
cs378

Shared Memory Synchronization Rides Again:
Lock Freedom

Today

Questions?

Administrivia
• Faux Quiz

Agenda:
• Lock Freedom

Faux Quiz Questions: 5 min, pick any 2
• What is obstruction freedom, wait freedom, lock freedom?
• How can one compose lock free data structures?
• What is the difference between linearizability and strong consistency?

Between linearizability and serializability?
• What is the ABA problem? Give an example.
• How do lock-free data structures deal with the “inconsistent view”

problem?

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Solution: don’t use locks

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support

• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures

• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support

• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures

• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support

• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures

• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures

• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures

• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures

• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures
• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Basic List Append

• Is this thread safe?
• What can go wrong?

Basic List Append

• Is this thread safe?
• What can go wrong?

Basic List Append

• Is this thread safe?
• What can go wrong?

Basic List Append

• Is this thread safe?
• What can go wrong?

Basic List Append

• Is this thread safe?
• What can go wrong?

Example: List Append

Example: List Append

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: SP-SC Queue

• Single-producer single-consumer
• Why/when does this work?

next(x):
 if(x == Q_size-1) return 0;
 else return x+1;

Q_get(data): Q_put(data):
 t = Q_tail; h = Q_head;
 while(t == Q_head) while(next(h) == Q_tail)
 ; ;
 data = Q_buf[t]; Q_buf[h] = data;
 Q_tail = next(t); Q_head = next(h);

Example: SP-SC Queue

• Single-producer single-consumer
• Why/when does this work?

next(x):
 if(x == Q_size-1) return 0;
 else return x+1;

Q_get(data): Q_put(data):
 t = Q_tail; h = Q_head;
 while(t == Q_head) while(next(h) == Q_tail)
 ; ;
 data = Q_buf[t]; Q_buf[h] = data;
 Q_tail = next(t); Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires fence before setting Q head
4. Devil in the details of “wait”
5. No lock à “optimistic”

Lock-Free Stack

• Why does is it work?
• Does it enforce all invariants?

Lock-Free Stack

• Why does is it work?
• Does it enforce all invariants?

Lock-Free Stack

• Why does is it work?
• Does it enforce all invariants?

Lock-Free Stack

• Why does is it work?
• Does it enforce all invariants?

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

ABA Problem

• Thread 1 observes shared variable à ‘A’
• Thread 1 calculates using that value
• Thread 2 changes variable to B
• if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

• Instead, Thread 2 changes variable back to A!
• CAS succeeds despite mutated state
• Very bad if the variables are pointers • Keep update count à DCAS

• Avoid re-using memory
• Multi-CAS support à HTM

Correctness: Searching a sorted list

• find(20):

H 10 30 T

16

Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

16

Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

16

Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false

16

Inserting an item with CAS

• insert(20):

H 10 30 T

17

Inserting an item with CAS

• insert(20):

H 10 30 T

20

17

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20

17

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20ü

insert(20) -> true

17

Inserting an item with CAS

• insert(20):

H 10 30 T

18

Inserting an item with CAS

• insert(20):

H 10 30 T

20

18

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20

18

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20

25

• insert(25):

18

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20

25

30 ® 25

• insert(25):

18

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20

25

30 ® 25
ü

• insert(25):

18

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20

25

30 ® 25
ü
û

• insert(25):

18

Searching and finding together
• find(20)

H 10 30 T

19

Searching and finding together
• find(20)

H 10 30 T

20?

19

Searching and finding together
• find(20)

H 10 30 T

20?

19

Searching and finding together
• find(20)

H 10 30 T

20?

19

Searching and finding together
• find(20)

H 10 30 T

20

20?

• insert(20) -> true

19

Searching and finding together
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

19

Searching and finding together
• find(20) -> false • insert(20) -> true

This thread saw 20
was not in the set...

...but this thread
succeeded in putting

it in!

• Is this a correct implementation?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

19

Correctness criteria

20

Informally:

Look at the behavior of the data structure
• what operations are called on it
• what their results are

If behavior is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

Sequential history

time

• No overlapping invocations

21

Sequential history

time

• No overlapping invocations

21

Sequential history

time

T1: insert(10)

->
 tr

ue

• No overlapping invocations

10

21

Sequential history

time

T1: insert(10)

->
 tr

ue

T2: insert(20)

->
 tr

ue

• No overlapping invocations

10 10, 20

21

Sequential history

time

T1: insert(10)

->
 tr

ue

T2: insert(20)

->
 tr

ue
T1: find(15) ->
 fa

lse

• No overlapping invocations

10 10, 20 10, 20

21

Sequential history

time

T1: insert(10)

->
 tr

ue

T2: insert(20)

->
 tr

ue
T1: find(15) ->
 fa

lse

• No overlapping invocations

10 10, 20 10, 20

21

Linearizability: concurrent behaviour should be similar
• even when threads can see intermediate state
• Recall: mutual exclusion precludes overlap

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

22

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

22

Linearizability:
• Is there a correct sequential history:

• Same results as the concurrent one
• Consistent with the timing of the

invocations/responses?
• Start/end impose ordering constraints

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

22

Linearizability:
• Is there a correct sequential history:

• Same results as the concurrent one
• Consistent with the timing of the

invocations/responses?
• Start/end impose ordering constraints

Why is this one OK?

