I Shared Memory Synchronization Rides Again:
Lock Freedom

cs37/8

I Today

Questions?

Administrivia

* Faux Quiz

Agenda:
* Lock Freedom

Faux Quiz Questions: 5 min, pick any 2

 What is obstruction freedom, wait freedom, lock freedom?
* How can one compose lock free data structures?

* What is the difference between linearizability and strong consistency?
Between linearizability and serializability?

* What is the ABA problem? Give an example.

e How do lock-free data structures deal with the “inconsistent view”
problem?

Non-Blocking Synchronization

Non-Blocking Synchronization

Locks: a litany of problems

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

Non-Blocking Synchronization

Locks: a litany of problems

* Deadlock
* Priority inversion

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock
* Priority inversion

* Convoys

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance
Solution: don’t use locks

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Lock-free programming

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
e Thread-safe access shared mutable state without mutual exclusion

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
e Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
 ...but not really practical wo HW

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
e Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
 ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
e Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
 ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
e Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
 ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so

* General approach: encapsulate lock-free algorithms in data structures
* Queue, list, hash-table, skip list, etc.
* New LF data structure = research result

Basic List Append

struct Node
{

Basic List Append int data;

struct Node *next;

| 3

struct Node

{

Basic List Append int data;

struct Node *next;

}

vold append(Node** head ref, int new data) {
Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;

}

while (last=>next != NULL)
last = last=>next;

last=>next = new node;

struct Node

{

Basic List Append int data;

struct Node *next;

}

vold append(Node** head ref, int new data) {

Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {

*head ref = new node;

return;
}
while (last->next != NULL)

last = last=->next;
last=>next = new node;

}

* |s this thread safe?

struct Node

{

Basic List Append int data;

struct Node *next;

}

vold append(Node** head ref, int new data) {

Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {

*head ref = new node;

return;
}
while (last->next != NULL)

last = last=->next;
last=>next = new node;

}

* Is this thread safe?
 What can go wrong?

Example: List Append struct Nods

{
int data;
struct Node *next;

};
void append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
lock () ;
if (*head ref == NULL) {

*head ref = new node;
} else {

while (last=>next '= NULL)

last = last=>next;
last=>next = new node;

}

unlock () ;

Example: List Append struct Nods

{
int data;

struct Node *next;

};

void append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next !'= NULL)
last = last=>next;
last=>next = new node;

}

Example: List Append struct Nods

{

int data;
struct Node *next;

};

void append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '= NULL)
last = last=>next;
last=>next = new node;

}

Example: List Append struct Nods

{

int data;
struct Node *next;

};

void append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '= NULL)
last = last=>next;
last=>next = new node;

}

* What property do the locks enforce?

Example: List Append struct Node

{

int data;
struct Node *next;

};

void append (Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '= NULL)
last = last=>next;
last=>next = new node;

}

* What property do the locks enforce?

} * What does the mutual exclusion ensure?

Example. LlSt Append struct Node

{
int data;
struct Node *next;
};
void append (Node** head ref, int new data) {
Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {

while (last=>next '= NULL)
last = last=>next;
last=>next = new node;

}

* What property do the locks enforce?

What does the mutual exclusion ensure?

—
°

e Can we ensure consistent view (invariants hold) sans mutual exclusion?

Example. LlSt Append struct Node

{
int data;
struct Node *next;
};
void append (Node** head ref, int new data) {
Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {

while (last=>next '= NULL)
last = last=>next;
last=>next = new node;

}

* What property do the locks enforce?

What does the mutual exclusion ensure?

—
°

e Can we ensure consistent view (invariants hold) sans mutual exclusion?

Key insight: allow inconsistent view and fix it up algorithmically

v(l):i)é;qmnlc?(Od Annpr}d struct Node

appen head int new data) {
Node* new node = mknode(new_data), - data;
new node->next = NULL; uct Node *next;

while (TRUE) {
Node * last = *head ref;
i1f(last == NULL) {
if (cas (head ref, new node, NULL))
break;
}
while(last->next != NULL)
last = last->next;
if (cas(&last->next, new node, NULL))

break;
2?

