Rust

cs378
Chris Rossbach

Outline

Administrivia
Midterm 1 discussion

Technical Agenda

Rust!
Overview
Decoupling Shared, Mutable, and State
Channels and Synchronization

Rust Lab Preview

Acknowledgements:

* https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

e Thanks Nikolas Matsakis!

https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

Exam Q*: Uniprocessors/Concurrency

1. In a uniprocessor system concurrency control is best implemented with

<{a) Semaphores >

(b) Spinlocks

<{c) Interrupts >

(d) Atomic instructions

(e) Bus locking

(f) Processes and threads

Exam Q*: Threads and Address Spaces

2. Which of the following are true of threads?

(a) They have their own page tables.

<{b] Dafa in their address space can be either shared with or made inaccessible to other threads=

<{c) They have their own stack—>
(d) They must be implemented by the OS.
<te)_Context switching between them is faster than between processes—

Exam Q*: Scaling

4. If a program exhibits strong scaling,

(a) It gets faster really dramatically with more threads.

(b) Increasing the amount of work does not increase its run time.
<{c]_Its serial phases are short relative to its parallel phases—>
<d)Adding more threads decreases the end-to-end runtime for an input=

(e) Adding more threads and more work makes it go about the same speed.

Exam Q*: Barrier generality

5. Barriers can be used to implement

< (a) Cross-thread coordination. —

< (b) Mutual exclusion. >

< (c¢) Slow parallel programs. >
<(d) Task-level parallelism.

Exam Q*: Formal properties and TM

Paraphrased: Do <safety, liveness, bounded wait, failure atomicity>
suffice to define correctness for TM?

* The point: TM can violate single-writer invariant
* Not the point: ACID

Exam Q*: CSP models and Go

4. In message-passing systems, channel implementations may or may not use buffering/capacity, and may
support blocking and/or non-blocking semantics. (A) Can a 0-capacity channel support non-blocking
send and receive semantics? Why or why not? (B) How is direct addressing (naming) different from
indirect addressing for message passing systems? List a potential advantage and disadvantage for each.
(C) What constructs enable Go’s channels to support both blocking and non-blocking semantics? (D)
When shouldn’t you close a Go channel from the receiving go routine?

select {
. case vl := <-ct:
® A) |n general no, but receilver can pO” fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:
fmt.Printf("received %v from c2\n", v1)
¢ C) SGlECt! case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)
default:

fmt.Printf("no one was ready to communicate\n")

10

Exam Q: Barriers

* A) spin on local go flag
* B) some kind of blocking

1. Consider the barrier implementation and usage scenario below:

class Barrier {
protected:
int m_nArrived;
int m_nThreads;
int m_bGo;

public:

Barrier(int nThreads) {
m_nThreads = nThreads;
m_nArrived = 0;
m_bGo = 0;

%

void Wait() {
int n0ldArr = atomic_inc(&m_nArrived,
if (n01dArr == m_nThreads-1) {
m_nArrived = 0;
m_bGo = 1;
} else {
while(m_bGo == 0) {
// spin
}

¥;

void worker_thread_proc(void * vtid) {
int tid = (*((int*) vtid));
for(int i=0; i<100; i++) {
g_Barrier->Wait();
compute_my_partition(tid);

}

// compute bound phase
}

Barrier * g_pBarrier = NULL;
int main(int argc, char¥*argv) {
_int nThreads = 16;
1)’int tids[nThreads] ;
pthread_t threads[nThreads];
g_pBarrier = new Barrier(nThreads);
for(int i=0; i<nThreads; i++) {
tids[i] = i;
pthread_create(&threads[i], NULL, worker_thread_proc, &tids[il);
}
}

The implementation has both correctness and performance issues. (A) Suppose the implementation
were indeed correct, describe at least one change that could make the implementation more efficient for
very short critical sections (e.g. the compute my partition() function is very fast). (B) Describe at
least one change that could make the implementation more efficient for very long critical sections
(compute my_partition() takes a very long time). (C) There is a correctness problem with the
implementation. What is it, and what is the most natural way to fix it?

