernel @iy
* Enables device-specific online tuning of kernel parameter{ {ilEEEEEE st =

Hardware Resources Are Finite
|

Kernel K Thread Block Control
Distributor d J_IJ Limits the #thread blocks
/ : >
¥ ,' TB O
SM
Scheduler ; Warp Schedulers
‘l' ‘l' \l: \l: Warp Context -l_ Limits the #threads
| | | | | | | |'I 1 -|

Occupancy:

* (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

* Registers/thread sp |[sp][sp][sp
* Shared memory/thread block — Limits the #threads
* Number of scheduling slots: blocks, warps Register File B ,E _
Limits the #thread blocks
e Limits on the denominator: L1/Shared Memory >

* Memory bandwidth

* Scheduler slots What is the performance impact of varying kernel resource demands?

y

Kernel
Distributor

S
Sche

uler

— o Z €T

Limits the #thread blocks

Limits the #threads

Impact of Thread Block Size

|SM||SM||SM||SM|'

DRAM

Example: v100:
* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

R R
w “.

:
.

eeeeeeeeeeee

* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>
* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)

 To maximize utilization, thread block size should balance
e Limits on active thread blocks vs.
* Limits on active warps

Limits the #threads

Limits the #thread blocks

DRAM

SM — Stream Multiprocessor
SP— Stream Processor

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!
* Loss of concurrency of 256 threads!
» 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
* 8 blocks would over-subscribe register file
e Occupancy drops to .875!

uler

Impact of #Registers Per Thread &g

Thread Block Control |

Limits the #thread blocks

Limits the #threads

ister
L1/Shared Memory e

Limits the #threads

Limits the #thread blocks

Impact of Shared Memory

e Shared memory is allocated per thread block
e Can limit the number of thread blocks executing concurrently per SM
* Shared mem/block * # blocks <= total shared mem per SM

* gridDim and blockDim parameters impact demand for
* shared memory
* number of thread slots
* number of thread block slots

Balance

template < class T >
__host__

RN RN

cudaOccupancyMaxActiveBlocksPerMultiprocessor (int* numBlocks, T func, int blockSize, size_t dynamicSMemSize) [inline]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy
func

- Kernel function for which occupancy is calulated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

« Navigate the tradeoffs

maximize core utilization and memory bandwidth utilization
Device-specific

Goal: Increase occupancy until one or the other is saturated

17

Parallel Memory Accesses

* Coalesced main memory access (16/32x faster)
* HW combines multiple warp memory accesses into a single coalesced access

* Bank-conflict-free shared memory access (16/32)

* No alignment or contiguity requirements

e CC 1.3: 16 different banks per half warp or same word
e CC2.x+3.0: 32 different banks + 1-word broadcast each

Parallel Memory Architecture

In a parallel machine, many threads access memory
 Therefore, memory is divided into banks
* Essential to achieve high bandwidth

Each bank can service one address per cycle

« A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

* Conflicting accesses are serialized

19

Coalesced Main Memory Accesses

single coalesced access

NVIDIA

Address 132

Address 136

Address 156

L
‘ Thread 8 + Address 164 ‘ Thread 8 + Address 164
‘ Thread 10 v Address 168 ‘ Thread 10 b Address 168
‘ Thread 11 + Address 172 ‘ Thread 11 + Address 172
‘ Thread 12 + Address 176 ‘ Thread 12 t Address 176
‘ Thread 13 L Address 180 ‘ Thread 13 Address 180
‘ Thread 14 + Address 184 ‘ Thread 14 + Address 184
‘ Thread 15 + Address 188 ‘ Thread 15 L Address 188

NVIDIA

one and two coalesced accesses™

Address 128

% Address 132

Address 136

k Address 148

t Address 152

h Address 160

k Address 164

h Address 168

Thread 12 ‘

M Address 172

b Address 176

Thread 13

Address 180

Thread 14

Address 184

Thread 15

Address 188

20

Bank Addressing Examples

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

e No Bank Conflicts

Linear addressing
stride ==

e No Bank Conflicts
e Random 1:1 Permutation

Thread 0

Thread 1 4
Thread 2 ‘
Thread 3 ‘
Thread 4 ‘
Thread 5

Thread 6
Thread 7

Thread 15

ph

21

Bank Addressing Examples

* 2-way Bank Conflicts

 Linear addressing
stride ==

Thread O

Thread 1 ‘
Thread 2 ~
Thread 3 "