} sure?
* Can we ensure consistent view (invariants hold) sans mutual exclusion?

* Key insight: allow inconsistent view and fix it up algorithmically

Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q_tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

* Single-producer single-consumer
* Why/when does this work?

Q_put(data):
h = Q_head;
while(next(h) == Q_tail)

o_buf[h] = data:
Q_head = next(h);

Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q_tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

* Single-producer single-consumer
* Why/when does this work?

Q_put(data):
h = Q_head;
while(next(h) == Q_tail)

o_buf[h] = data:
Q_head = next(h);

struct Node

Lock-Free Stack ' int data:

struct Node *next;

void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while (!'cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while (current) {

if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head;

}

return false;

struct Node

Lock-Free Stack ' int data:

struct Node *next;

void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while (!'cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head; * Why does is it work?
}

return false;

struct Node

Lock-Free Stack ' int data:

struct Node *next;

void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while (!'cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data; // problem?
return true;

}

current = head; * Why does is it work?
}

return false;

struct Node

Lock-Free Stack ' int data:

struct Node *next;

void push(int t) { }
Node* node = new Node(t) ;
do {
node=>next = head;

} while ('cas(&head, node, node=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data; // problem?
return true;

}

current = head; Why does is it work?
}
return false; Does it enforce all invariants?

Lock-Free Stack: ABA Problem

Thread 1: pop() Thread 2:

read A from head

store A.next ‘somewhere’
pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

cas with A suceeds Push (head, 2)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;

}

return false;

Thread 1: pop() Thread 2:

read A from head

store A.next ‘somewhere’ \

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B
cas with A suceeds 4_—-—Push(head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;

}

return false;

Thread 1: pop() Thread 2:

read A from head

store A.next ‘somewhere’ \

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B
cas with A suceeds 4————Push(head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;
}

return false;

Node* pop() {
Node* current = head;
while (current) {

Thread 1: pop() Thread 2:
read A from head
store A.next 'somewhere’ \

pop ()

pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

cas with A suceeds 4__——Push(head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;

}

return false;

Node* pop() {
Node* current = head;
while (current) {

Node * node = pop() ;
delete node;

node = new Node (blah blah);
push (node) ;

Thread 1: pop() Thread 2:

read A from head

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

cas with A sucee ds 4—_—_Pu5h(head’)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;

}

return false;

Node* pop() {
Node* current = head;
while (current) {

Node * node = pop() ;
delete node;

node = new Node (blah blah);
push (node) ;

if (cas (&head, current->next, current))
return current;
current = head; threas 1+ pon)

Thread 2:
} read A from head

et
return false;

pops A, discards it
} First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

cas with A sucee ds 4—_—_Pu5h(head’ a)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;

}

return false;

Node* pop() {
Node* current = head;

while(Current) %

Node * node = pop() ;

delete node;

ode = new Node (blah blah);
push (node)

if (cas (&head, current->next, current))
return current;
current = head;

Thread 2:

}

return false;

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

cas with A sucee ds 4———_Pu5h(head’ a)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;

}

return false;

Node* pop() {
Node* current = head;

while(Current) %

Node * node = pop() ;

delete node;

ode = new Node (blah blah);
push (node)

if (cas(&head, current->nextcurrent))>

return current;
current = head;

Thread 1: pop() Thread 2:

}

return false;

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

cas with A sucee ds 4___—Push(head, a)

ABA Problem

* Thread 1 observes shared variable 2 ‘A’
* Thread 1 calculates using that value

* Thread 2 changes variable to B
* if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

* Instead, Thread 2 changes variable back to Al
* CAS succeeds despite mutated state
* Very bad if the variables are pointers . Keep update count > DCAS

* Avoid re-using memory
* Multi-CAS support 2 HTM

Correctness: Searching a sorted list

« find(20):

16

Correctness: Searching a sorted list

« find(20):

il gl

16

Correctness: Searching a sorted list

« find(20):

