FPGAS:
Verilog

Sequence Alignment (maybe)

Chris Rossbach
cs378 Fall 2018
11/5/2018

Outline for Today

o

1o
1
g

!

e Questions?

us

* Administrivia ,
* Re: Exams -
* Keep thinking about projects!
* Website updates

-")(-‘;

SPANSION®
b
N UOEBEM™MMOLIEN™ MO0

N A

* Agenda ; ?3’ C0°]3 3
W3,
* FPGAs: POTPOURRI of things you need to know waaaa ©
e NW '. fJf ‘ ['-W‘
QO O00Q|m i34
Acknowledgements/References: '0 CP 1 p aa RIB

. https://s3-us-west-2.amazonaws.com/cse291personalgenomics/Lectures2017/Lecture12 AlignmentVariantCalling.pptx

https://web.stanford.edu/~jurafsky/slp3/slides/2 EditDistance.pptx

https://moodle.med.lu.se/pluginfile.php/45044/mod_resource/content/0/sequence alignment 2015.pptx

. http://www.cbs.dtu.dk/phdcourse/cookbooks/PairwiseAlignmentPhD2.ppt

http://cwcserv.ucsd.edu/~billlin/classes/ECE111/lectures/Lecturel.pptx

http://www.cs.unc.edu/~montek/teaching/Comp541-Fall16/VerilogPrimer.pptx

. Evita_verilog Tutorial, www.aldec.com

http://www.asic-world.com/verilog/

https://s3-us-west-2.amazonaws.com/cse291personalgenomics/Lectures2017/Lecture12_AlignmentVariantCalling.pptx
https://web.stanford.edu/~jurafsky/slp3/slides/2_EditDistance.pptx
https://moodle.med.lu.se/pluginfile.php/45044/mod_resource/content/0/sequence_alignment_2015.pptx
http://www.cbs.dtu.dk/phdcourse/cookbooks/PairwiseAlignmentPhD2.ppt
http://cwcserv.ucsd.edu/~billlin/classes/ECE111/lectures/Lecture1.pptx
http://www.cs.unc.edu/~montek/teaching/Comp541-Fall16/VerilogPrimer.pptx
http://www.aldec.com/

Faux Quiz Questions

* Why/when might one prefer an FPGA over an ASIC, CPU, or GPU?

* Define CLB, BRAM, and LUT. What role do these things play in FPGA
programming?

* What is the difference between blocking and non-blocking
assignment in Verilog?

* What is the difference between structural and behavioral modeling?

* How is synthesizable Verilog different from un-synthesizable? Give an
example of each?

e What is discrete event simulation?

Review: FPGA Design/Build Cycle

 HW design in Verilog/VHDL

High Level Design * Behavioral modeling + some
structural elements

* Simulate to check functionality

RTL Coding

* Synthesis = netlist generated
Functional Verification

 Static analysis to check timing

Logic Synthesis Sate Level Simulation

Post Si WValidation

Verilog

* Originally: modeling language for event-driven digital logic simulator
* Later: specification language for logic synthesis

* Consequence:
* Combines structural and behavioral modeling styles

Components of Verilog

e Concurrent, event-triggered processes (behavioral)
* |Initial and Always blocks
* Imperative code = standard data manipulation (assign, if-then, case)
* Processes run until triggering event (or #delay expire)

* Structure
* Verilog program builds from modules with I/O interfaces
* Modules may contain instances of other modules
* Modules contain local signals, etc.
* Module configuration is static and all run concurrently

Discrete-event Simulation

* Key idea: only do work when something changes

* Core data structure: event queue
* Contains events labeled with the target simulated time

* Algorithmic idea:
* Execute every event for current simulated time
e May change system state and may schedule events in the future (or now)
* No events left at current time = advance simulated time (next event in Q)

Two Main Data Types

* Nets represent connections between things
* Do not hold their value
» Take their value from a driver such as a gate or other module
* Cannot be assigned in an initial or always block

* Regs represent data storage
* Behave exactly like memory in a computer
* Hold their value until explicitly assigned in an initial or always block
* Model latches, flip-flops, etc., but do not correspond exactly

e Shared variables
e Similar known shared state issues

Four-valued Data and Logic

Nets and regs hold four-valued data « Logical operators work on three-

* 0,1 Umm.. valued logic
e /
e OQOutput for undriven tri-state (hi-Z) Output 0 if one input is 0

