I Programming at Scale: Dataflow

cs37/8

I Today

Questions?

Administrivia

* Project Proposal Due Soon!

Agenda:
e Dataflow Wrap up

e Start talking about Consistency at scale

Spark faux quiz (5 min, any 2):

What is the difference between transformations and actions in Spark?

Sﬁark supports a persist APl. When should a programmer want to use it? When should
she [not] use use the “RELIABLE” flag?

List aspects of Spark’s design that hel|i)/hinder multi-core parallelism relative to
MapReduce. If the issue is orthogonal, explain why.

Compare and contrast fault tolerance guarantees of Spark to those of MapReduce. How
are[n’t] the mechanisms different?

Compare/contrast the abstractions for parallelism in Spark/MapReduce
For what kinds of workloads will Spark/MR have different/similar performance?
Why does Spark expose control over caching RDDs in memory to the programmer?

What's a “wide” dependence? A “narrow” one? How do these ideas relate to fault
tolerance in Spark?

|s Spark a good system for indexing the web? For computing page rank over a web
index? Why [not]?

IReview: Scale: Goal

”] ”]

I Infrastructure is hard to get right

StringFinder

Indexed data

StringFinder

Indexed data

Internet

StringFinder

Indexed data

'

How do we distribute the searchable files on our machines?

What if our webserver goes down?

What if a StringFinder machine dies? How would you know it was dead?

P wnh e

What if marketing comes and says, “well, we also want to show pictures of the
earth from space too! Ooh..and the moon too!”

I Dataflow Engines

Programming model + infrastructure

Write programs that run on lots of machines
Automatic parallelization and distribution
Fault-tolerance

I/O and jobs Scheduling

Status and monitoring

Key Ideas:
All modern “big data” platforms are dataflow engines!

Differences:
1. what graph structures are allowed?
2. How does this impact programming model?

ISpark (2012) Background

Commodity clusters: important platform

In industry: search, machine translation, ad targeting, ...
In research: bioinformatics, NLP, climate simulation, ...

Cluster-scale models (e.g. MR) de facto standard

Fault tolerance through replicated durable storage
Dataflow is the common theme

Multi-core
Iteration

I Motivation

Programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Inbut %— QOutonut
)

-

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures

I lterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

2 rank; / [neighbors|

i€ neighbors

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

1inks
ranks

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatMap {
(url, (Tinks, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

Input [Output

I lterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

2, < neighbors rank; / [neighbors;|

1inks = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatMap {
(url, (Tinks, rank)) =>
Tinks.map(dest => (dest, rank/links.size))

1 rodiiceRviov(l 5 R

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

A

| Programming Model

 Resilient distributed datasets (RDDs)

* Immutable collections partitioned across cluster that can
be rebuilt if a partition is lost

* Created by transforming data in stable storage using data
flow operators (map, filter, group-by, ...)

e Can be cached across parallel operations

* Parallel operations on RDDs
e Reduce, collect, count, save, ...

e Restricted shared variables
 Accumulators, broadcast variables

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

IRDD Fault Tolerance

* RDDs maintain lineage information that can be used
to reconstruct lost partitions

* Ex:
cachedvMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.persist()

HdfsRDD FilteredRDD MappedRDD
[path: hdfs://... func: contains(...)H func: split(...) H CachedRDD }

lines = LOAD '/user/hadoop/HDFS File.txt' AS (line:chararray);

Systems

words FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word;

grouped = GROUP words BY word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

DUMP wordcount;
ApJ

SQL Sawzall =SQL LINQ, SQL
R Sawzall)(Pig, Hive j DryadLINQ
Language 7~ N2 S
CREATE EXTERNAL TABLE lines(line string)
LOAD DATA INPATH ‘books’ OVERWRITE INTO TABLE lines;
Execution Paralle
Databas
SELECT word, count(*) FROM lines
LATERAL VIEW explode(split(text, ' ')) 1lTable as word
Storage GROUP BY word;

count: table sum of int;

total: table sum of float;

sum_of squares: table sum of float;
x: float = input;

emit count <- 1;

emit total <- x;

emit sum of squares <- x * x;

BieTable [S3 | - I
- AN JSQL Server/

Background: Collections and lterators

class Collection<T> : [Enumerable<T>;

LLITITLLD

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

J

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();

voic®set();