Thread 8 >
Thread 9

Thread 10
Thread 11 Bank 15

e 8-way Bank Conflicts

 Linear addressing
stride ==

Thread O
Thread 1

Thread 2 |

Thread 3 ’
Thread 4 '
Thread 5 ,\
Thread 6 »

Thread 7

x8

Thread 15

22

Linear Addressing

e Q@Given:

~ _shared float shared[256];
float foo =

shared|[baselndex + s *
threadldx.x];

* This is only bank-conflict-free if s
shares no common factors with the
number of banks

e 16 on G80, so s must be odd

23

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

double atomicAdd(double *data, double val)

{

IGPU Atomics & Di\/er while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

tries to lock tries to lock Non-locked

__device__ void example(bool condition)

4— Warp of Threads ——— {

ataave [TTTTTTTTTTTIITT] $#(condition)

pun_Ehis Finst();
else
then_run_this();

Mtactve [TTTTTTTTTTTTTTT] converged_again();

Advanced Topic: GPU Programming Models

Layered abstractions

programmer-

visible interface process files ' user-mode
LIBC/CLR Runtimes/libs
OS interface OS-level
} abstractions
Hardware

interface —~—

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

10/20/21

GPU abstractions

~— Runtime
support

programmer- = oy —
visible interface -— GPGPU shaders language

§ APIs kernels integration

- GPU Runtime (e.g. OpenCL)
1 0S-level
abstraction! \>§ [mmap] T
RRREHS Y B
interfaees >

>3

No kernel-facing API

OS resource-management limited
3. Poor composability

10/20/21

No OS support -> No isolation

GPU benchmark throughput

1200

©
C
O 1000
A
g_ 800
c
O 600
-
O
(>) 400
=

200
. . O

Higher is no CPU load high CPU load

better

ge-convolution in CUDA
dows 7 x64 8GB RAM
| Core 2 Quad 2.66GHz

dia GeForce GT230

10/20/21

CPU+GPU schedulers not integrated!
...other pathologies abundant

Composition: Gestural Interface

Raw images
“*Hand"”

events

TR _’::J
noisy point cloud

capture camera
Hneifss xform
|
geometric
transformation

» Requires OS mediation
» High data rates
» Abundant data parallelism

...use GPUs!

10/20/21

What We’d Like To Do

#> capture | xform | filter | detect &
CPU CPU

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components -2 GPU
» Sequential components = CPU
» Using OS provided tools
» processes, pipes

10/20/21

GPU Execution model

= GPUs cannotrun OS:

= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

= Host CPU must "manage” GPU execution

Program inputs explicitly transferred/bound at runtime
Device buffers pre-allocated

Main

memory

Copy inputs T Copy outputs lSend commands

GPU

10/20/21

memory

user

kernel

HW

Data migration

#> capture | |

capture

| detect &

filter

copy-xfer

detgct

10/20/21

Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

What happens if | want the following?
MatrixD=AxB xC

10/20/21

Composed matrix multiplication

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix(Q);
copyFromGPU(C);

Matrix "

AxXBxC(Matrix A, B, C) { }
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(AxB,C);

AXBXC;

10/20/21

Composed matrix multiplication

Matrix
] gemm(Matrix A, Matrix B) {
AxB copied from copyTOGPuEAg;
ToGPU(B) ;
GPU memory... TnvokeGPUO)

_ Matrix C = new-Matrix();
Matrix 2 '
AxBxC(Matrix¥A, B, C) { } |

Matrix = gemm(A,B) ;
Matrix AXBXC = gemm(AxB,C);
AXBXC;

10/20/21

Composed matrix multiplication

Matrix
AXBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(
AXBXC:;

Matrix
gemmi{viatrix A, Matrix B) {

copyToGPU(B) ;
invokeiPU();
Matrix C = new Matrix(Q);

copyFromGPU(C);
C;

,C);

...only to be copied
right back!

10/20/21

What if I have many GPUs?