* Nothing is setting a wire’s value _
e X — 0 1 X Z

Simulator can’t decide the value
Initial state of registers

Wire driven to 0 and 1 simultaneously
Output of gate with Z inputs

» Data representation
* Binary = 6’b100101
* Hex 2 6’h25

N X B O
©O O O o
X X B O
X X X ©
X X
/'

Output X if inputs are junk

Structural Modeling

e Specification
* Netlist: gates and connections
* Primitives/components (e.g logic gates)
* Connected by wires

* Easy to translate to physical circuit

HENEERNREN

" |0 o v
Sell| 0 el
Int | 0 I e Out
Mot=Sel0 |
Sell| 0 [=o 0
In2 | 0 | 2
Ing | 0 R
7

module mux_ 4 to_1 (Out,In0,Inl,Inz,In3,3ell,3el0);
output Outc;
input In0, Inl, InZ, In3, Seld, Sell:;

wire HNot3elO, NotSell:
wire YO, ¥1, ¥2, ¥3;

not (Not3elld, ZI=10) ;

not (MNot3ell, Zell):

and (Y0, In0, Not3ell, NotSelO):
and (Y1, Inl, Not3ell, Sel0):
and (Y2, InZ, Sell, NotSelO):
and (Y3, In3, Sell, 3el0);

or (Out, ¥O, ¥1, ¥2, ¥3):

endmodule

Dataflow Modeling

* Specification
 Components (similar to logical equations)
* Connected by wires
e Easy to translate to structure, then to physical circuit

Ind
— logical and’
I
N ' logical and' L |
logical and \oaical o LOUt
2 | 4
logical and' _
logical and'
g — Out In3 tosical and
‘ogical or' — ogical an
logical and’ - . .
logical ||| logical
not' not'
logical and' Sell |
I Sell
[} 2 I 1
logical iﬁg;'fla' module wux_4 to_l (Out, In0, Inl, In2, In3, Sell, Sel0):
not’ n
output Out;
SE:|1. | input In0, Inl, In2, In3, Sel0, Sell;
SE":I assign out = [~3ell & ~3ell & Inb0) | (~3ell & 3ell & Inl) b
| (5ell & ~5ell & InZ)| (Sell & S5ell & In3d);

endmodule

Behavioral Modeling

» Specification
* |n terms of expected behavior
* Closest to natural language

* Most difficult to synthesize

M

Easier for testbenches

Easier for abstract models of circuits
e Simulates faster

Provides sequencing

! In0 0
Inl 0 M
In2 0 —

In3 00—

Sell (0 Q0 Seld

module mux 4 to 1 (out,Ind,Inl, InZ,In3,3ell,3el0) ;
output Out;

input In0O, Inl, In2, In3, Sel0, Sell:;

reg Cut;

always [(Sell or 3el0 or In0 or Inl or InZ or In3j
bhegin
case [{3ell, 23ell})
2'kh0O0 @ Cut = In0d;
2'hbO1l @ Cmt = Inl:
2'h10 @ Cut = Ind:;
2'h11 : Cmt = Inid:
defaunlt : out = 1'bx;
endcase
end

endmodule

Sighals

* Nets
* Physical connection between hardware elements

* Registers
e Store value even if disconnected

O
,_®

x—

REGISTER

Nets

o wire/tri
 wand/triand
wor/trior

Force synthesis to insert gates

e (e.g. AND, OR)

module comparatorwithwor
input x,
input vy,
output z

El
wor p ;

assign p = x&y;
assigh p = ~x & ~y ;

assigh z = p ;

endmodule

CAUX p 2 imp. AUX p 21

and?2

-

CAUX p 1 imp_ AUX p_ 11

wire/tri

.

wand/triand

worrior

D Imp

endmodule

| Inodule comparator

input x,
input vy,
output z
wire p,q ;
assign p = x&y,;
assign q = ~x & ~y
|assign z = p |q ;

Ports and Registered Output

Clock
Clock
ﬂ Address
Address \)[N
7
Data
Dat
meset ||PROCESSOR (i} MEMORY Reset ||PROCESSOR K S
Feadrite Read/Write

module Processor (Clock, Reset, Read Write, Data, Address):

r_rndule Frocessor (Clock, Eeset, Read Write, Data, Address): input Clock;

:!_npu: ;ll:u:}é: input Reset;

1npu eset; : -

output Read Write: 1.Jutput Rei‘d—'urlte:

inout [15:0] Data: inout [15:0] Data;

output [19:0] Address; output [19:0] Address;

endmodul e reg [19:0] Address;

endmodule

Output ports can be type register
* Add reg type to declaration
* Qutput holds state

