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Outline for Today

• Questions?
• Administrivia 
• Course Overview
• Course Details and Logistics
• Concurrency & Parallelism Basics

Acknowledgments: some materials in this lecture borrowed from:
• Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin,  Thomas Narten, and Emery Berger

• Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta



Course Details
Course Name: CS378 – Concurrency
Unique Number: 53035

Lectures: T-Th 9:30-11:00AM BUR 134
Class Web Page: http://www.cs.utexas.edu/users/rossbach/cs378
Instructor: Chris Rossbach
TA: Meyer Zinn and Karan Gurazada
Text: Principles of Parallel Programming (ISBN-10: 0321487907) 

Please read the syllabus!

…More on this shortly…

http://www.cs.utexas.edu/users/rossbach
https://www.universitycoop.com/search?keywords=Lin%20Snyder%20Parallel%20Programming


Why you should take this course

• Concurrency is super-cool, and super-important
• You’ll learn important concepts and background
• Have fun programming cool systems

• GPUs! (optionally) FGPAs!
• Modern Programming languages: Go! Rust!
• Interesting synchronization primitives (not just boring old locks)
• Programming tools people use to program super-computers (ooh…)

Two perspectives:
• The “just eat your kale and quinoa” argument
• The “it’s going to be fun” argument



My first computer

Wires + 
gobble-dy-gook 

(sp?)

CPU

Storage

screen

Tape drive!
(also good for playing heavy metal music)



My current computer

Too boring…



Another of my current computers

GPU

Image DSP

Crypto

CPU

…

CPU
A lot has changed but…

the common theme is…??
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Concurrency and Parallelism are Everywhere
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• What’s concurrency?
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Concurrency and Parallelism are everywhere

GPU

Image DSP

Crypto

CPU(s)

…

GPU
Crypto

FPGADSP

How much parallel and concurrent programming 
have you learned so far?
• Concurrency/parallelism can’t be avoided 

anymore (want a job?)
• A program or two playing with locks and threads 

isn’t enough
• I’ve worked in industry a lot—I know

Course goal is to expose you to lots of ways of 
programming systems like these
…So “you should take this course because it’s good for you” (eat your #$(*& kale!)



Goal: Make Concurrency Your Close Friend
Method: Use Many Different Approaches to Concurrency
Abstract Concrete
Locks and Shared Memory Synchronization Shared Counter, Prefix Sum with pthreads

Language Support Go lab: condition variables, channels, go routines
Rust lab: 2PC

Parallel Architectures GPU Programming Lab
(Optional) FPGA Programming Lab

HPC (Optional) MPI lab

Distributed Computing / Big Data Rust 2PC

Modern/Advanced Topics
• Specialized Runtimes / Programming Models 
• Auto-parallelization
• Race Detection

Whatever Interests YOU Project



Logistics Reprise
Course Name: CS378 – Concurrency
Unique Number: 53035

Lectures: MW 9:30-11:00AM here

Class Web Page: http://www.cs.utexas.edu/users/rossbach/cs378
Instructor: Chris Rossbach
TA: Meyer Zinn and Karan Gurazada
Text: Principles of Parallel Programming (ISBN-10: 0321487907) 

Seriously, read the syllabus!
Also, start Lab 1!

http://www.cs.utexas.edu/users/rossbach/cs378
http://www.cs.utexas.edu/users/rossbach
https://www.universitycoop.com/search?keywords=Lin%20Snyder%20Parallel%20Programming


Two Super-Serious Notes

• Inclusivity and respect are absolute musts

• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos



Serial vs. Parallel Program
Key concerns:
• Programming model
• Execution Model
• Performance/Efficiency
• Exposing parallelism

16CS378h







Flynn’s Taxonomy

SISD SIMD
MISD MIMD



Execution Models: Flynn’s Taxonomy
Normal Serial program

Fault – tolerance
Pipeline parallelism

Our main focus

20



• Example: vector operations (e.g., Intel SSE/AVX, GPU)

SIMD



MIMD

• Example: multi-core CPU



Problem Partitioning

• Decomposition: Domain v. Functional
• Domain Decomposition

• SPMD
• Input domain
• Output Domain
• Both

• Functional Decomposition
• MPMD
• Independent Tasks
• Pipelining



Game of Life

• Given a 2D Grid:

What model fits “best”?



Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management  Overhead

• Load Balance
• Correctness

• order of reads and writes is non-deterministic
• synchronization is required to enforce the order
• locks, semaphores, barriers, conditionals….How could we do a functional decomposition?



Load Balancing

• Slowest task determines performance

26

Task 0
Task 1

Task 2
Task 3

wait
work

time



Granularity
• Fine-grain parallelism

• G is small
• Good load balancing
• Potentially high overhead
• Hard to get correct

• Coarse-grain parallelism
• G is large
• Load balancing is tough
• Low overhead
• Easier to get correct



Performance: Amdahl’s law



Amdahl’s law

What makes something “serial” vs. parallelizable?

Serial Parallelizable

X/2 seconds X/2 seconds

my task

X seconds



Amdahl’s law

Serial Parallelizable
Parallelizable

Parallelizable

X/2 seconds X/2 seconds

End to end time: X seconds

X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

2 CPUs



Speedup exercise

Serial Parallelizable

X/4 seconds
3 * X/4 seconds

End to end time: X seconds

What is the “speedup” in this case?

8 CPUs

P P P P P P P P

P
P
P
P
P
P
P
P

(3X/4)/8 seconds



Amdahl Action Zone
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Amdahl Action Zone

0
20
40
60
80

100
120

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% 75% 90% 95% 99%



Strong Scaling vs Weak Scaling
Amdahl vs. Gustafson

When is Gustavson’s law a better metric?
When is Amdahl’s law a better metric?

• Gustafson’s law: Speedup(N) = S + (S-1)*N
• Weak scaling: Speedup(N) calculated given work per CPU is fixed
• Work/CPU fixed when adding more CPUs keeps granularity fixed
• Problem size grows: solve larger problems
• Consequence: speedup upper bound is much higher
• Given work W on n CPUs, with α serial

• Incremental work W’ on (n+1) CPUs:
 Wʹ=αW+(1−α)nW
• Speedup based on case where (1-α) scales perfectly:

  S(n)=α+(1−α)n

CPUs



Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort

• Serial: 150s

• Parallel 40s
• Speedup:

NO NO NO!
• Serial quicksort: 30s

• Speedup = 30/40 = 0.75X Why insist on best serial algorithm as baseline?

Can this 
happen?



Concurrency and Correctness
If two threads execute this program concurrently, 

how many different final values of X are there?
Initially, X == 0.

void increment() {
   int temp = X;
   temp = temp + 1;
   X = temp;
}

void increment() {
   int temp = X;
   temp = temp + 1;
   X = temp;
}

Thread 1 Thread 2

Answer:
A. 0
B. 1
C. 2
D. More than 2



Schedules/Interleavings
Model of concurrent execution
• Interleave statements from each thread into a single thread
• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;   

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!



Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
   lock.acquire();
   int temp = X;
   temp = temp + 1;
   X = temp;
   lock.release();
}

Is mutual exclusion a good abstraction?



• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why Locks are Hard

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
  LOCK(s);
  LOCK(d);
  tmp = s.remove(key);
  d.insert(key, tmp);
  UNLOCK(d);
  UNLOCK(s);
}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency 



Correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region 
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some 

bounded number of operations.
• If a thread i is in entry section, then there is a bound on the number of times that 

other threads are allowed to enter the critical section before thread i’s request is 
granted

while(1) {
   Entry section
   Critical section
   Exit section
   Non-critical section
}

Mutex, spinlock, etc.
are ways to implement 
these

Theorem: Every property is a 
combination of a safety property 
and a liveness property.
       -Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Did we get all the important conditions?
Why is correctness defined in terms of locks?



Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
  while (*lock == 1)
     ; //spin
  *lock = 1;
}

Lock::Release() {
    *lock = 0;
}

What are the problem(s) with this?
Ø A. CPU usage  
Ø B. Memory usage 
Ø C. Lock::Acquire() latency
Ø D. Memory bus usage 
Ø E. Does not work

Completely and utterly broken.
How can we fix it?