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

10/2

0/21

What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copytToGPU(dev, A);
copyToGPU(dev, B);
1nvokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

What happens if | want the following?
MatrixD=AxB xC

10/20/21

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
C;

Matrix
AxBxC(Matrix A,B,C) {
Matrix AxB = gemm(, A,B);
Matrix AxXBXC = gemm(, AXB,C);
AXBXC;

10/20/21

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
copyToGPU(A) ;
Rats...now | can CopyToGPU(B) ;
only use 1 GPU. invokeGPUQ) ;

Matrix C = new Matrix();
copyFromGPU(C) ;
C;

How to partition
computation?

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AxXBXxC = gemm(dev, AxB,C);
AXBXC;

10/20/21

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPE'ES E‘B\g ;
copylo ’
manageable for many GPUs. invokeGPUQ) :
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
C;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
AXBXC;

¥ Why don’t we have this problem with CPUs?

10/20/21

Dataftlow: a better abstraction

Matrix: A Matrix: B

Matrix: C

= nodes = computation
= edges = communication

= Expresses parallelism explicitly
= Minimal specification of data movement: runtime does it.

= asynchrony is a runtime concern (not programmer concern)
= No specification of compute—>device mapping: like threads!

10/20/21

Advanced Topic: GPU Coherence

Review: Cache Coherence

Tag State Data Tag State Data

I/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states

= Initially = 'I" = Invalid

= Readone =2 'E’' =2 exclusive

= Reads =2 'S’ 2 multiple copies possible

= Write = ‘M’ = single copy =2 lots of cache coherence traffic

GPU Cache Coherence Challenges

« Challenge 1: Coherence traffic

No coherence

I MESI

B GPU-VI

Q
=
-—

©

—
—
-—

Q

mﬂ

c

c

o

o

—

Q
—
=

N

-

-
8y

Do not require
coherence

Recalls

Load C
Load D
Load E
Load F
Load C

45

GPU Cache Coherence Challenges

« Challenge 2: Tracking in-flight requests
« Significant % of L2

Background: Directory Protocol

= For each block: centralizec Pprsence b ndicate hether pcessor P
“d I re Cto ry” fo r State I n Ca C 1 eS Dirty bit: indicates block is dirty —

in one of the processors’ caches

= Directory is co-located with Loca ache
some global view of memory

Onedirectoryentryper — |0 CIT T T [T 1 1]

cache line of memory

= Requests are no longer seen
by eve ryone One cache line of memory ——J

Writes are serialized through

directory

10/20/21

GPU-VI

GPU-VI Coherence

o[or I

= Directory-Based
Different from snoop-model
Global directory metadata at L2
= Two states
Valid

Invalid

r-.
3]
o]
o
()
>
[=
Q
°
@
)
-~

= Writes invalidate other copies

10/20/21

Temporal Coherence (TC)

GPU-VI Coherence Temporal Coherence

- c1jf L2 Jc2

G load,
predict| R | | Local Timestamp
@ T> T=15 e | loacfe l %
4 v ’ predict
0

T=20

—10

read-only epoch

invalidate

> Global Time - VALID
Core 1 '
L L1ID |

Interconnect

6"
x self- '

0 invalidate
store e
- 25 77N @

At

read—only epoch

Global Timestamp

L2 Bank

ﬁ < Global Time >

NO L1 COPIES

TC-Strong vs TC-Weak

D Write stalling at L2 (TC-Strong)

l]]]Il] Fence waiting for pending requests (both)
D Fence waiting for GWCT (TC-Weak)

TC-Strong TC-Weak

& I & & I &

flag data | flag data
NULL | 60 [oD | 30| S NULL | 60| [oLD | 30

ENO-L1 ZzNO-COH OMESI ®mGPU-VI sGPU-VIni mTCW

self-
invalidate ‘ invalidate

TTTT AT ITITITIITITITITITII S

V2720222222222 2222222222

FETTETT GGG T TG TE TG TS
VITTITTTITTTTTTTTTITTTTTTT T

11]
-d
(a]

self-
invalidate

(a) Inter-workgroup comm. (b) Intra-workgroup comm.

C1's requests C2's private cache C1's requests C2's private cache
blocks state blocks state
(value | timestamp) (value | timestamp)

50

