Rust + 2PC
Parallelism at Scale: MPI

cs37/8

Master

SOSP

Project

2PC review
Rust Wrapup
Scale

MPI

Acknowledgements:

Portions of the lectures slides were adopted from:
Argonne National Laboratory, MPI tutorials.

Lawrence Livermore National Laboratory, MPI tutorials
See online tutorial links in course webpage

W. Gropp, E. Lusk, and A. Skjellum Usin MPI: Portable Parallel Programming with the Message Passing
Interface, MIT Press, ISBN 0-262-57 -1, R

W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message Passing Interface,
MIT Press, ISBN 0-262-57132-3, 1999.

http://www-unix.mcs.anl.gov/mpi/usingmpi/
http://www-unix.mcs.anl.gov/mpi/usingmpi2/

Project Proposal

CS378: Concurrency

Project Proposal

The goal of this assignment is to come up with a plan for your course project.

The project is a more open-ended assignment, where you have the flexibility to pursue an t f this assignment then, is to identify roughly 1

I encourage you to come up with your own project idea, but there are suggestions at the end re guidance.

You must submit a proposal (1-2 pages long), meeting the guidelines and answering the bas

e Provide a detailed timeline of how you plan to build the system. It is really important t ctionality is completely working by date X r:
on the deadline. Give a list of 4 key milestones.

What infrastructure will you have to build to run the experiments you want to run?
What hardware will you need and where will you get it? (Talk to me early if you have an experiment that needs hardware support but you don't know where to get the hardware from.)
What kind of experiments do you plan to run?

How will you know if you have succeeded?

What kind of performance or functionality problems do you anticipate?

Planning is important. So I will review your proposal and give you feedback. If signficant refinement is needed, I will ask you to hand in a revised proposal in the few weeks after the proposal d

You can work in groups for your project.

* Avery good example

Questions?

https://docs.google.com/document/d/1nguoQg0SrVSCLRdlurwsqpO9whFtv4L4e5P48zP5h-I/edit

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); printlnl(“{}”, name);

helper(name); }
}

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); println! (“{}’], name);

helper(name); h

helper(name);
} Take ownership of a String

Error: use of moved value: name’

: use of moved value: name

play.rs:28:12

let name = format!("...");:

helperiname) ;

helper(name) ;

What kinds of problems might this prevent?

Pass by reference takes “ownership implicitly” in other languages like Java

IShared Borrowing

fn main() { fn helper(name: &String) {
let name = format!("..."); printlnl(“{}"], name);
helper(&name); }
helper(&name);

} / Take a reference to a String

Lend the string

Why does this fix the problem?

IShared Borrowing with Concurrency

fn main() { fn helper(name: &String) {

let name = format!("..."); thread: :spawn(| |{

helper(&name); println! ("{}", name);

helper(&name); 1);

Lifetime “static” required

: explicit lifetime required in the type of na
play.rs:11:18

fn helperiname: &String) -> thread::JoinHandle<{)> {

let handle = thread::spawnimove ||{

Does this prevent the exact same class of problems?

ICIone, Move

fn main() {

let name = format!("...");

helper(name;

helper(name);

Ensure concurrent owners
Work with different copies

Is this better?

thread: :spa

})s

fn helper(name: String) {

Q@move>

println! ("{}"[, name);

Copy versus Clone:

Default: Types cannot be copied

* Values move from place to place
 E.g. file descriptor

Clone: Type is expensive to copy

* Make it explicit with clone call

e e.g. Hashtable

Copy: type implicitly copy-able

e e.g.u32,i32,f32, ..
#[derive(Clone, Debug)]

| Mutability
struct Structure {

id: 132,
map: HashMap<String, 32>,

impl Structure
n mutate name: String, value: f32){

self.map.insert(name, value);

Key idea:
* Force mutation and ownership to be explicit

* Fixes MM *and* concurrency in fell swoop!