" - Gl

16

Correctness: Searching a sorted list

« find(20):

1

tls 10

L

find(20) -> false

16

Inserting an item with CAS

* insert(20):

17

Inserting an item with CAS

* insert(20):

20)

17

Inserting an item with CAS

e insert(20):

> 10 >@
@3)

-

b

F
3

Inserting an item with CAS

e insert(20):

- _

U

L

-
-

insert(20) -> true

F
3

Inserting an item with CAS

18

Inserting an item with CAS

* insert(20):

20)

18

Inserting an item with CAS

e insert(20):

Inserting an item with CAS

* insert(20): * insert(25):

T

H > 10 > 30 > T

-,

Inserting an item with CAS

* insert(20): * insert(25):

Ej > 10 ; 3))@3 >Ej

N
3

-

Inserting an item with CAS

* insert(20): * insert(25):

-

0 -

AN

N
3

Inserting an item with CAS

e insert(20):

e insert(25):

L

Searching and finding together
- find(20)

Searching and finding together
- find(20)

5
N
B
N

F
3

Searching and finding together
- find(20)

F
3

Searching and finding together
- find(20)

Searching and finding together
 find(20) * insert(20) -> true

- @{ 0 - ?Ej
-

Searching and finding together

e find(20) -> false e insert(20) -> true

"l - Ei 0 - ?@
-

Searching and finding together

« find(20) -> false * insert(20) -> true

This thread saw 20 ...but this thread

succeeded in putting

was not in the set... o
itin!

* Is this a correct implementation?

* Should the programmer be surprised if this happens?

* What about more complicated mixes of operations?

19

Correctness criteria

Informally:

Look at the behavior of the data structure
* what operations are called on it
 whattheirresults are

If behavior is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

20

Sequential history

* No overlapping invocations

time

21

Sequential history

* No overlapping invocations

time

21

Sequential history

* No overlapping invocations

(OT)mosul :T1
-> frue

time

10

21

Sequential history

* No overlapping invocations

-> true
-> true

(OT)mosul :T1
(0z)masul gL

time

10 10, 20

21

Sequential history

* No overlapping invocations

— —

= N =

5 g 5 g S|

D ot D st g_ L

ESENIA =7 = a

= N CER

— — time
10 10, 20 10, 20

21

Sequential history

* No overlapping invocations

— —

= N =

> g > g - 3

9 =) = = O

= " = A = A

S S o |

= = time
10 10, 20 10, 20

Linearizability: concurrent behaviour should be similar
* even when threads can see intermediate state

* Recall: mutual exclusion precludes overlap 21

Concurrent history

Allow overlapping invocations

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

22

Linearizability:
* Isthere a correct sequential history:

CO ncurre ﬂt h |StO ry Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

22

Linearizability:
* Isthere a correct sequential history:

CO ncurre ﬂt h |StO ry Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

' -> ' ->
insert(10)->true insert(20)->true Why is this one OK?

Thread 1:

time

Thread 2:

find(20)->false

22

Linearizability:
* Isthere a correct sequential history:

CO ncurre ﬂt h |StO ry Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true Why is this one OK?
Thread 1:
time
_ Total Order:
Thread 2. 1. Insert(10)
2. Find(20)
find(20)->false 3. Insert(20)

* |s consistent with real-time order
* 2,3 overlap, but return order OK

22

Example: linearizable

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

23

Example: linearizable

Thread 1:

insert(10)->true insert(20)->true

time

Thread 2:

find(20)->false

A valid sequential history:

this concurrent execution
is OK
Note: linearization point

23

Example: not linearizable

insert(10)->true insert(10)->false

Thread 1:

time

Thread 2:

delete(10)->true

24

Example: not linearizable

insert(10)->true insert(10)->false

Thread 1:

