
Midterm 1 Faux Quiz Compilation
CS378H Fall 2018

• Who was Flynn? Why is her/his taxonomy important?

• How does domain decomposition differ from functional decomposition? Give examples of each.

• Can a SIMD parallel program use functional decomposition? Why/why not?

• What is the maximum possible speedup of a 75% parallelizable program on 8 CPUs

• What is super-linear speedup? List two ways in which super-linear speedup can occur.

• What is the difference between strong and weak scaling?

• Define Safety, Liveness, Bounded Waiting, Failure Atomicity

• What is the difference between processes and threads?

• What’s a fiber? When and why might fibers be a better abstraction than threads?

• What is the difference between spinning/busy-wait and blocking synchronization?

• Can you write shared memory parallel applications using single-threaded processes only?

• What criteria should you use to choose between spinlock/mutex on a multi-processor?

• Define the states of the MESI protocol. Is the E state necessary? Why or why not?

• What is bus locking?

• What is the difference between Mesa and Hoare monitors?

• Why recheck the condition on wakeup from a monitor wait?

• How can you build barriers with spinlocks?

• What is the difference between a mutex and a semaphore?

• How can you build a barrier without spinlocks or monitors?

• How are monitors and semaphores related?

• Why does pthread_cond_init accept a pthread_mutex_t parameter? Could it use a

pthread_spinlock_t? Why [not]?

• Why do modern CPUs have both coherence and HW-supported RMW instructions? Why not just

one or the other?

• What is priority inheritance?

• How are promises and futures related? Since there is disagreement on the nomenclature, don’t

worry about which is which—just describe what the different objects are and how they function.

• How does HTM resemble or differ from Load-linked Stored-Conditional?

• What are some pros and cons of HTM vs STM?

• What is Open Nesting? Closed Nesting? Flat Nesting?

• How does 2PL differ from 2PC?

• Define ACID properties: which, if any, of these properties does TM relax?

• How does HTM resemble or differ from Load-linked Stored-Conditional?

• How are promises and futures different or the same as goroutines?

• What is the difference between a goroutine and a thread?

• What is the difference between a channel and a lock?

• How is a channel different from a concurrent FIFO?

• What is the CSP model?

• What are the tradeoffs between explicit vs implicit naming in message passing?

• What are the tradeoffs between blocking vs. non-blocking send/receive in a shared memory

environment? In a distributed one?

• What is a reduction? A prefix sum? Why are they hard to parallelize and what basic techniques

can be used to parallelize them?

• Define flow dependence, output dependence, and anti-dependence: give an example of each.

Why/how do compilers use them to detect loop-independent vs loop-carried dependences?

• What is the difference between a thread-block and a warp?

• How/Why must programmers copy data back and forth to a GPU?

• What is “shared memory” in CUDA? Describe a setting in which it might be useful.

• CUDA kernels have implicit barrier synchronization. Why is __syncthreads() necessary in light of

this fact?

• How might one implement locks on a GPU?

• What ordering guarantees does a GPU provide across different hardware threads’ access to a

single memory location? To two disjoint locations?

• When is it safe for one GPU thread to wait (e.g. by spinning) for another?

• What is hardware multi-threading; what problem does it solve?

• What is the difference between a vector processor and a scalar?

• Implement a parallel scan or reduction

• How are GPU workloads different from GPGPU workloads?

• How does SIMD differ from SIMT?

• List and describe some pros and cons of vector/SIMD architectures.

• GPUs historically have elided cache coherence. Why? What impact does it have on the the

programmer?

• List some ways that GPUs use concurrency but not necessarily parallelism.

• Why do languages like CUDA and OpenCL have both blocks and threads?

• What does the __shared__ keyword do? How is it implemented by HW?

• CUDA kernels have implicit barrier synchronization: __syncthreads(). Is it necessary? Why or

why not?

• Is traditional locking implementable on a GPU? What alternatives are there for synchronizing /

avoiding races?

• How is occupancy defined (in CUDA nomenclature)?

• What is control flow divergence? How does it impact performance?

• What is a bank conflict?

• What is the difference between a thread block scheduler and a warp scheduler?

• Compare/contrast coarse/fine/simultaneous multi-threading.

• In CUDA, what is the difference between grids, blocks, and threads? What is their counterpart in

OpenCL?

• What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp

scheduler?

• Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under

what conditions might you want to use or not use it and why?

• How are atomics implemented in modern GPU hardware?

• How is __shared__ memory implemented by modern GPU hardware?

• Why is __shared__ memory necessary if GPUs have an L1 cache? When will an L1 cache provide

all the benefit of __shared__ memory and when will it not?

• Is cudaDeviceSynchronize still necessary after copyback if I have just one CUDA stream?