* C) barrier doesn’t reset (8), some strategy to make it reset (4)

12

2. (A) How are promises and futures related? As we've discussed, there is disagreement on the
nomenclature, so dont worry about which is which; just describe what the different objects are and how

E Q* . P F they function. (B,C) Consider the following go-like code:
Xdm Pt

func main() {
datal := readAndParseFile(options.getPath1())

data2 := readAndParseFile(options.getPath2())
result := computeBoundOperation(datal, data2)
writeResult (options.getOutputPath())

}

(B) Re-write the code to use asynchronous processing whereever possible, using go func() for each of
the steps and using WaitGroups to enforce the correct ordering amongst them. Don’t worry about
syntax being correct, just focus on the important concurrency-relevant ideas. (C) Suppose WaitGroup
support were not available. Describe at least one approach that can still ensure the proper ordering
between goroutines correctly without requiring WaitGroups. (D) Asynchronous systems are often
decried as prone to “stack-ripping”. What does this mean? Does go suffer these drawbacks? Why/why
not?

* A) something about futures and promises
e B) pretty much anything with go func()
C) Channels!

D) Stack-ripping = some creative responses
e (next slide)

13

Stack-Ripping

1 BHPROGRAM MyProgram {

2 E TASK ReadFileAsync(name, callback) {

3 ReadFileSync (name) ;

4 Call (ecallback) ;

T - }

= CALLBACK FinjskOpeningFile() {

7 LoadFil

8 RedrawScrees{),

o } I Stack-based state out-of-scope!
10 © OnOpenFile () {

11 Fifie Bl REC]UEStS must carry state
1.2 char szName [BUFSIZE]

13 In1tF IreiName(szName) ;

14 EnqueueTask (ReadFileAsync (szName, FinishOpeningFile)) ;
15 + }

16 OnPaint () ;

I - }

Transactions

Suppose a system allows nested transactions. Recall that when transactions nest, it means that currently executing "outer” transactions can begin and end new

"inner" transactions before the current one completes, allowing transactional code to be composed. Consider the following example, in which transactions are
started and ended using | txbegi nt-txid) and| t i

® g mit() operations respectively, and transactions read and write values using | write(key,
* ° t methods on the transaction object returned by | tx

txidl = txbegin(NULL); { / NULL parent transaction
txidl.write(keyl, valuel);

value)
in |

g

/ Write the value valuel to the entry

whose key is keyl

txid2 = txbegin(txidl); txidl is the parent transaction

txid2.write(key2, value2);

L4 . . Ly B txcommit(tid2);
¢ solation, Atomicity, Durability
txcommit(txidl);
{o: H ”
e A) I: other tx see “in-flight” state
L] is txid1. Consider the relationship between "inner" transactions (e.g., tid2 and the "outer" transaction (e.g
tid1). A read() in an outer transaction should return a value that includes the result of all preceding writes in the outer transaction as well as all writes in prece

11). A i(ter t t hould lue tt ludes tk It of all i t tt t t Il Il writ

PY A) A o M M M committed inner transactions. A read() in an inner transaction should return a value that includes the result of all preceding writes in the outer transaction, all

. SOome Ot outer IS avaliablie witnou

preceding writes in that inner transaction, and all writes in preceding, committed inner transactions. Implementing these semantics can be tricky.

a I I I e i n ava i I a I I A) One strategy is for the inner transaction to commit normally, but also produce an "undo” list of updated values that can be used to restore the original values if

the outer transaction aborts. Which ACID condition(s) does this approach relax? Why?