Examples of Nets and Registers

Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire

tri [15:0] dbus; // 16-bit tristate bus

tri #(5,4,8) b; // Wire with delay

reg [-1:4] vec; // Six-bit register

trireg (small) q; // Wire stores a small charge

integer imem[0:1023]; // Array of 1024 integers
reg [31:0] dcache[0:63]; // A 32-bit memory

Continuous Assignment

* Another way to describe combinational function
* Convenient for logical or datapath specifications

Define bus widths

wire [8:0] sum; /

* Continuous/”blocking” assignment: sets

wire [70] d b; the value of sum to be a+b+carryin
wire ca rryin; * Recomputed when a, b, or carryin
changes

assign sum =a + b + carryin;

Behavioral Modeling

Initial and Always Blocks

* Basic components for behavioral modeling

perative statements ... xuperative statements ...

Runs when s\xnulation starts Runs when s\qmulation starts
Terminates wh®n control reaches the end Restarts whenxontrol reaches the end
Good for providing stimulus Good for modeling/specifying hardware

Not synthesizable synthesizable
Great for debugging workhorse of sequential logic

Initial and Always

* Run until they encounter a delay

initial begin
#10a=1;b=0;
#10a=0;b=1;
end

* or a wait for an event

always @(posedge clk) g = d;
always begin wait(i); a = 0; wait(~i); a=1; end

Procedural Assignment

* Inside an initial or always block:
sum=a+b+cin;

e Just like in C:
* RHS evaluated
e assigned to LHS
* before next statement executes

* RHS may contain wires and regs
* Two possible sources for data

* LHS must be a reg
* Primitives or cont. assignment may set wire values

Imperative Statements

if (select == 1)
else

< <
Il
O Q

case (op)
2’b00: y=a + b;
2’b01: y=a—b;
2’b10:y=a " b;
default: y = ‘hxxxx;
endcase

For and While Loops

* Increasing sequence of values on an output

reg [3:0] i, output; reg [3:0] i, output;
for(i=0;i<=15;i=i+1) begin i =0;
output = i; while (I <= 15) begin
#10:; output = i;
end #10i=i+1;

end

A Flip-Flop With Always

Edge-sensitive flip-flop

reg q,

always @(posedge clk)
q=d,

* g =d assignment
* runs when clock rises
» exactly the behavior you expect

Blocking vs. Nonblocking

* Verilog has two types of procedural assignment

* Fundamental problem:
* In a synchronous system, all flip-flops sample simultaneously
* In Verilog, always @(posedge clk) blocks run in some undefined sequence

A Shift Register

aka Blocking vs Non-blocking assignment

reg d1, d2, d3, d4;

always @(posedge c
always @(posedge c
always @(posedge c

“Blocking assighment”

* These run in some order, but you don’t know which
* So...might not work as you’d expect

Non-blocking Assignments

reg d1, d2, d3, d4;

always @(posedge c
always @(posedge c

always @(posedge c

k) d2 <= d1;
k) d3 <= d2;
) d4 <= d3;

Nonblocking rule:
RHS evaluated when
assignment runs

Blocking vs. Non-blocking: misnomer
prefer “continuous” to “blocking”
Guideline: blocking for combinational
Guideline: non-blocking for sequential

\ LHS updated only after all

events for the current instant

have run

Non-blocking Behavior

* A sequence of nonblocking assignments don’t communicate

a=1; a<=1;

b =a; b <=a;

c=b; c<=b;

Blocking assignment: Nonblocking assignment:
a=b=c=1 a=1

b = old value of a
c = old value of b

Dirty/tricky question:

which assignment type yields a correct shift register?

reg d1, d2, d3, d4;

always @(posedge clk) begin Should op be = or <= ?
d2 op di;
d3 op d2;
d4 op d3;

end

Implementation: Building FSMs

* Many ways to do it

* Define the next-state logic combinationally
» define the state-holding latches explicitly

* Define the behavior in a single always @(posedge clk) block
* Define behavior per signal in different @(posedge clk) blocks
* Variations on these themes

FSM with Combinational Logic

module FSM(o, a, b, reset);

output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState; Combinational block must be
sensitive to any change on
always @(a or b or state) any of its inputs
case (state) (Implies state-holding
2’b00: begin elements otherwise)
nextState =a ? 2’b00 : 2’b01;
o=a&b;
end

2’b01: begin nextState = 2’b10; 0 = 0; end
endcase

FSM with Combinational Logic

module FSM(o, a, b, reset);

