
cs378

Programming at Scale: Dataflow

Today

Questions?

Administrivia
• Project Proposal Due Soon!

Agenda:
• Dataflow Wrap up
• Start talking about Consistency at scale

Spark faux quiz (5 min, any 2):
• What is the difference between transformations and actions in Spark?
• Spark supports a persist API. When should a programmer want to use it? When should

she [not] use use the “RELIABLE” flag?
• List aspects of Spark’s design that help/hinder multi-core parallelism relative to

MapReduce. If the issue is orthogonal, explain why.
• Compare and contrast fault tolerance guarantees of Spark to those of MapReduce. How

are[n’t] the mechanisms different?
• Compare/contrast the abstractions for parallelism in Spark/MapReduce
• For what kinds of workloads will Spark/MR have different/similar performance?
• Why does Spark expose control over caching RDDs in memory to the programmer?
• What’s a “wide” dependence? A “narrow” one? How do these ideas relate to fault

tolerance in Spark?
• Is Spark a good system for indexing the web? For computing page rank over a web

index? Why [not]?

Review: Scale: Goal

Infrastructure is hard to get right

Web Server
StringFinder
Indexed data

Search
query

1. How do we distribute the searchable files on our machines?

2. What if our webserver goes down?

3. What if a StringFinder machine dies? How would you know it was dead?

StringFinder
Indexed data

StringFinder
Indexed data

4. What if marketing comes and says, “well, we also want to show pictures of the
earth from space too! Ooh..and the moon too!”

Dataflow Engines

Programming model + infrastructure
Write programs that run on lots of machines
Automatic parallelization and distribution
Fault-tolerance
I/O and jobs Scheduling
Status and monitoring

Key Ideas:
All modern “big data” platforms are dataflow engines!

Differences:
1. what graph structures are allowed?
2. How does this impact programming model?

Spark (2012) Background

Commodity clusters: important platform
In industry: search, machine translation, ad targeting, …
In research: bioinformatics, NLP, climate simulation, …

Cluster-scale models (e.g. MR) de facto standard
Fault tolerance through replicated durable storage
Dataflow is the common theme

Multi-core
Iteration

Motivation

Programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide
where to run tasks and can automatically

recover from failures

Iterative Computations: PageRank

Map

Map

Map

Reduce

Reduce

Input Output

Iterative Computations: PageRank

Map

Map

Map

Reduce

Reduce

Input Output

Map

Map

Map

Reduce

Reduce

Output

Map

Map

Map

Reduce

Reduce

Output

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

Programming Model

• Resilient distributed datasets (RDDs)
• Immutable collections partitioned across cluster that can

be rebuilt if a partition is lost
• Created by transforming data in stable storage using data

flow operators (map, filter, group-by, …)
• Can be cached across parallel operations

• Parallel operations on RDDs
• Reduce, collect, count, save, …

• Restricted shared variables
• Accumulators, broadcast variables

Example: Log Mining
• Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Cached RDD
Parallel operation

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

RDD Fault Tolerance

• RDDs maintain lineage information that can be used
to reconstruct lost partitions

• Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

.persist()

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

CachedRDD

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Cosmos
Azure

SQL Server

Dryad

DryadLINQ
Scope

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQL LINQ, SQLSawzall

Cosmos,
HPC, Azure

Spark

Background: Collections and Iterators

15

class Collection<T> : IEnumerable<T>;

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();
void Reset();

}

DryadLINQ = LINQ + Dryad

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)Data

Programming Model

Where
Select
GroupBy
OrderBy
Aggregate
Join
Apply
Materialize

Example: Histogram
public static IQueryable<Pair> Histogram(

IQueryable<LineRecord> input, int k)
{

var words = input.SelectMany(x => x.line.Split(' '));
var groups = words.GroupBy(x => x);
var counts = groups.Select(x => new Pair(x.Key, x.Count()));
var ordered = counts.OrderByDescending(x => x.count);
var top = ordered.Take(k);
return top;

}

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}]

SelectMany
Sort

GroupBy+Select
HashDistribute

MergeSort
GroupBy

Select
Sort
Take

MergeSort
Take

RDDs
• Immutable, partitioned, logical collection of records
• Need not be materialized
• contains information to rebuild a dataset

• Partitioning can be based on a key
• Built using bulk transformations on other RDDs
• Can be cached for future reuse

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
persist/cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
save
lookupKey
…

RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained
Consistency Trivial (immutable) Up to app / runtime
Fault recovery Fine-grained and low-

overhead using lineage
Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement Automatic based on
data locality

Up to app (but runtime
aims for transparency)

Summary

Dataflow key enabler for cluster-scale parallelism
Key issues become runtime’s responsibility

Data movement
Scheduling
Fault-tolerance

MapReduce is sub-optimal

Modern DBMSs: hash + B-tree indexes to accelerate data access.
Indexes are user-defined
Could MR do this?

No query optimizer! (oh my, terrible…but good for researchers! J)
Skew: wide variance in distribution of keys

E.g. “the” more common than “zyzzyva”

Materializing splits
N=1000 mappers à M=500 keys = 500,000 local files
500 reducer instances “pull” these files
DBMSs push splits to sockets (no local temp files)

MapReduce: !novel && feature-poor

• Partitioning data sets (map) == Hash join
• Parallel aggregation == reduce
• User-supplied functions differentiates from SQL:

• POSTGRES user functions, user aggregates
• PL/SQL: Stored procedures
• Object databases

Absent features:
• Indexing
• Update operator
• Transactions
• Integrity constraints, referential integrity
• Views

Why is MapReduce backwards?

Map == group-by
Reduce == aggregate

SELECT job, COUNT(*) as “numemps"
FROM employees
WHERE salary > 1000
GROUP BY job;

• Where is the aggregate in this example?
• Is the DBMS analogy clear?

Why is MapReduce backwards?

Schemas are good (what’s a schema?)
Separation of schema from app is good (why?)
High-level access languages are good (why?)