ISharing State: Channels

i
=

1eT (message, TXLl) = rxv.recv().unwrap();
tx1.send(format! ("what up!")) .
println("parent received {}", megsage);

¥

APIs return Option<T>

ISharing State

fn main()

W () ;

ISharing State: Arc and Mutex

fn main() {
let va tructure: :new();

Mutex: :new(var);

Arc: :new(var_lock);

for i in @..N {
thread: :spawn(move

let ldata = var_arc),
let vdata =(ldata.lockf);

// ok to mutate var (vdata)!
})s

Anyone see the error here?

} Key ideas:
* Use reference counting wrapper to pass refs

e Use scoped lock for mutual exclusion
e Actually compiles =2 works 15t time!

ISharing State: Arc and Mutex, really

fn test() {

let var = Structure::new(); Why doesn’t “&"” fix it?
let var lock = Mutex::new(var); NEILECIEORIEEClR)FIERTIECIY,

let var_arc = Arc::new(var_lock);
for 1 in @..N {
thread: :spawn(move || {
let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

omplling concurrenc _'_.,"—;'.;:'F::. c v0.1.0 (/u/srossbhach/src/utcs—concurrenc ¥ slabs/Z2pc/so
: use of moved value: var_arc

src/main.rs:166:22

Would cloning var_arc fix it?

let var_arc = Arc::new(var_lock) ;

for -1 %m 0..N-.4

thread: :spawni{move || {

let ldata = Arc::clone(&var_arc);

ISharing State: Arc and Mutex, really

fn test() {

let var = Structure::new();

Same problem!
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);

for 1 in 0..N {
thread: :spawn(move || {

let ldata = Arc::clone(&var_arc.clone());
let vdata = ldata.lock();

// ok to mutate var (vdata)!
1)

ompliling concurrency-2pc v0.1.0 (Ju/rossbach/src/utcs—concurrency/labs/2pc/so
: use of moved value: var_arc

src/main.rs:166:22

What if we just don’t move?

let var_arc = Arc::new(var_lock) ;

for -1 %m 0..N-.4

thread: :spawni{move || {

let ldata = Arc::clone(&var_arc);

ISharing State: Arc and Mutex, really

fn test() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for 1 in 0..N {

thread: :spawn(|| {

let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();

// ok to mutate var (vdata)! RV IR,

Compiling concurrency-2pc v0.1.0 (/u/rosshach/src/utcs—-concurrency/labs/2pc/solution)
: closure y outlive the current function, but it borrows var_arc , which is owned by the current function

thread: :spawn(

let ldata = Arc::clonel(&var_arc);

note: function requi ~gument type to outlive '

ISharing State: Arc and Mutex, really

fn test() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for 1 in 0..N {
let clone_arc = var_arc.clone();
thread: :spawn(move || {
let ldata = Arc::clone(&clone_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

Compiles! Yay!

Other fixes?

}
}

ISharing State: Arc and Mutex, really

Parameters!

fn test() {
let var = Structure::new();

let var_lock = Mutex::new(var);

Tat+ wvar arrcr — Arnrce c nauwlvar 1
// Closures are anonymous, here we are binding them to references

// Annotation is identical to function annotation but is optional
// as are the '{}' wrapping the body. These nameless functions
// are assigned to appropriately named variables.

let closure_annotated = |[i: 732| -> 732 { i + 1 };

let closure_inferred = |i | i+ 1

// OK To mutate var (vdata)!

1) .
I7 Why does this compile?

J
}
for i in @0..N { join(); } Could we use a vec of JoinHandle
to keep var_arc in scope?

What if | need my lambda to own

some things and borrow others?

I Discussion

GC lambdas, Rust C++
* This is pretty nuanced:
* Stack closures, owned closures, managed closures, exchg heaps

Ownership and Macros
Macros use regexp and expand to closures

Potpourri: Rudra

RUDRA: Finding Memory Safety Bugs in Rust
at the Ecosystem Scale

Yechan Bae Youngsuk Kim Ammar Askar Jungwon Lim Taesoo Kim
Georgia Institute of Technology

120 \\ 100% - 60K
» XXX Memory safety (ours) -== % using unsafe
2100 Memory safety \ 80% - Total #packages - 50K
2 11 Logic & @ m Packages using unsafe
S 80+ © 40K ,
S \ g 60%- g
@ 60 s \ o 30K £
2 N 3 40% &
] - L.
é 40 n O\o \"_ _____________________________________ B 2OK
| ———)
20 20% L 10K
0 ==pEeE H-!—l—i' +]-H+ :H:'H:t - 0% - T T T r T T oK
2016 2017 2018 2019 2020 2021 2015 2016 2017 2018 2019 2020 2021