B) Another strategy is for each inner transaction to produce a list
[A) D . Ot h e r tX Se e Sta te t h at ro I I S b a C k deferred updates/actions that the the outer transaction commits for it when the outer transaction commits. For any data item written in any transaction, all
[]

ansactions read the last update value from this list. Which ACID condition(s) does this approach relax?

n this case the "inner" transaction is txid2, the "outer"

) If the only data flow is that the inner transaction reads from the outer transaction (meaning txid2 reads txid1's writes but txid1 never reads txid2's

* B) Isolation — all txs see writes of e
deferred actions (text is subtle)

* B) Not C— all txs see writes in order

* C) No relaxation required
 data only flows outer = inner
* no uncommitted inner writes observed

| Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

. —~ At ctr ntric
° Preemptlon Toleran Shared mutable state requires locks

e Performance * So...separate sharing and mutability
Use type system to make concurrency safe

* Poor composability. T

Immutability

Careful library support for sync primitives

I Rust Goals

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:

Safe Memory Management
Safe Concurrency and Concurrent Controls

Be Fast: systems programming

Be Safe: don’t crash

IIVIemory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Declared variables must be initialized prior to execution
A bit of a pain for static/global state

I Unsafe

Functions determined unsafe via specific behavior
* Deference null or raw pointers
* Data Races
* Type Inheritance

Using “unsafe” keyword = bypass compiler enforcement
 Don’t doit. Not for the lab, anyway

The user deals with the integrity of the code

Credit: http://www.skiingforever.com/ski-tricks/ B 48§

http://www.skiingforever.com/ski-tricks/

IOther Relevant Features

First-Class Functions and Closures
Similar to Lua, Go, ...

Algebraic data types (enums)

Class Traits

Similar to Java interfaces
Allows classes to share aspects

Hard to use/learn without

awareness of these issues

IConcurrency

Tasks = Rust’s threads

Each task = stack and a heap

Stack Memory Allocation — A Slot
Heap Memory Allocation — A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Scheduling
Each task = finite time-slice

If task doesn’t finish, deferred until later
“M:N scheduler”

IHeIIo World

fn main() {
println!("Hello, world!")

IOwnership

Ownership
n. The act, state, or right of possessing something

Borrow

v. To receive something with the promise of returning it

Ownership/Borrowing =2
No need for a runtime
Memory safety (GC)
Data-race freedom

MM Options:
Managed languages: GC
Native languages: manual

e Each value in Rust has a variable called its owner.
 There can only be one owner at a time.
* Owner goes out of scope—>value will be dropped.

management
Rust: 3" option: track
ownership

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); printlnl(“{}”, name);

helper(name); }
}

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); println! (“{}’], name);

helper(name); h

helper(name);
} Take ownership of a String

Error: use of moved value: name’

: use of moved value: name

play.rs:28:12

let name = format!("...");:

helperiname) ;

helper(name) ;

What kinds of problems might this prevent?

Pass by reference takes “ownership implicitly” in other languages like Java

IShared Borrowing

fn main() { fn helper(name: &String) {
let name = format!("..."); printlnl(“{}"], name);
helper(&name); }
helper(&name);

} / Take a reference to a String

Lend the string

Why does this fix the problem?

IShared Borrowing with Concurrency

fn main() { fn helper(name: &String) {

let name = format!("..."); thread: :spawn(| |{

helper(&name); println! ("{}", name);

helper(&name); 1);

Lifetime “static” required

: explicit lifetime required in the type of na
play.rs:11:18

fn helperiname: &String) -> thread::JoinHandle<{)> {

let handle = thread::spawnimove ||{

Does this prevent the exact same class of problems?

ICIone, Move

fn main() {

let name = format!("...");

helper(name;

helper(name);

Ensure concurrent owners
Work with different copies

Is this better?

thread: :spa

})s

fn helper(name: String) {

Q@move>

println! ("{}"[, name);

Copy versus Clone:

Default: Types cannot be copied

* Values move from place to place
 E.g. file descriptor

Clone: Type is expensive to copy

* Make it explicit with clone call

e e.g. Hashtable

Copy: type implicitly copy-able

e e.g.u32,i32,f32, ..
#[derive(Clone, Debug)]

| Mutability

struct Structure {
id: 132,
map: HashMap<String, f32>,

} Error: cannot be borrowed as mutable
impl Structure {

fn mutate(&sgelf, name: String, value: f32) {

self.map.insert(name, value);

: cannot borrow self.map as mutable, as it is behind a & reference
play.rs:16:9

fn mutate(&self, name: String, value: £32) {

self.map.insert(name, value);

| Mutability
struct Structure {

id: 132,
map: HashMap<String, 32>,

impl Structure
n mutate name: String, value: f32){

self.map.insert(name, value);

Key idea:
* Force mutation and ownership to be explicit

* Fixes MM *and* concurrency in fell swoop!

