I Shared Memory Synchronization Rides Again:
Lock Freedom
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I Today

Questions?

Administrivia

* Faux Quiz

Agenda:
* Lock Freedom




Faux Quiz Questions: 5 min, pick any 2

 What is obstruction freedom, wait freedom, lock freedom?
* How can one compose lock free data structures?

* What is the difference between linearizability and strong consistency?
Between linearizability and serializability?

* What is the ABA problem? Give an example.

e How do lock-free data structures deal with the “inconsistent view”
problem?
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Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
e Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
 ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so

* General approach: encapsulate lock-free algorithms in data structures
* Queue, list, hash-table, skip list, etc.
* New LF data structure = research result
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struct Node

{

Basic List Append int data;

struct Node *next;

}

vold append(Node** head ref, int new data) {

Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {

*head ref = new node;

return;
}
while (last->next != NULL)

last = last=->next;
last=>next = new node;

}

* Is this thread safe?
 What can go wrong?



Example: List Append struct Nods

{
int data;
struct Node *next;

};
void append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
lock () ;
if (*head ref == NULL) {

*head ref = new node;
} else {

while (last=>next '= NULL)

last = last=>next;
last=>next = new node;

}

unlock () ;
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{
int data;
struct Node *next;
};
void append (Node** head ref, int new data) {
Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {

while (last=>next '= NULL)
last = last=>next;
last=>next = new node;

}

* What property do the locks enforce?

What does the mutual exclusion ensure?

—
°

e Can we ensure consistent view (invariants hold) sans mutual exclusion?

Key insight: allow inconsistent view and fix it up algorithmically



v(l):i)é;qmnlc?( Od Annpr}d struct Node

appen head int new data) {
Node* new node = mknode(new_data), - data;
new node->next = NULL; uct Node *next;

while (TRUE) {
Node * last = *head ref;
i1f(last == NULL) {
if (cas (head ref, new node, NULL))
break;
}
while(last->next != NULL)
last = last->next;
if (cas(&last->next, new node, NULL))

break;
2?

} sure?
* Can we ensure consistent view (invariants hold) sans mutual exclusion?

* Key insight: allow inconsistent view and fix it up algorithmically



Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q_tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

* Single-producer single-consumer
* Why/when does this work?

Q_put(data):
h = Q_head;
while(next(h) == Q_tail)

o_buf[h] = data:
Q_head = next(h);
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void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while (!'cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while (current) {

if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head;

}

return false;



struct Node

Lock-Free Stack ' int data:

struct Node *next;

void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while (!'cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head; * Why does is it work?
}

return false;



struct Node

Lock-Free Stack ' int data:

struct Node *next;

void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while (!'cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data; // problem?
return true;

}

current = head; * Why does is it work?
}

return false;



struct Node

Lock-Free Stack ' int data:

struct Node *next;

void push(int t) { }
Node* node = new Node(t) ;
do {
node=>next = head;

} while ('cas(&head, node, node=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data; // problem?
return true;

}

current = head;  Why does is it work?
}
return false;  Does it enforce all invariants?
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pop ()
pops A, discards it
First element becomes B
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Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem o szt T caren)

current = head;

}

return false;

Node* pop() {
Node* current = head;

while(Current) %

Node * node = pop() ;

delete node;

ode = new Node (blah blah);
push (node)

if (cas(&head, current->nextcurrent))>

return current;
current = head;

Thread 1: pop() Thread 2:

}

return false;

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A’ into new variable

Pop(): pops B

cas with A sucee ds 4___—Push(head, a)



ABA Problem

* Thread 1 observes shared variable 2 ‘A’
* Thread 1 calculates using that value

* Thread 2 changes variable to B
* if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

* Instead, Thread 2 changes variable back to Al
* CAS succeeds despite mutated state
* Very bad if the variables are pointers . Keep update count > DCAS

* Avoid re-using memory
* Multi-CAS support 2 HTM
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Correctness: Searching a sorted list

« find(20):

1

tls 10

L

find(20) -> false
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Searching and finding together
 find(20) * insert(20) -> true
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Searching and finding together

e find(20) -> false e insert(20) -> true

"l - Ei 0 - ?@
-




Searching and finding together

« find(20) -> false * insert(20) -> true

This thread saw 20 ...but this thread

succeeded in putting

was not in the set... o
itin!