\

always @(posedge clk or reset) Latch implied by sensitivity
] to the clock or reset only
if (reset)

state <= 2'b00:;
else
state <= nextState;

FSM from Combinational Logic

always @(a or b or state)
case (state)
2’b00: begin
nextState =a ? 2’b00 : 2’b01;
o=a&b;
end
2’b01: begin nextState = 2’b10; 0 = 0; end
endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;
else
state <= nextState;

FSM with a Single Always Block

module FSM(o, a, b);

output o;rego;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)

if (reset) state <= 2"b00;
else case (state) /
2’b00: begin
state<=a ? 2’b00 : 2’b01;
o<=a &b;
end
2’b01: begin state <= 2’b10; 0 <= 0; end
endcase

Outputs are latched
Inputs only sampled at clock
edges

Nonblocking assignments
used throughout.

RHS refers to values
calculated in previous clock
cycle

Parameters

* localparam keyword

localparam statel = 4'b0001,
state?2 = 4'b0010,
state3 = 4'b0100,
stated = 4'b1000;

localparam A = 2'b00,
G = 2"b01,
C = 2'"blo,

T = 4"bl1;

Operations for HDL simulation/build

* Compilation/Parsing

e Elaboration

* Binding modules to instances
Build hierarchy
e Compute parameter values
Resolve hierarchical names
Establish net connectivity

* ...(simulate, place/route, etc)

Generate Block

* Dynamically generate Verilog code at elaboration time

* Usage:
* Parameterize modules when the parameter value determines the module contents

* Can generate

* Modules
User defined primitives
Verilog gate primitives
Continuous assignments
initial and always blocks

Generate Loop

module bitwise xor (output [N-1:0] out, input [N-1:0] 10, 1i1);
parameter N = 32; // 32-bit bus by default

genvar j; // This variable does not exist during simulation

generate for (j=0; j<N; j=j+1) begin: xor loop
//Generate the bit-wise Xor with a single loop

xor gl (out[jl, 10[31, 11[3]1); \ Can do this with code but
end requires different numbers

endgenerate //end of the generate block of xor modules depending
on N
/* An alternate style using always blocks:
reg [N-1:0] out;
generate for (j=0; j<N; j=j+1) begin: bit
always @(i0[J] or il[j]) outlJ] = 10[3] ~ 11[]];

end

endgenerate

endmodule */ 0

Generate Conditional

module multiplier (output [product_width -1:0] product, input [a0_width-1:0] a0, input [al_width-1:0] al);

parameter a0_width =8;

parameter al width=38;
localparam product_width =a0_width + al_width;
generate

if (a0_width <8) | | (al1_width < 8)
cla_multiplier #(a0_width, al_width) mO (product, a0, al);
else
tree_multiplier #(a0_width, al_width) mO (product, a0, al);
endgenerate

endmodule

Generate Case

module adder (output co, output [N-1:0] sum, input [N-1:0] a0, al, input ci);
parameter N = 4;

// Parameter N that can be redefined at instantiation time.

generate
case (N)
1: adder_1bit adder1(cO, sum, a0, al, ci);
2: adder_2bit adder2(c0, sum, a0, al, ci);
default: adder_cla #(N) adder3(c0, sum, a0, al, ci);
endcase
endgenerate

endmodule

Nesting

* Generate blocks can be nested
* Nested loops cannot use the same genvar variable

8

//

9 |// Change history: 8/23/18 - Initial revision

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

//
LITTTTTT077 7777777777777 P 70 i i i 7777777777777 7777777777777

include nwcell.v;

module nwgrid # (parameter N=28) (clk, reset, enable);

I

3

input wire clk;
input wire reset;
input wire enable;

genvar i;

genvar Bl

for (i=0; i<N; i=i+1) begin : X
for (j=0; j<N; Jj=j+1) begin : Y

wire scout v;
wire [N-1:0] scout;
wire [1:0] backpath;

if (i==0 && j==0) begin 44

Logic Synthesis

* Verilog: two use-cases
* Model for discrete-event simulation
» Specification for a logic synthesis system

* Logic synthesis: convert subset of Verilog language = netlist

Two stages

1. Translate source to a netlist
* Register inference

2. Optimize netlist for speed and area
e Most critical part of the process
 Awesome algorithms

What Can/Can’t Be Translated

e Structural definitions
* Everything

 Behavioral blocks

* When they have reasonable
interpretation as
combinational logic, edge,
or level-sensitive latches

e User-defined primitives
* Primitives defined with
truth tables

* Some sequential UDPs can’t
be translated (not latches or
flip-flops)

e |Initial blocks

e Used to set up initial state or
describe finite testbench stimuli

* Don’t have obvious hardware
component

* Delays
* May be in the Verilog source, but
are simply ignored
e Other obscure language features