Why is this one NOT OK?
time

Thread 2:

delete(10)->true

24

Example: not linearizable

insert(10)->true insert(10)->false
Thread 1: o
Why is this one NOT OK?
time
Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

delete(10)->true

24

Example: not linearizable

insert(10)->true insert(10)->false

Thread 1: o
Why is this one NOT OK?
time

Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

Possible Total Orders
delete(10)->true 1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)
3. Insert(10) 3. Insert(10)
* Both consistent with real-time order

1,2 overlap, but 3 doesn’t

24

Example: not linearizable

insert(10)->true insert(10)->false
Thread 1: L
Why is this one NOT OK?
time
Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

Possible Total Orders
delete(10)->true 1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)
3. Insert(10) 3. Insert(10)
* Both consistent with real-time order

1,2 overlap, but 3 doesn’t

How can things like this happen?

Example Revisited
- find(20)

Thread 1:

> 30

Thread 2:

25

Example Revisited
- find(20)

S

> 30

L

> 10

Thread 1: l

Thread 2:

25

Example Revisited
- find(20)

AR

Thread 1: I

,ﬁi
-

> 30

v

" G

Thread 2:

25

Example Revisited

> 30

+ find(20)
s >0 =
Thread 1: l

Thread 2:

25

Example Revisited

 find(20) e insert(20) -> true
" - Ei 0 - i@

Thread 1: l

Thread 2: 1

! insert(20)->true

25

Example Revisited

* find(20) _s false « insert(20) -> true

.

AR @i sl Sl
20

-

I A
i A
Thread 2: | ! insert(20)->true

find(20)->false

Thread 1:

25

Example Revisited

* flnd(ZO) -> false

AR

\ 2

10

* insert(20) -> true

?

i
A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

find(20)->false

Vv
—

Thread 1: T

Thread 2:

€

i$sert(20)—>true

25

Example Revisited

* find(20) _s false * insert(20) -> true
| i
Thread 1: T l

Thread 2:

Formal Properties

Formal Properties

e Wait-free

Formal Properties

e Wait-free

* Athread finishes its own operation if it continues executing steps

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free
* Some thread finishes its operation if threads continue taking steps

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

 Obstruction-free

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free
* Athread finishes its own operation if it runs in isolation

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free
* Athread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Wait-free

* A thread finishes its own operation if it continues executing steps

31

Wait-free

* A thread finishes its own operation if it continues executing steps

Mels
1elS

time

ysiui4
ysiuid

ysiul
MelS

31

Lock-free

* Some thread finishes its operation if threads continue taking steps

32

Lock-free

* Some thread finishes its operation if threads continue taking steps

Mels
1elS
1elS
1elS

time

ystui4
ystui4
ysiui4

32

Lock-free

* Some thread finishes its operation if threads continue taking steps

Mels
1elS
1elS
1elS

time

ystui4
ystui4
ysiui4

 Red never finishes
* Orange does
e Still lock-free .

Obstruction-free

Obstruction-free

* A thread finishes its own operation if it runs in isolation

33

Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Meaning, if you de-schedule contenders

33

Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Meaning, if you de-schedule contenders

uels
Mels

time

ysiui4

Interference here can prevent

any operation finishing v

33

Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free
* Athread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Blocking
1. Blocking

' S
Formal Properties 2 Serveiton Hee :
Obstruction-Free r
3. Obstruction-Free o
. Lock-Free n
* Wait-free 4. Lock-Free (LF) o
* Athread finishes its own operation if it continue Wait-Free -
* Strong: everyone eventually finishes 5. Wait-Free (WF) r
6. Wait-Free Bounded (WFB)
* Lock-free 7. Wait-Free Population Oblivious (WFPQ)

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free
* Athread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Blocking
1. Blocking

1 S
Formal Properties 2 Serveiton Hee :
Obstruction-Free r
3. Obstruction-Free o
y Lock-Free n
* Wait-free 4. Lock-Free (LF) .
* Athread finishes its own operation if it continue Wait-Free -
* Strong: everyone eventually finishes 5. Wait-Free (WF) r
6. Wait-Free Bounded (WFB)
e Lock-free 7. Wait-Free Population Oblivious (WFPO)

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, li

 Obstruction-free

* Athread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Wait-Free

Population
Oblivious

Linearizability Properties

35

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

Linearizability Properties

non-blocking
 one method is never forced to wait to sync with another.

local property:
* asystem is linearizable iff each individual object is linearizable.
* gives us composability.