* Is this a correct implementation?

* Should the programmer be surprised if this happens?

* What about more complicated mixes of operations?

19



Correctness criteria

Informally:

Look at the behavior of the data structure
* what operations are called on it
 whattheirresults are

If behavior is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

20
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* No overlapping invocations
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Sequential history

* No overlapping invocations

-> true
-> true

(OT)mosul :T1
(0z)masul gL

time

10 10, 20
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Sequential history
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Sequential history

* No overlapping invocations

— —

= N =

> g > g - 3

9 = ) = = O

= " = A = A

S S o |

= = time
10 10, 20 10, 20

Linearizability: concurrent behaviour should be similar
* even when threads can see intermediate state

* Recall: mutual exclusion precludes overlap 21



Concurrent history

Allow overlapping invocations

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

22
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Linearizability:
* Isthere a correct sequential history:

CO ncurre ﬂt h |StO ry  Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true Why is this one OK?
Thread 1:
time
_ Total Order:
Thread 2. 1. Insert(10)
2. Find(20)
find(20)->false 3. Insert(20)

* |s consistent with real-time order
* 2,3 overlap, but return order OK

22



Example: linearizable

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false
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Example: linearizable

Thread 1:

insert(10)->true insert(20)->true

time

Thread 2:

find(20)->false

A valid sequential history:

this concurrent execution
is OK
Note: linearization point

23
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time

Thread 2:

delete(10)->true
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Example: not linearizable

insert(10)->true insert(10)->false
Thread 1: L
Why is this one NOT OK?
time
Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

Possible Total Orders
delete(10)->true 1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)
3. Insert(10) 3. Insert(10)
* Both consistent with real-time order

1,2 overlap, but 3 doesn’t

How can things like this happen?
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Example Revisited

 find(20) e insert(20) -> true
" - Ei 0 - i@

Thread 1: l

Thread 2: 1

! insert(20)->true
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Example Revisited

* find(20) _s false « insert(20) -> true

.

AR @i sl Sl
20

-

I A
i A
Thread 2: | ! insert(20)->true

find(20)->false

Thread 1:
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Example Revisited

* flnd(ZO) -> false

AR

\ 2

10

* insert(20) -> true

?

i
A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

find(20)->false

Vv
—

Thread 1: T

Thread 2:

€

i$sert(20)—>true

25



Example Revisited

* find(20) _s false * insert(20) -> true
| i
Thread 1: T l

Thread 2:
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Wait-free

* A thread finishes its own operation if it continues executing steps

Mels
1elS

time

ysiui4
ysiuid

ysiul
MelS
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Lock-free

* Some thread finishes its operation if threads continue taking steps

Mels
1elS
1elS
1elS

time

ystui4
ystui4
ysiui4

 Red never finishes
* Orange does
e Still lock-free .
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Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Meaning, if you de-schedule contenders

uels
Mels

time

ysiui4

Interference here can prevent

any operation finishing v
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Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.
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* Athread finishes its own operation if it runs in isolation
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Blocking
1. Blocking

' S
Formal Properties 2 Serveiton Hee :
Obstruction-Free r
3. Obstruction-Free o
. Lock-Free n
* Wait-free 4. Lock-Free (LF) o
* Athread finishes its own operation if it continue Wait-Free -
* Strong: everyone eventually finishes 5. Wait-Free (WF) r
6. Wait-Free Bounded (WFB)
* Lock-free 7. Wait-Free Population Oblivious (WFPQ)

* Some thread finishes its operation if threads continue taking steps
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Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* local property:
* a system is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
 Serializability is not composable.