Year
Year

Figure 1. RUDRA found 264 new memory safety bugs in F.‘igure 2. Although the number of Packages Brows exponen-
the Rust ecosystem. They received 112 RustSec advisories, tally, the percentage of packages using unsafe code remains
which represent 51.6% of the memory safety bugs reported consistently around 25-30%, similar to other reports [16, 31].

to the official Rust security advisory database, RustSec [39].

A hard to find issue

1 // CVE-2020-36323: a higher-order invariant bug in join()
2 fn join_generic_copy<B, T, S>(slice: &[S], sep: &[T]) -> Vec<T>
3 where T: Copy, B: AsRef<[T]> + ?Sized, S: Borrow

4 {

5 let mut iter = slice.iter();

6

7 // 'slice’ is converted for the first time

8 // during the buffer size calculation.

9 * Jet len = ...;

10 let mut result = Vec::with_capacity(len);

11 2 w

12 unsafe {

13 let pos = result.len();

14 let target = result.get_unchecked_mut(pos..len);
15

16 // ‘slice’ is converted for the second time in macro
17 // while copying the rest of the components.

18 * spezialize_for_lengths! (sep, target, iter;

19 * 0, 1, 2, 3, 4);

20

21 // Indicate that the vector is initialized

22 result.set_len(len);

23 }

24 result

25 }

26

27 // PoC: a benign join() can trigger a memory safety issue

28 impl Borrow<str> for InconsistentBorrow {
29 fn borrow(&self) -> &str {

30 if self.is_first_time() {

31 "123456"

32 } else {

33 "o

34 }

35 }

36 }

37

38 let arr: [InconsistentBorrow; 3] = Default::default();
39 arr.join("-");

Figure 7. A missing check of the higher-order invariant intro-
duces a time-of-check to time-of-use bug in the Rust standard
library (join() for [Borrow<str>]). RUDRA found this pre-
viously unknown bug (CVE-2020-36323 [10]).

ISummary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency
Type safety solves MM and concurrency
Have fun with the lab!

Transactions

Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) { create(file, dir) {

delete(file, old-dir) alloc-disk(file, header, data)
add(file, new-dir) write(header)
} add (file, dir)
}

Problem: crash in the middle
* Modified data in memory/caches
* Even if in-memory data is durable, multiple disk updates

Transactions: Implementation

* Key idea: turn multiple updates into a single one

* Many implementation Techniques
* Two-phase locking
* Timestamp ordering
e Optimistic Concurrency Control
* Journaling
e 2,3-phase commit
* Speculation-rollback
* Single global lock
* Compensating transactions

Key problems:
* output commit
* synchronization

Two-phase commit

* N participants agree or don’t (atomicity)

* Phase 1: everyone “prepares”

* Phase 2: Master decides and tells everyone to actually commit
* What if the master crashes in the middle?

2PC: Phase 1

Coordinator sends REQUEST to all participants
Participants receive request and

Execute locally

Write VOTE_COMMIT or VOTE_ABORT to local log
Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: C>S1: delete foo from /, C=>S2: add foo to /

A S

Failure case: Success case:

S1 writes rm /foo, VOTE_COMMIT to log S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT S1 sends VOTE_COMMIT

S2 decides permission problem S2 writes add foo to /

S2 writes/sends VOTE_ABORT S2 writes/sends VOTE_COMMIT

2PC: Phase 2

* Case 1: receive VOTE_ABORT or timeout

* Write GLOBAL_ABORT to log
* send GLOBAL_ABORT to participants

* Case 2: receive VOTE_COMMIT from all

* Write GLOBAL_COMMIT to log
* send GLOBAL_COMMIT to participants

* Participants receive decision, write GLOBAL * to log

2PC corner cases

Phase 1 Phase 2

1 Coordinator sends REQUEST to all participants Y° Case 1: receive VOTE_ABORT or timeout
* Write GLOBAL_ABORT to log
* send GLOBAL _ABORT to participants

3. Execute locally
. * Case 2: receive VOTE_COMMIT from all
4. Write VOTE_COMMIT or VOTE_ABORT to local log + Write GLOBAL COMMIT to log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator * send GLOBAL_COMMIT to participants

X 2. Participants receive request and

Z- Participants recv decision, write GLOBAL_* to log

What if participant crashes at X?
e Coordinator crashes at Y?
Participant crashes at Z?