15

| DryadLINQ = LINQ + Dryac

DryadLINQ Data Model

\ Partition -Net objects
#Collection<T> collection;]
bool IsLegal(Key k); I ~ ~ I I I]
string Hash(Key); : \ :
Vertex > - X & O
code = from c in collection Collettion
where IsLegal(c.key)
select new { Hash(c.key), c.value};
L { Hash(c.key)) \ Query

plan
(Dryad job)

@ () collection
@ () results

(/aiik
O
= =

IProgramming Model
gUITTIORE T OMRUII]

i

i

¥
Where eI 0D ¢
Select E\‘/;-----] E\[/----: é\/----)
GroupBy gloooooo) é\f!ll: gLCLLD)
OrderBy {-eme) anenn) g(anll
Aggregate
Join (NIl (lly g (HNNND) (NI
Apply gC===Et)

Materialize O COw Om

IExampIe: Histogram

public static IQueryable<Pair> Histogram(
|Queryable<LineRecord> input, int k)
{

var words = input.SelectMany(x => x.line.Split(' '));
selectMany ‘OUPS = words.GroupBv(x => x);

Sort 'L arden-partitioned.tx{l arden-partitioned. i) arden-partitioned. {2 arden-partitioned .ty arden-partitioned.brf4 arden-partitioned. g
GroupBy+Select q \ \ \ l / /
H aShDiStribUte Super_1[0] Super_1[1] Super_112] Super_1[3] Super_ 1{4 Super_ 1[5 Super_1[6]
e e |

M € rge S ort 1 Super_7[6] Super_T[0]} Super_T[1] Super_T[2) Super_T[3] Super_T[4] Super_T[5]

GroupBy \\\x | ‘%

Select
Super_20
Sort l
Take

5513ccf5-9e1d-4ef9-a093-5028¢1176¢6¢.pt0]
MergeSort LA, lINe, Or, woras, Or , wisaom |

[ELC [[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}]

arden-partitioned bfg

IRDDs

* Immutable, partitioned, logical collection of records

UL @%} UL
Where gl 00) NIl g(ml

Select ﬂ-----] é:---} @----]

GroupBy ﬂlll ooo E{;l_l] dllll
OrderBy fl-cas) fansnn) g(undl
Aggregate gl

Join M gl g (HEEEN (HED
Apply JLLL]
Materialize O OOw O

IRDDS vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained

Consistency

Trivial (immutable)

Up to app / runtime

Fault recovery

Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement

Automatic based on
data locality

Up to app (but runtime
aims for transparency)

ISummary

Dataflow key enabler for cluster-scale parallelism

Key issues become runtime’s responsibility
Data movement
Scheduling
Fault-tolerance

I MapReduce is sub-optimal

Modern DBMSs: hash + B-tree indexes to accelerate data access.

Indexes are user-defined
Could MR do this?

No query optimizer! (oh my, terrible...but good for researchers! ©)

Skew: wide variance in distribution of keys
E.g. “the” more common than “zyzzyva”

Materializing splits
N=1000 mappers = M=500 keys = 500,000 local files
500 reducer instances “pull” these files
DBMSs push splits to sockets (no local temp files)

II\/IapReduce: Inovel && feature-poor

* Partitioning data sets (map) == Hash join
* Parallel aggregation == reduce

* User-supplied functions differentiates from SQL:
 POSTGRES user functions, user aggregates

e PL/SQL: Stored procedures
* Object databases

Absent features:

* Indexing

* Update operator

* Transactions

* Integrity constraints, referential integrity

* \/iews

IWhy Is MapReduce backwards?

Map == group-by

Reduce == aggregate

SELECT job, COUNT(*) as “numemps"
FROM employees
WHERE salary > 1000
GROUP BY job;

* Where is the aggregate in this example?
* |sthe DBMS analogy clear?

IWhy Is MapReduce backwards?

Schemas are good (what’s a schema?)

Separation of schema from app is good (why?)

High-level access languages are good (why?)

Bl:=288--% »»E8x8 D 0~

Ty

e
e
N
= Re———
— —— r~— 3
s —_T
e
i e = paaoat.
o=
b —— w—v.-
ot d m—
ey e e
bty
g
7 i
= e camaess
—
P
= -
v -
—— -
", ~ — fouy s
- - — r—
S EE R DA U = o,
o =
r—— v
e
===
— = oot cae
osae i
—
= | o= = o —r
e s poioy e o e
o —— —] -
- — :
s e
e
——n
= -
=
-
ey

e
-

Mgy