* |In general, things dependent on
discrete-event simulation semantics

e Certain “disable” statements
* Pure events

Example alignment view

Reference genome

Aligned reads

Sequence alignment: Scoring

TACGGGCAG TACGGGCAG TACGGGCAG
-AC-GGC-G -ACGG-C-aG -ACG-GC-G
Option 1 Option 2 Option 3

* Scoring matrices are used to assign scores to each comparison of a pair of characters
* |dentities and substitutions by similar amino acids are assigned positive scores

* Mismatches, or matches that are unlikely to have been a result of evolution, are given negative scores

A C D E F G H I K
A C Y E F G R I K
+5 +5 -5 +5 +5 +5 -5 +5 +5

Pairwise alignment: the problem

The number of possible pairwise alignments increases explosively with the
length of the sequences:

Two protein sequences of length 100 amino acids can be aligned in
approximately 10° different ways

Time needed to test al [§ _
lifetime of the universdie

itude as the entire

Pairwise alignment: the canonical solution

Dynamic programming
(the Needleman-Wunsch algorithm)

t[j]
G A
1 2 2 4 L
o| 0 [-2 -4 -6 -8 |10
AN
Ta[-2] [11 =113l]-5] -7
s[i] “ R N
Czf-4| [-1] [2 |0 L2 -4
N | = % “
Cs| -B -3 0 1 1] -1
i \ 3 \ \
Aa| -8 -5 -2 -1 0 2

Alignment depicted as path in matrix

T C G C A

> QN HA

TCGCA
TC-CA

T C G C A

> QN HA

TCGCA
T-CCA

Dynamic programming: computing scores

T C G C A Any given point in matrix can only be

reached from three possible positions

T (you cannot “align backwards”).
C \l => Best scoring alignment ending in any
1(-3\ oy given point in the matrix can be found

by choosing the highest scoring of the
three possibilities.

Dynamic programming

T € G C A Any given point in matrix can only be

reached from three possible positions

T (you cannot “align backwards”).

C l => Best scoring alighment ending in any
c « given point in the matrix can be found
A

by choosing the highest scoring of the
three possibilities.

score(x,y-1) - gap-penalty
score(x,y) = max {

Dynamic programming

T € G C A Any given point in matrix can only be

reached from three possible positions

(you cannot “align backwards”).

\l => Best scoring alignment ending in any
given point in the matrix can be found

by choosing the highest scoring of the

three possibilities.

> QN HA
»

score(x,y-1) - gap-penalty

score(x.y) = max { score(x-1,y-1) + substitution-score(x,y)

Dynamic programming

T € G C A Any given point in matrix can only be

reached from three possible positions

T (you cannot “align backwards”).
c \l => Best scoring alignment ending in any
g M given point in the matrix can be found

by choosing the highest scoring of the
three possibilities.

score(x,y-1) - gap-penalty
score(x-1,y-1) + substitution-score(x,y)

score(x,y) = max {
score(x-1,y) - gap-penalty

Dynamic programming: example
.
T C [Cjzll C ﬁ;

0 1 2 3 4
0| 0 -2 -4 -6 -8 10

_ afi,j-1]-2
T “2 afij] = max {a[i—1,j—1]+p(i,j)

s[i] afi-1,j] -2
C2|-4
A
C
Caz|-B G
T
Aa| -8

Dynamic programming: example

t[]]
G
0 1 2 3 4 L
ol 0 L l-2 1-41-61]-8[_F10
F 3 \1 Ji_q
Tal-2) aflj-1] -2
sfif ali,j] = max <afi-1,j-1] + p(i,j)
Ca2|-4 afi-1,j] -2
Cs3| -8B
Aa| -8

Dynamic programming: example

tj]
G
0 1 2 3 4 5
0| 0 | -2 -4 -6l -8-10
¥ \1
Ti|-2}| 11) afi 1] -2
sl . afij] = max qafi-1,j-1] + p(i,)
Ca2|-4 afi-1,j] -2
Cs| -6
Aa| -8

Dynamic programming: example

t[j]
G
0 1 2 3 4 >
0| 0 -2 —-4—-6L4-8.+-10
N
T1|-2 Tl -1 -3 -5l -/
s|i] | [N "2 {5
Cz2| -4 -1 2 +— 0
0
o (e . alij~1] -2
3 | afi,j] = max <a[i-1,j-1] + p(i,j)
‘ ali-1,j] -2
Aa| -8