* Coordinator crashes at W?

2PC limitation(s)

* Coordinator crashes at W, never wakes up

* All nodes block forever!

e Can participants ask each other what happened?
e 2PC: always has risk of indefinite blocking

* Solution: (yes) 3 phase commit!
* Reliable replacement of crashed “leader”
* 2PC often good enough in practice

Questions?

IScaIe Out vs Scale Up

A

B
r
A [Ldle]le] -

Vertical Scaling Horizontal Scaling =
Make boxes bigger Make more boxes
Vertical Scaling Horizontal Scaling
Higher Capital Investment On Demand Investment
Utilization concerns Utilization can be optimized

Relatively Quicker and works with the Relatively more time consuming and
current design needs redesigning

Limiting Scale Internet Scale

I Parallel Systems Architects Wanted

)lete request

How to|handle lots and lots of dogs?

Purchase
Pooch

B

b &
w
= dng v

User
request

>

-

Web Servers (Presentation Tier) and App se . '
Database Server = scales vertically Vertical scale gets you a long

Horizontal Scale = “Shared Nothing” way, but there is aIways a
Why is this a good arrangement? bigger problem size

IHorizontaI Scale: Goal

”] ”]

I Design Space

Grid
A
Internet
Shared MapReduce '
thing
R Spark -
Search Dryad //
/7
Shared //
Private |somethins ,
data
center / Transaction P //
v MPI ,
< >

Latency Throughput

I Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

memory

memory

interconnection network

memory

memory

Massively Parallel Processor (MPP)
Many, many processors

Cluste

network
interface

r of SMPs

* Shared memory in SMP

node

* Messaging €2 SMP nodes

interconnection network

* also regarded
processor #is

Non-GPU Accelerators

Multicore SMP+GPU Cluster

¢ Shared mem in SMP node

* Messaging between nodes

M

M

- [- B

interconnection network

IWhat requires extreme scale?

Simulations—why?

Simulations are sometimes more
cost effective than experiments

Why extreme scale?

More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

Nuclear Reactors

Climate Change

Astrophysics

I How big is “extreme” scale?

Measured in FLOPs

El Aatines nAaint Nnaratinne Dar earAnnAd
Rmax
Rank System Cores (TFlop/s)

1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, 10,649,600 92014.6

Sunway, NRCPC
National Supercomputing Center in Wuxi
China

2 Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 3,120,000 33,862.7
2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT
National Super Computer Center in Guangzhou
China

3 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, 361,760 19,590.0
NVIDIA Tesla P100, Cray Inc.
Swiss National Supercomputing Centre (CSCS])
Switzerland

4 Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, 19,860,000 19,135.8
Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler
Japan Agency for Marine-Earth Science and Technology
Japan

5 Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, 560,640 17,590.0
NVIDIA K20x , Cray Inc.
DOE/SC/0ak Ridge National Laboratory
United States

6 Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM 1,572,864 17,173.2
DOF/NNSA/LLNL

Rpeak
(TFlop/s) (kW)

125,435.9 15,371

54,902.4 17,808

25,326.3 2,272

28,192.0 1,350

27,112.5 8,209

20,132.7 7,890

Power

Performance of over 10 Peta
3 floating point number operations per second

(10 Peta=10,000,000,000,000,000)

IKEN K/ Kei computer
4 on Top500.org, 10PFLOPs

INL Titan ‘
on Top500.org, 27 PFLOPS J

I Distributed Memory Multiprocessors

Each processor has a local memory

Physically separated address space Network

Processors communicate to access

non-local data ¢ # ¢
Message communication

Message passing architecture M $ M $ M $

Processor interconnection network

Parallel applications partitioned across P P P
Processors: execution units
Memory: data partitioning mmm= Network interface

Scalable architecture

Incremental cost to add hardware
(cost of node)

* Nodes: complete computer
* Including I/O

* Nodes communicate via network
» Standard networks (IP)
* Specialized networks (RDMA, fiber)

I Performance: Latency and Bandwidth

Bandwidth Wait...bisection bandwidth?