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

22

Linearizability:
• Is there a correct sequential history:

• Same results as the concurrent one
• Consistent with the timing of the

invocations/responses?
• Start/end impose ordering constraints

Total Order:
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

23

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential history:
this concurrent execution

is OK
Note: linearization point

23

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Why is this one NOT OK?

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Why is this one NOT OK?

Note: return values are meaningful!
Linearizable à consistent with return values

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

Note: return values are meaningful!
Linearizable à consistent with return values

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

How can things like this happen?

Note: return values are meaningful!
Linearizable à consistent with return values

Example Revisited
• find(20)

H 10 30 T

Thread 2:

Thread 1:

25

Example Revisited
• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:

25

Example Revisited
• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:

25

Example Revisited
• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:

25

Example Revisited
• find(20)

H 10 30 T

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

25

Example Revisited
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

25

Example Revisited
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

25

Example Revisited
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

25

Recurring Techniques:
• For updates

• Perform an essential step of an
operation by a single atomic
instruction

• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads
• Identify a point during the operation’s

execution when the result is valid
• Not always a specific instruction

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Wait-free
• A thread finishes its own operation if it continues executing steps

31

Wait-free
• A thread finishes its own operation if it continues executing steps

31

time

Start

Finish

Finish
Start

Finish

Start

Lock-free
• Some thread finishes its operation if threads continue taking steps

32

Lock-free
• Some thread finishes its operation if threads continue taking steps

time

Start

Start

Finish

Finish

Start

Start

Finish

32

Lock-free
• Some thread finishes its operation if threads continue taking steps

time

Start

Start

Finish

Finish

Start

Start

Finish

32

• Red never finishes
• Orange does
• Still lock-free

Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Meaning, if you de-schedule contenders

33

Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Meaning, if you de-schedule contenders

33

Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Meaning, if you de-schedule contenders

33

Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Meaning, if you de-schedule contenders

time

Start

Start

FinishInterference here can prevent
any operation finishing

33

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Blocking
 1. Blocking
 2. Starvation-Free

Obstruction-Free
 3. Obstruction-Free

Lock-Free
 4. Lock-Free (LF)

Wait-Free
 5. Wait-Free (WF)

 6. Wait-Free Bounded (WFB)
 7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Blocking
 1. Blocking
 2. Starvation-Free

Obstruction-Free
 3. Obstruction-Free

Lock-Free
 4. Lock-Free (LF)

Wait-Free
 5. Wait-Free (WF)

 6. Wait-Free Bounded (WFB)
 7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

35

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

35

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

35

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

35

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

35

Huh? Composable?

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

void list::insert(Obj key, T * val){
 LOCK(this);
 __do_insert(key, val);
 UNLOCK(this);
}

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

void move(list s, list d, Obj key){
 tmp = s.remove(key);
 d.insert(key, tmp);
}

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

void list::insert(Obj key, T * val){
 LOCK(this);
 __do_insert(key, val);
 UNLOCK(this);
}

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

void move(list s, list d, Obj key){
 tmp = s.remove(key);
 d.insert(key, tmp);
}

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

void list::insert(Obj key, T * val){
 LOCK(this);
 __do_insert(key, val);
 UNLOCK(this);
}

Thread-safe?

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

void list::insert(Obj key, T * val){
 LOCK(this);
 __do_insert(key, val);
 UNLOCK(this);
}

void move(list s, list d, Obj key){
 LOCK(s);
 LOCK(d);
 tmp = s.remove(key);
 d.insert(key, tmp);
 UNLOCK(d);
 UNLOCK(s);
}

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

void list::insert(Obj key, T * val){
 LOCK(this);
 __do_insert(key, val);
 UNLOCK(this);
}

void move(list s, list d, Obj key){
 LOCK(s);
 LOCK(d);
 tmp = s.remove(key);
 d.insert(key, tmp);
 UNLOCK(d);
 UNLOCK(s);
}

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

void list::insert(Obj key, T * val){
 LOCK(this);
 __do_insert(key, val);
 UNLOCK(this);
}

void move(list s, list d, Obj key){
 LOCK(s);
 LOCK(d);
 tmp = s.remove(key);
 d.insert(key, tmp);
 UNLOCK(d);
 UNLOCK(s);
}