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* |ocal property:
* asystem is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
 Serializability is not composable.

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* local property:
* a system is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
 Serializability is not composable.

Huh? Composable?

Composability

Composability

T * list::remove (Obj key) {
LOCK (this) ;
tmp = do remove (key) ;
UNLOCK (this) ;
return tmp;

Composability

T * list::remove (Obj key) {
LOCK (this) ;
tmp = do remove (key) ;
UNLOCK (this) ;
return tmp;
}
void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert(key, val);
UNLOCK (this) ;

Composability

void move (list s, list d, Obj key) {

T * list::remove (Ob]j key) { tmp = s.remove (key) ;
LOCK (this) ; d.insert (key, tmp);
tmp = do remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert(key, val);
UNLOCK (this) ;

Composability

Thread-safe?

void move (list s, list d, Obj key) {

T * list::remove (Ob]j key) { tmp = s.remove (key) ;
LOCK (this) ; d.insert (key, tmp);
tmp = do remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert(key, val);
UNLOCK (this) ;

}

Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __do_remove (key) void move(list s, list d, Obj key) {
return tmp; LOCK(d)t
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do _insert(key, val); UNLOCK (s) ;

UNLOCK (this) ; }

Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __do_remove (key) void move(list s, list d, Obj key) {
return tmp; LOCK(d)t
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do _insert(key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose

Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __do_remove (key) void move(list s, list d, Obj key) {
return tmp; LOCK(d)t
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do _insert(key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose
* If list were a linearizable concurrent data structure, composition OK?

Composability

T * list::remove (Obj key) {
LOCK (this) ;

tmp = __do_remove (key) void move(list s, list d, Obj key) {
return tmp; LOCK (d)]
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (4d) ;
__do_insert(key, val); UNLOCK (s) ;
UNLOCK (this) ; }
} Painting with a very broad brush
Composition with linearizability is really
)
* Lock-based code doesn’t compose about composed schedules

* If list were a linearizable concurrent data structure, composition OK?

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* |ocal property:
* asystem is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
 Serializability is not composable.

* Core hypotheses:
 structuring all as concurrent objects buys composability
* structuring all as concurrent objects is tractable/possible

More on Composability and Compositionality

More on Composability and Compositionality

* High level /informal meaning:
* Can you compose codes that provide property P
e ...and expect the composition to preserve P?

More on Composability and Compositionality

* High level /informal meaning:
* Can you compose codes that provide property P
e ...and expect the composition to preserve P?

* More nuanced meanings:
e Can you compose codes
e Can you compose schedules

More on Composability and Compositionality

* High level /informal meaning:
* Can you compose codes that provide property P
e ...and expect the composition to preserve P?

* More nuanced meanings:
e Can you compose codes
e Can you compose schedules

* These are related but differ in subtle ways

More on Composability and Compositionality

* High level /informal meaning:
* Can you compose codes that provide property P
e ...and expect the composition to preserve P?

* More nuanced meanings:
e Can you compose codes
e Can you compose schedules

* These are related but differ in subtle ways

* Non-composability of serializability is really about composing
schedules

Consider A Concurrent Register

Consider A Concurrent Register

* Threads A, B write integers to a register R

Consider A Concurrent Register

* Threads A, B write integers to a register R
* Because it’s concurrent, method invocations overlap

Consider A Concurrent Register

* Threads A, B write integers to a register R
* Because it’s concurrent, method invocations overlap

A B R

———

Two Concurrent Registers

Two Concurrent Registers

* Register value is initially zero

Two Concurrent Registers

* Register value is initially zero

* The following operations occur:
* Thread A:
* writerl=1
* readr2 2> ?
* Thread B:
* B:writer2->2
e B:readrl 2 °?