Need high bandwidth in communication
Match limits in network, memory, and procs

Network interface speed vs. network bisecti
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation

Overhead to communicate: a problem in many
machines

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Is this different from metrics we’ve

cared about so far?

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand

Explicit communication =
focus attention on costly aspect of parallel computation

Synchronization 2

naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication =2
some advantages in performance

Can you think of any disadvantages?

I Running on Supercomputers

* Programmer plans a job; job ==
* parallel binary program
* “input deck” (specifies input data)

e Submit job to a queue

* Scheduler allocates resources when
* resources are available,
* (or) the job is deemed “high priority”

e Scheduler runs scripts that initialize the environment
e Typically done with environment variables

e At the end of initialization, it is possible to infer:
* What the desired job configuration is (i.e., how many tasks per node)
e What other nodes are involved
* How your node’s tasks relates to the overall program

* MPI library interprets this information, hides the details

IThe Message-Passing Model

* MPIl == Message-Passing Interface specification
* Extended message-passing model
* Not a language or compiler specification
* Not a specific implementation or product

* Specified in C, C++, Fortran 77, F90

* Message Passing Interface (MPI) Forum
e http://www.mpi-forum.org/
e http://www.mpi-forum.org/docs/docs.html

e Two flavors for communication
* Cooperative operations
* One-sided operations

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

I Cooperative Operations

Data is cooperatively exchanged in message-passing

Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving process’'s memory made with receiver’s explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)\\\\\\\\‘

Receive (data)

time

Familiar argument?

Are 1-sided

_ _ operations better
I One-Sided Operations for performance?

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
Communication and synchronization are decoupled

Process 0 Process 1

Put(data)\\\\\\\‘
(memory) \\\\\\\‘

\j Get (data)
time

(memory)

IA Simple MPI Program

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
MPI Init(&argc, &argv);
printf("Hello, world!\n");
MPI Finalize();

return O;

| MPI_Init

Hardware resources allocated
MPI-managed ones anyway...

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait...what do they need to know?

Configure OS-level resources

Configure tools that are running with MPI

Executive Summary

e Undo all of init

I MPl_Finalize e Beabletodoiton

success or failure
exit

Why do we need to finalize MPI?

What is necessary for a “graceful” MPI exit?
Can bad things happen otherwise?
Suppose one process exits...

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?
» By default, an error causes all processes to abort

 The user can cause routines to return (with an error code)
* |n C++, exceptions are thrown (MPI-2)

e A user can also write and install custom error handlers

 Libraries may handle errors differently from applications

| Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation

Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out
For MPICH under Linux

mpiexec <args>
Recommended part of MPI-2, as a recommendation
mpiexec for MPICH (distribution from ANL)
mpirun for SGI’ s MPI

I Finding Out About the Environment

Two important questions that arise in message passing
How many processes are being use in computation?
Which one am I?

MPI provides functions to answer these questions
MPI_Comm_size reports the number of processes

MPI_Comm_rank reports the rank
number between 0 and size-1
identifies the calling process

I Hello World Revisited

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])

{
int rank, size;
MPI Init(&argc, é&argv);
MPI Comm rank(MPI COMM WORLD, é&rank);
MPI Comm size(MPI_COMM WORLD, é&size);
printf("I am %d of %d\n", rank, size);
MPI Finalize();
return O;

}

Comm?

0 What does this program do? [Baeaiaalsa tslle 0] ¢4

IBasic Concepts

Processes can be collected into groups

Each message is sent in a context
Must be received in the same context!