HW Support for Read-Modify-Write (RMW)

Preview of Techniques:
• Bus locking
• Single Instruction ISA extensions

• Test&Set
• CAS: Compare & swap
• Exchange, locked increment, locked decrement (x86)

• Multi-instruction ISA extensions:
• LLSC: (PowerPC,Alpha, MIPS)
• Transactional Memory (x86, PowerPC)

bool rmw(addr, value) {
  atomic {
    tmp = *addr;
    newval = modify(tmp);
    *addr = newval;
   }
}

IDEA: hardware 
implements 

something like:

Why is that hard?
How can we do it?

More on this later…



Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)
   ; //spin
}

Lock::Release() {
    *lock = 0;
}

What are the problem(s) with this?
Ø A. CPU usage  
Ø B. Memory usage 
Ø C. Lock::Acquire() latency
Ø D. Memory bus usage 
Ø E. Does not work

(test & set  ~= CAS ~= LLSC) 
TST: Test&set
• Reads a value from memory
• Write “1” back to memory location 

More on this later…



Test & Set with Memory Hierarchies

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
while(test&set(lock));
// in critical region

L1

L2

Main Memory

…

…

L1

L2

CPU B
while(test&set(lock));

Initially, lock already held by some other CPU—A, B busy-waiting
What happens to lock variable’s cache line when different cpu’s contend? 

Load
can 
stall

• With bus-locking, lock 
prefix blocks *everyone*

• With CAS, LL-SC, cache line 
cache line “ping pongs” 
amongst contenders

• More on this next time…



Programming and Machines: a mental model



Parallel Machines: a mental model



Processes and Threads

• Abstractions
• Containers
• State

• Where is shared state?
• How is it accessed?
• Is it mutable?



Processes & Virtual Memory

• Virtual Memory: Goals…what are they again?
• Abstraction: contiguous, isolated memory
• Remember overlays?

• Prevent illegal operations
• Access to others/OS memory
• Fail fast (e.g. segv on *(NULL))
• Prevent exploits that try to execute program data

• Sharing mechanism/IPC substrate



ustack (1)

Process Address Space

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3 
G

B
1 

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

access requires kernel mode

P1
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Processes
The Process Model

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant
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Implementation of Processes

Fields of a process table entry
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Threads
The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads
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The Thread Model

• Items shared by all threads in a process
• Items private to each thread
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The Thread Model

Each thread has its own stack



60

Using threads
Ex. How might we use threads in a word processor program?
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Thread Usage

A multithreaded Web server

(a) Dispatcher thread
(b) Worker thread
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Thread Usage

Three ways to construct a server
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Implementing Threads in User Space

A user-level threads package
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Implementing Threads in the Kernel

A threads package managed by the kernel



Pthreads

• POSIX standard thread model, 
• Specifies the API and call semantics.
• Popular – most thread libraries are Pthreads-compatible



Preliminaries

• Include pthread.h in the main file
• Compile program with –lpthread
• gcc –o test test.c –lpthread
• may not report compilation errors otherwise but calls will fail

• Good idea to check return values on common functions



Thread creation
• Types: pthread_t – type of a thread
• Some calls:

int pthread_create(pthread_t *thread, 
       const pthread_attr_t *attr, 
       void * (*start_routine)(void *), 
       void *arg);
int pthread_join(pthread_t thread, void **status);
int pthread_detach();
void pthread_exit();

• No explicit parent/child model, except main thread holds process info
• Call pthread_exit in main, don’t just fall through;
• Most likely you wouldn’t need pthread_join

• status = exit value returned by joinable thread
• Detached threads are those which cannot be joined (can also set this at creation)



Creating multiple threads



Can you find the bug here?



Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex, 
                       const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);

• Attributes: for shared mutexes/condition vars among processes, for priority 
inheritance, etc.

• use defaults
• Important: Mutex scope must be visible to all threads!



Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock); 

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

int pthread_mutex_init(pthread_mutex_t *mutex,…);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);

Wait…what’s the 
difference?



Lab #1

• Basic synchronization
• http://www.cs.utexas.edu/~rossbach/cs378/lab/locking.html

• Start early!!!

http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html


Questions?