Two Concurrent Registers

* Register value is initially zero A B R

* The following operations occur: | == ===l | QL:| wa)
* Thread A: |
* writerl=1
* readr2 2> ?
* Thread B:
* B:writer2->2
e B:readrl 2 °?

Q2:| Ww(2)

Two Concurrent Registers

* Register value is initially zero A B R

* The following operations occur: | === b QL:| wa)
* Thread A:

e writerl=1
e readr2 2 °?
 Thread B:

* B:writer2->2
* B:readrl 2> °?
* Serializability:
e Execution equivalent to some serial order
* All see same order

Q2:| Ww(2)

Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations
e (That respect program order)

Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations
e (That respect program order)

A 2 R

Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations

e (That respect program order)

____________ A \ writes (1) to r1
‘‘‘‘‘‘‘‘‘‘ >
A written 1 to_r_‘l ___________
P ik chuu
- - _B_W_”_tf s(2)tor2
—————————— g
B written 2 toi'Z_ L e
PR
e e]
| —

____________ A _v\irf_te_s (1) tor1
————————— >
Awrittenltorl .-+
¢ = ====="F7""7"
| Areadfrom?
AEEEm—

—————

B read from r2

Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations

e (That respect program order)

____________ A _vsiri_te_s (_1) torl
--------- >
A written }_t_o_rl ___________
P Ll i dhubuui '
- _B_Wntes (2) tor2
_____________ .
B written 2 t_(_)_tz ___________
e mue="

A reads r2

T

- =

-,
"o -
-
-
-

b -

A read from r2

%

B read from r2

e
- -

- -
- - -

W*

_ Breadfromr?

Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations
e (That respect program order)

------------ A writes (1) to r1 [=== -ead . AWrites (1) tor1
__________ - —--_-“-~-.>,
Awritenltorl .-+ Awritten1torl _ _ _ o o--q
pememomepesr e
. _B_V‘i”_tes (2) tor2 A reads r2
----- : A read from r2

A read from r2

—
- -
- = - -
—
-

B reads r1 8 reads r

a
—

B read from r2 B read from r2

&
_

Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations
e (That respect program order)
e Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers
* Consider all possible permutations of atomic invocations ‘

e (That respect program order)
e Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

A B R
* Consider all possible permutations of atomic invocations '
e (That respect program order)
e Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

A B R
* Consider all possible permutations of atomic invocations '
e (That respect program order)
e Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

A B R
* Consider all possible permutations of atomic invocations
* (That respect program order)
* Call them “sub-histories”: from A, B “perspective” R —
SubHistory |Outcome
Hla A writes r1=1, reads r2 > 0 e P o
H2a A writes r1=1, reads r2 = 2 ;\)
Hilb B writes r2=2, readsrl 2 0 ”/’/
H2b B writes r2=2, readsrl 2 1

Histories for multiple concurrent registers

» Consider all possible permutations of atomic invocations
e (That respect program order) wnen
e Call them “sub-histories”: from A, B “perspective”

Hla A writes r1=1, readsr2 2 0 —Ai»——»«TBi:_vfzer.w_A‘___,____R_
H2a A writes r1=1, reads r2 = 2
Hilb B writes r2=2, readsrl 2 0

H2b B writes r2=2, readsrl 2 1

From the perspective threads A, B, all sub-histories are serializable

* They respect program order for each of A, B

* And are equivalent to *some* serial execution

* If we “compose” these histories, some composed histories not serializable

Histories for multiple concurrent registers

Histories for multiple concurrent registers

 Compose sub-histories to form all possible histories

Histories for multiple concurrent registers

 Compose sub-histories to form all possible histories

Hila A writes r1=1, readsr2 2 0
H2a A writes r1=1, reads r2 -2 2
Hib B writes r2=2, readsrl 2> 0