A group and context together form a communicator

A process is identified by its rank
With respect to the group associated with a communicator

There is a default communicator MPI_COMM_WORLD

Contains all initial processes

I MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MP| datatypes

A strided block of datatypes
An indexed array of blocks of datatypes

* Enables heterogeneous communication

e Support communication between processes on machines with different
memory representations and lengths of elementary datatypes

* MPI provides the representation translation if necessary

* Allows application-oriented layout of data in memory
e Reduces memory-to-memory copies in implementation
 Allows use of special hardware (scatter/gather)

| MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types’
MPI calls them “tags” to avoid confusion with datatypes

IMPI Basic (Blocking) Send

MPI SEND (start, count, datatype, dest, tag, comm)

The message buffer 1s described by:
start, count, datatype

The target process 1s specified by dest

Rank of the target process in the communicator
specified by comm

Process blocks until:
Data has been delivered to the system
Buffer can then be reused

Message may not have been received by target process!

| MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()
MPI_FINALIZE()
MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()
MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’ t always the most efficient...

Add more support for communication

I Excerpt: Barnes-Hut

int ctr=nLocalOriginal;
int offset=nLocalOriginal-nLocal;
for (i=0;i<worldSize;i++) {
if (i==rank) {
MPI BEast (s particles,N POS ELEMS*nLocalMax+!,MPI DOUBLE,i,MPI COMM WORLD) ;
} else {
MPI Bcast(l particles,N POS ELEMS*nLocalMax+!,MPI DOUBLE,i,MPI COMM WORLD) ;
for (k=0;k<1 particles[0];k++, ctr++) {
if(l_particles[MASS(k)]<ﬁ){
offset++;
_nparticles--;
} else {
s _particles[PX(ctr)]=1 particles[PX(k)];
s particles[PY(ctr)]=1 particles[PY(k)];
s particles[PZ(ctr)]=l particles[PZ(k)]:
s _particles[MASS(ctr)]=1 particles[MASS(k)];
indexes[ctr-offset]=ctr;

: Barnes-Hut

IExcerpt

int ctr=nLocalOriginal;

.

A

int offset=nLocalOriginal-nLocal;

for (1

i, SN VA

I.hel~%.n4
Wy

AP A {
_wle.ﬂ.«"»ﬂ#»«:!& A

VX

o

;i<worldSize;i++) {

Lo\

PN Vi s
X /AN iy %

e/ JEXTR

Nl VAV X
,”Q@SKINFESSIY?

A

ﬂ»w §Q@%~ \V.RVA\V 7)
0 ::|<>< AV 54‘ :

23]
[—
m m
D =
(@) (®)
a]
- o
ol [l ‘e
= = —
= P sy
)
+ + N S
b i ~ - — 0
a a ~ o~ o~ U]
St = Ao M m
l l N N
©] XA DN
0 0 [aTENa TN TN}
0 Q = —
= =~ n n n —
e o o+ (O ORNORNS)
* *x <+ —~ o~ — A
0 0 SRR O N O
= = e e
[] [O P PP
[— 94 4 Y4 Q0
[3N @ © © |
[| + 0,0 0O e~
0 0+ - T«
(@) O X -~ — o —
[sW Ay~ nmn il ~0o
b = — ~ e~ o~)
~ N 4 4 4 0P
0" n N A PP P~0
0] O QO (ST T 3T /5 I 1)
— — — W0 ~ o~)
O O 0 A o~ XYZMf
- o - m 1 [T TN (o]
113 [—
(& H Y = ! n n n on Y
© T @ 0 Q (ORNORNORN OS]
Q, 0,0 0 ~- ~N A~ O
| | 1= 4+ © U0 U U -
0 —— 0 4+ - A e e 0
b ~ V- PP PP PPOO
[T R R S S W W~
- N *~ 4 0N = T T © T O
P @ © - QO o, 00 00
0 Ol O9H g 0 | R o =
ol m & |0 ln v ©n v 0 -~
@ | |~ —
S H &~ [0}
I A O A O W
= nus4H-A -~
- ~
-~ 0
L2
o —~—

To use or not use MPI?

* USE

* You need a portable parallel program

* You are writing a parallel library

* You have irregular or dynamic data relationships
* You care about performance

* NOT USE

* You don’t need parallelism at all
* You can use libraries (which may be written in MPI) or other tools

* You can use multi-threading in a concurrent environment
* You don’t need extreme scale