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){
 LOCK(this);
 tmp = __do_remove(key);
 UNLOCK(this);
 return tmp;
}

void list::insert(Obj key, T * val){
 LOCK(this);
 __do_insert(key, val);
 UNLOCK(this);
}

void move(list s, list d, Obj key){
 LOCK(s);
 LOCK(d);
 tmp = s.remove(key);
 d.insert(key, tmp);
 UNLOCK(d);
 UNLOCK(s);
}

Painting with a very broad brush
Composition with linearizability is really
about composed schedules

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.
• Core hypotheses:

• structuring all as concurrent objects buys composability
• structuring all as concurrent objects is tractable/possible

Linearizability Properties

37

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P
• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes
• Can you compose schedules

• These are related but differ in subtle ways
• Non-composability of serializability is really about composing

schedules

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P
• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes
• Can you compose schedules

• These are related but differ in subtle ways
• Non-composability of serializability is really about composing

schedules

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P
• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes
• Can you compose schedules

• These are related but differ in subtle ways
• Non-composability of serializability is really about composing

schedules

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P
• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes
• Can you compose schedules

• These are related but differ in subtle ways
• Non-composability of serializability is really about composing

schedules

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P
• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes
• Can you compose schedules

• These are related but differ in subtle ways
• Non-composability of serializability is really about composing

schedules

Consider A Concurrent Register

• Threads A, B write integers to a register R
• Because it’s concurrent, method invocations overlap

Consider A Concurrent Register

• Threads A, B write integers to a register R
• Because it’s concurrent, method invocations overlap

Consider A Concurrent Register

• Threads A, B write integers to a register R
• Because it’s concurrent, method invocations overlap

Consider A Concurrent Register

• Threads A, B write integers to a register R
• Because it’s concurrent, method invocations overlap

Two Concurrent Registers

• Register value is initially zero
• The following operations occur:

• Thread A:
• write r1 = 1
• read r2 à ?

• Thread B:
• B: write r2 -> 2
• B: read r1 à ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Two Concurrent Registers

• Register value is initially zero
• The following operations occur:

• Thread A:
• write r1 = 1
• read r2 à ?

• Thread B:
• B: write r2 -> 2
• B: read r1 à ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Two Concurrent Registers

• Register value is initially zero
• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 à ?

• Thread B:
• B: write r2 -> 2
• B: read r1 à ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Two Concurrent Registers

• Register value is initially zero
• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 à ?

• Thread B:
• B: write r2 -> 2
• B: read r1 à ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Two Concurrent Registers

• Register value is initially zero
• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 à ?

• Thread B:
• B: write r2 -> 2
• B: read r1 à ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

A sees r2 à 2

A sees r2 à 0

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

A sees r2 à 2

A sees r2 à 0

Both are serializable histories
from the perspective of A

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

…

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

…

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

From the perspective threads A, B, all sub-histories are serializable
• They respect program order for each of A, B
• And are equivalent to *some* serial execution
• If we “compose” these histories, some composed histories not serializable

…

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 0

H2ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 1

H3ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 0

H4ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 0

H2ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 1

H3ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 0

H4ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 0

H2ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 1

H3ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 0

H4ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 0

H2ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 1

H3ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 0

H4ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.
• A system composed of linearizable objects remains linearizable
• Does this mean you get txn or lock-like composition for free?

• In general no
• Serializability is a property of transactions, or groups of updates
• Linearizability is a property of concurrent objects
• The two are often conflated (e.g. because txns update only a single object)

Linearizability Properties

44

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.
• A system composed of linearizable objects remains linearizable
• Does this mean you get txn or lock-like composition for free?

• In general no
• Serializability is a property of transactions, or groups of updates
• Linearizability is a property of concurrent objects
• The two are often conflated (e.g. because txns update only a single object)

Linearizability Properties

44

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.
• A system composed of linearizable objects remains linearizable
• Does this mean you get txn or lock-like composition for free?

• In general no
• Serializability is a property of transactions, or groups of updates
• Linearizability is a property of concurrent objects
• The two are often conflated (e.g. because txns update only a single object)

Linearizability Properties

44

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

• Why is it important?
• Serializability is not composable.
• A system composed of linearizable objects remains linearizable
• Does this mean you get txn or lock-like composition for free?

• In general no
• Serializability is a property of transactions, or groups of updates
• Linearizability is a property of concurrent objects
• The two are often conflated (e.g. because txns update only a single object)

Linearizability Properties

44

Practical difficulties:

• Key-value mapping
• Population count
• Iteration
• Resizing the bucket array

45

Practical difficulties:

• Key-value mapping
• Population count
• Iteration
• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

45

Practical difficulties:

• Key-value mapping
• Population count
• Iteration
• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

45

Practical difficulties:

• Key-value mapping
• Population count
• Iteration
• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

45

Practical difficulties:

• Key-value mapping
• Population count
• Iteration
• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

45

Practical difficulties:

• Key-value mapping
• Population count
• Iteration
• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

45