H2b B writes r2=2, readsrl 2 1

Histories for multiple concurrent registers

 Compose sub-histories to form all possible histories

Hla A writes r1=1, readsr2 2 0 Hlab A writes r1=1, B writes r2=2
H2a A writes r1=1, reads r2 = 2 readsr2 = 0, Breadsrl = 0
H1b B writes r2=2, reads r1 > 0 H2ab A writes r1=1, B writes r2=2
readsr2 2> 0,Breadsrl 2 1
H2b B writes r2=2, reads r1 2 1 _ _
H3ab A writes r1=1, B writes r2=2
readsr2 2 2,Breadsrl 2 0
H4ab A writes r1=1, B writes r2=2

readsr2 2 2,Breadsrl 2 1

Histories for multiple concurrent registers

 Compose sub-histories to form all possible histories
* Composition of serializable histories = non-serializable histories

Hla A writes r1=1, readsr2 2 0 Hlab A writes r1=1, B writes r2=2
H2a A writes r1=1, reads r2 = 2 readsr2 = 0, Breadsrl = 0
H1b B writes r2=2, reads r1 > 0 H2ab A writes r1=1, B writes r2=2
readsr2 2> 0,Breadsrl 2 1
H2b B writes r2=2, reads r1 2 1 _ _
H3ab A writes r1=1, B writes r2=2
readsr2 2 2,Breadsrl 2 0
H4ab A writes r1=1, B writes r2=2

readsr2 2 2,Breadsrl 2 1

Histories for multiple concurrent registers

 Compose sub-histories to form all possible histories
* Composition of serializable histories = non-serializable histories
* Ex. Hlab is not serializable

Hla A writes r1=1, readsr2 2 0 Hlab A writes r1=1, B writes r2=2
H2a A writes r1=1, reads r2 = 2 readsr2 = 0, Breadsrl = 0
H1b B writes r2=2, reads r1 > 0 H2ab A writes r1=1, B writes r2=2
readsr2 2> 0,Breadsrl 2 1
H2b B writes r2=2, reads r1 2 1 _ _
H3ab A writes r1=1, B writes r2=2
readsr2 2 2,Breadsrl 2 0
H4ab A writes r1=1, B writes r2=2

readsr2 2 2,Breadsrl 2 1

Histories for multiple concurrent registers

 Compose sub-histories to form all possible histories

* Composition of serializable histories = non-serializable histories

e Ex. Hlab is not serializable

Hla
H2a
H1lb
H2b

A writes r1=1, readsr2 2 0
A writes r1=1, readsr2 2 2
B writes r2=2, readsrl 2 0
B writes r2=2, readsrl 2 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable

bistory et

Hlab A writes r1=1, B writes r2=2
readsr2 2 0,Breadsrl 2> 0

H2ab A writes r1=1, B writes r2=2
readsr2 2> 0,Breadsrl 2 1

H3ab A writes r1=1, B writes r2=2

readsr2 2 2, Breadsrl 2 0

4ab A writes r1=1, B writes r2=2
readsr2 2 2,Breadsrl 2 1

Linearizability Properties

44

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

Linearizability Properties

non-blocking
 one method is never forced to wait to sync with another.

local property:
* asystem is linearizable iff each individual object is linearizable.
* gives us composability.

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* |ocal property:
* asystem is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
* Serializability is not composable.
* A system composed of linearizable objects remains linearizable
* Does this mean you get txn or lock-like composition for free?

* In general no

* Serializability is a property of transactions, or groups of updates

* Linearizability is a property of concurrent objects

* The two are often conflated (e.g. because txns update only a single object)

Practical difficulties:

* Key-value mapping
* Population count
* |teration

* Resizing the bucket array

45

Practical difficulties:

e Key-value m
* Population ¢
* |teration

* Resizing the

45

Practical difficulties:

* Key-value mzc

* Population cc Relax the semantics
e |teration (e.g., non-exact count, or non-linearizable count)

* Resizing the |

45

Practical difficulties:

e Key-value ma
* Population cc
* |teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

45

Practical difficulties:

e Key-value ma
* Population cc
* |teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

45

Practical difficulties:

e Key-value ma
* Population cc
* |teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

45