ISharing State: Channels

i
=

1eT (message, TXLl) = rxv.recv().unwrap();
tx1.send(format! ("what up!")) .
println("parent received {}", megsage);

¥

APIs return Option<T>

ISharing State

fn main()

W () ;

ISharing State: Arc and Mutex

fn main() {
let va tructure: :new();

Mutex: :new(var);

Arc: :new(var_lock);

for i in @..N {
thread: :spawn(move

let ldata = var_arc);
let vdata =(ldata.lockj);

// ok to mutate var (vdata)!
})s

} Key ideas:
* Use reference counting wrapper to pass refs

e Use scoped lock for mutual exclusion
e Actually compiles =2 works 15t time!

ISharing State: Arc and Mutex, really

fn test() {

let var = Structure::new(); Why doesn’t “&"” fix it?
let var lock = Mutex::new(var); NEILECIEORIEEClR)FIERTIECIY,

let var_arc = Arc::new(var_lock);
for 1 in @..N {
thread: :spawn(move || {
let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

omplling concurrenc _'_.,"—;'.;:'F::. c v0.1.0 (/u/srossbhach/src/utcs—concurrenc ¥ slabs/Z2pc/so
: use of moved value: var_arc

src/main.rs:166:22

Would cloning var_arc fix it?

let var_arc = Arc::new(var_lock) ;

for -1 %m 0..N-.4

thread: :spawni{move || {

let ldata = Arc::clone(&var_arc);

ISharing State: Arc and Mutex, really

fn test() {

let var = Structure::new();

Same problem!
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);

for 1 in 0..N {
thread: :spawn(move || {

let ldata = Arc::clone(&var_arc.clone());
let vdata = ldata.lock();

// ok to mutate var (vdata)!
1)

ompliling concurrency-2pc v0.1.0 (Ju/rossbach/src/utcs—concurrency/labs/2pc/so
: use of moved value: var_arc

src/main.rs:166:22

What if we just don’t move?

let var_arc = Arc::new(var_lock) ;

for -1 %m 0..N-.4

thread: :spawni{move || {

let ldata = Arc::clone(&var_arc);

ISharing State: Arc and Mutex, really

fn test() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for 1 in 0..N {

thread: :spawn(|| {

let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();

// ok to mutate var (vdata)! RV IR,

Compiling concurrency-2pc v0.1.0 (/u/rosshach/src/utcs—-concurrency/labs/2pc/solution)
: closure y outlive the current function, but it borrows var_arc , which is owned by the current function

thread: :spawn(

let ldata = Arc::clonel(&var_arc);

note: function requi ~gument type to outlive '

ISharing State: Arc and Mutex, really

fn test() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for 1 in 0..N {
let clone_arc = var_arc.clone();
thread: :spawn(move || {
let ldata = Arc::clone(&clone_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

Compiles! Yay!

Other fixes?

}
}

ISharing State: Arc and Mutex, really

Parameters!

fn test() {
let var = Structure::new();

let var_lock = Mutex::new(var);

Tat+ wvar arrcr — Arnrce c nauwlvar 1
// Closures are anonymous, here we are binding them to references

// Annotation is identical to function annotation but is optional
// as are the '{}' wrapping the body. These nameless functions
// are assigned to appropriately named variables.

let closure_annotated = |[i: 732| -> 732 { i + 1 };

let closure_inferred = |i | i+ 1

// OK To mutate var (vdata)!

1) .
I7 Why does this compile?

J
}
for i in @0..N { join(); } Could we use a vec of JoinHandle
to keep var_arc in scope?

What if | need my lambda to own

some things and borrow others?

I Discussion

GC lambdas, Rust C++
* This is pretty nuanced:
* Stack closures, owned closures, managed closures, exchg heaps

Ownership and Macros
Macros use regexp and expand to closures

ISummary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency
Type safety solves MM and concurrency
Have fun with the lab!