Dynamic programming: example

t[]]
G
0 1 2 c 4 B
ol 0 L2 1-4l_l-611-8_-10
N
T1|-2 1 -1 -3 1-5/1-7
Si] [X N
02 _4 —1 2 e O Lo —2 —] —4
3 3 -\ L \ \
csl-6| [-3] |0 1 11 -1
3 3 L -\ L \ \2 L3
Aa|-8| |-5| |-2| | -1 |0 |42

Dynamic programming: example

T1
s[i]

Co2

Cs

Aa

TCGCA

TC-CA

ti]
T C G C

0 1 2 3 4 5
0 -2 J-4|.-6[_]-8]_10
2 [1 |d-1l]-3]1-5[_]-7
4| (-1 |2 |40 d-2]|_]|-4
F 3 F 3 F 3 \
8| [-3| |0 1 1 [-1
F 3 F 3 F 3 -\ F 3
8| [-5| |-2| | -1| |0 2

I+1-2+1+1 = 2

BIG MONGO HINT:

What if each box is a
parallel process?

References:

* Evita_verilog Tutorial, www.aldec.com

* http://www.asic-world.com/verilog/

http://www.aldec.com/

Review: Module definition

* Interface: port and parameter declaration
* Body: Internal part of module

. M 2 OpSel Mode
e Add- |
ons (optiona b U U)
COut —set— ALU La— Cln
module module_name | (port_list)
port declarations Result Equal
. "
pararﬂEtErleC|aratH]ﬂS module LLT (Result, Cout, Egusal, Inil, InZ,
interface OpSel, CIn, Mode):
'include directives ad output [3:0] Result: f/ operation result
AGE0ns output comt; f{ oarry out
output Ecqual:; f4 when 1, Inl = InZ
input [3:0] Inil: ff first operand
input [3:0] Inz: /4 second operand
input [3:0] Op3el: // operation select
input CIn: /4 carry in
input Mode; /f mode arithm/ logic;:

/¢ arithm when 0O

endmodule endmodule

module defintion

Delays on Primitive Instances

* Instances of primitives may include delays

puf v1(a, b); // Zero delay
ouf #3 02(c, d); // Delay of 3
ouf #(4,5) b3(e, f); // Rise=4, fall=5
ouf #(3:4:5) b4(g, h); // Min-typ-max

Register Inference

* The main trick
* reg does not always equal latch

* Rule: Combinational if outputs always depend exclusively on
sensitivity list

e Sequential if outputs may also depend on previous values

Register Inference

e Combinational: Sensitive to changes on all of

the variables it reads
regy; /

always @(a or b or sel)

if (SEl) Y =4, « Y is always assigned
elsey = Db;

e Sequential:

reg q,

always @(d or clk)
if (clk) q = d; —

g only assigned when clk is 1

Register Inference

A common mistake is not completely specifying a case statement
* This implies a latch:

always @(a or b) 1; Ilos;ft assigned when {a,b} =
case ({a, b})

2’b00 : f=0;

2'b01:f=1;

2’b10:f=1;

endcase

Register Inference

* The solution is to always have a default case

always @(a or b)
case ({a, b}) f is always assigned
2’b00: f =0;
2'b01: f=1;
2'b10: f=1;
default: f = 0;
endcase

Inferring Latches with Reset

 Latches and Flip-flops often have reset inputs
* Can be synchronous or asynchronous

e Asynchronous positive reset:

always @(posedge clk or posedge reset)
if (reset)
q<=0;
else g <=d;

Simulation-synthesis Mismatches

* Many possible sources of conflict

 Synthesis ignores delays (e.g., #10), but simulation behavior can be
affected by them

* Simulator models X explicitly, synthesis doesn’t

* Behaviors resulting from shared-variable-like behavior of regs is not
synthesized
* always @(posedge clk) a = 1;

* New value of a may be seen by other @(posedge clk) statements in
simulation, never in synthesis

Compared to VHDL

* Verilog and VHDL are comparable languages

* VHDL has a slightly wider scope
* System-level modeling
* Exposes even more discrete-event machinery

e VHDL is better-behaved

* Fewer sources of nondeterminism (e.g., no shared variables)
* VHDL is harder to simulate quickly
* VHDL has fewer built-in facilities for hardware modeling

* VHDL is a much more verbose language
* Most examples don’t fit on slides