Huh? Composable?
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Composability

T * list::remove (Obj key) {
LOCK (this) ;

tmp = __do_remove (key) void move(list s, list d, Obj key) {
return tmp; LOCK (d) ]
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (4d) ;
__do_insert(key, val); UNLOCK (s) ;
UNLOCK (this) ; }
} Painting with a very broad brush
Composition with linearizability is really
)
* Lock-based code doesn’t compose about composed schedules

* If list were a linearizable concurrent data structure, composition OK?



Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* |ocal property:
* asystem is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
 Serializability is not composable.

* Core hypotheses:
 structuring all as concurrent objects buys composability
* structuring all as concurrent objects is tractable/possible
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More on Composability and Compositionality

* High level /informal meaning:
* Can you compose codes that provide property P
e ...and expect the composition to preserve P?

* More nuanced meanings:
e Can you compose codes
e Can you compose schedules

* These are related but differ in subtle ways

* Non-composability of serializability is really about composing
schedules
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* Threads A, B write integers to a register R
* Because it’s concurrent, method invocations overlap

A B R

———
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Two Concurrent Registers

* Register value is initially zero A B R

* The following operations occur: | === b QL:| wa)
* Thread A:

e writerl=1
e readr2 2 °?
 Thread B:

* B:writer2->2
* B:readrl 2> °?
* Serializability:
e Execution equivalent to some serial order
* All see same order

Q2:| Ww(2)
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Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations
e (That respect program order)
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A B R
* Consider all possible permutations of atomic invocations
* (That respect program order)
* Call them “sub-histories”: from A, B “perspective” R —
SubHistory |Outcome
Hla A writes r1=1, reads r2 > 0 e P o
H2a A writes r1=1, reads r2 = 2 ;\)
Hilb B writes r2=2, readsrl 2 0 ”/’/
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Histories for multiple concurrent registers

» Consider all possible permutations of atomic invocations
e (That respect program order) wnen
e Call them “sub-histories”: from A, B “perspective”

Hla A writes r1=1, readsr2 2 0 —Ai»——»«TBi:\_vfzer.w_A‘___,____R_
H2a A writes r1=1, reads r2 = 2
Hilb B writes r2=2, readsrl 2 0

H2b B writes r2=2, readsrl 2 1

From the perspective threads A, B, all sub-histories are serializable

* They respect program order for each of A, B

* And are equivalent to *some* serial execution

* If we “compose” these histories, some composed histories not serializable
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Histories for multiple concurrent registers

 Compose sub-histories to form all possible histories

* Composition of serializable histories = non-serializable histories

e Ex. Hlab is not serializable

Hla
H2a
H1lb
H2b

A writes r1=1, readsr2 2 0
A writes r1=1, readsr2 2 2
B writes r2=2, readsrl 2 0
B writes r2=2, readsrl 2 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable

bistory et

Hlab A writes r1=1, B writes r2=2
readsr2 2 0,Breadsrl 2> 0

H2ab A writes r1=1, B writes r2=2
readsr2 2> 0,Breadsrl 2 1

H3ab A writes r1=1, B writes r2=2

readsr2 2 2, Breadsrl 2 0

4ab A writes r1=1, B writes r2=2
readsr2 2 2,Breadsrl 2 1
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Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* |ocal property:
* asystem is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
* Serializability is not composable.
* A system composed of linearizable objects remains linearizable
* Does this mean you get txn or lock-like composition for free?

* In general no

* Serializability is a property of transactions, or groups of updates

* Linearizability is a property of concurrent objects

* The two are often conflated (e.g. because txns update only a single object)
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* Key-value mapping
* Population count
* |teration

* Resizing the bucket array
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Practical difficulties:

e Key-value ma
* Population cc
* |teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

45



