Race Detection

Pro Forma

Questions?

* Administrivia:
* Course/Instructor Survey :

* Thoughts on exam

* Thoughts on project presentation day
* Agenda

* Linearizability clarification

* Race Detection

* Acknowledgements:

https://utdirect.utexas.edu/ctl/ecis/
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.pptx
https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx

Exam 1

Exam 1 Distribution

Mean: 68
30 High: 81
20
10

O —

90+ 80-90 70-80 60-70 50-60 <50

Exam 1

30
20

10

oA

)+

Exam 1 Di

80-90 70-8C

stribution

A

60-70 50-60
B

—

<|

50

Mean: 68
High: 81

Race
Detection
—aux Quiz

Are linearizable objects composable? Why/why not? Is
serializable code composable?

What is a data race? What kinds of conditions make them
difficult to detect automatically?

What is a consistent cut in a distributed causality interaction
graph?

List some tradeoffs between static and dynamic race detection

What are some pros and cons of happens-before analysis for
race detection? Same for lockset analysis?

Why might one use a vector clock instead of a logical clock?

What are some advantages and disadvantages of combined
lock-set and happens-before analysis?

Race Detection

Race Detection

Locks: a litany of problems

Race Detection

Locks: a litany of problems
* Deadlock

Race Detection

Locks: a litany of problems

* Deadlock
* Priority inversion

Race Detection

Locks: a litany of problems
* Deadlock
* Priority inversion

* Convoys

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Solution: don’t use locks

non-blocking
Data-structure-centric
HTM

blah, blah, blah..

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Use locks!
But automate bug-finding!

Races

Races

* |s there a race here?

Races

* |s there a race here?
* What is a race?

Races

* |s there a race here?
* What is a race?
* Informally: accesses with missing/incorrect synchronization

Races

1 Lock(lock) ; 1
2 Read-Write (X); 2 Read-Write (X);
3 Unlock (lock); 3

* |s there a race here?
* What is a race?
* Informally: accesses with missing/incorrect synchronization

* Formally:
e >1 threads access same item
* No intervening synchronization
e At least one access is a write

Races

* |s there a race here?

e What is a race? How to detect races:

* Informally: accesses with missing/incorrect sy forall(X) {

* Formally: if(not_synchronized(X))
e >1 threads access same item dedare_race()

* No intervening synchronization
* At least one access is a write

Races

Is there a race here?
How can a race detector tell?

Races

Is there a race here?
How can a race detector tell?

Races

Is there a race here? Unsynchronized access can be

How can a race detector tell?

Races

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

Races

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

e Benign due to view serializability

Races

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

e Benign due to view serializability

* Benign due to application-level constraints

Races

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

e Benign due to view serializability
* Benign due to application-level constraints

* E.g. approximate stats counters

Detecting Races

* Static
* Run a tool that analyses just code
* Maybe code is annotated to help
* Conservative: detect races that never occur

How to detect races:
forall(X) {

* Dynamic

* Instrument code
Check synchronization invariants on accesses
More precise
Difficult to make fast
Lockset vs happens-before

if(not_synchronized(X))
declare_race()

1 Lock(lock); 1
2 Read-Write (X); 2 Read-Write (X);

Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

* Difficult to do
e Restricts the type of synchronization primitives

* Language features
* e.g., use of monitors
* Only works for static data — not dynamic data

* Model Checking

* Path analysis
* Doesn’t scale well
* Too many false positives

Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

* Difficult to do
e Restricts the type of synchronization primitives

* Language features
* e.g., use of monitors
* Only works for static data — not dynamic data

* Model Checking

* Path analysis 1 150k (10ck) : 1

) ?(;’Oef:atnscgi‘e" 2 Read-Write (X) ; 2 Read-Write (X) ;
y 3 Unlock (lock) ; 3

Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

* Difficult to do
» Restricts the type of synchronization primitives

* Language features
e e.g., use of monitors
* Only works for static data — not dynamic dat V1= e Fi s == gl = s dia

* Model Chec.king concurrently? (False Positive)
* Path analysis 1 {50k (10ck) ; 1

: ?::f;‘atnscfa:i‘e" 2 Read-Write (X) ; 2 Read-Write (X) ;
y 3 Unlock (lock) ; 3

Lockset Algorithm

Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks

Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks

e Core idea

Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks

* Core idea
* Track locks held by thread t

Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks
* Core idea

* Track locks held by thread t
* On access to var v, check if t holds the proper locks

Lockset Algorithm

* Locking discipline

* Every shared mutable variable is protected by some locks
* Core idea

* Track locks held by thread t

* On access to var v, check if t holds the proper locks
* Challenge: how to know what locks are required?

Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks

* Core idea
* Track locks held by thread t
* On access to var v, check if t holds the proper locks
* Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.

Lockset Algorithm

* Locking discipline

* Every shared mutable variable is protected by some locks
* Core idea

* Track locks held by thread t

* On access to var v, check if t holds the proper locks
* Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.
* Assume every lock protects every variable

Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks

* Core idea
* Track locks held by thread t
* On access to var v, check if t holds the proper locks
* Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.
* Assume every lock protects every variable
* On each access, use locks held by thread to narrow that assumption

Lockset Algorithm

 Locking discipline
* Every shared mutable variable is protected by some locks

e Core idea
* Track locks held by thread t

Let locks held(t) be the set of locks held by thread ¢.

For each v, initialize C(v) to the set of all locks.
. On each access to v by thread ¢,
set C(v) := C(v) N locks_held(t);

if C(v) = { }, then issue a warning. locks maybe

T ADJUITIT TVTIY TULN PIULTULLO TVYVCTI Yy vadlidawvic

Narrow down set of

protecting v
* On each access, use locks held by thread to narrow that assumption

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

Lockset Algorithm Example

ad

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

locks_held(t)
{1}

C(v)
{lockA, lockB}

24

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
=) lock(lockA); {lockA}
V++;
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
) VA {1lockA} C) N'locks_held(t)
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}

m=) unlock(lockA); {}

lock(lockB);
V++;
unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {3}

m==)> lock(lockB); {lockB}

V++;
unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {3}

lock(lockB); {lockB}

) VAt {}

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {3}

lock(lockB); {lockB}

) VAt {} cw) Niocks held(t)
unlock(lockB); {}

Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);

) Ve

unlock(lockB);

locks_held(t) C(v)

1}
{lockA}

1}

{lockB}

1}

{lockA, lockB}

{lockA}

@ACK! race

24

Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);

) Ve

unlock(lockB);

locks_held(t) C(v)
{lockA, lockB}

1}
{lockA}

1}

{lockB}

1}

{lockA}

@ACK! race

e

<

Pretty clever!

Why isn’t this

a complete
solution?

4

Improving over lockset

thread A

Improving over lockset

thread A

Lockset detects a race
There is no race: why not?

Improving over lockset

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Lockset detects a race

There is no race: why not?

* A-1happens before B-3

* B-3 happens before A-6

* Insight: races occur when “happens-before” cannot be known

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1

f/
* Happens-before relation Locki(mu);
* Within single thread V= v
e Between threads |
]] Unlock(mu);
* Accessing variables not ordered |
_

by “happens-before” is a race
* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1 Thread 2

N\ e N
* Happens-before relation Locki(mu); Locki(mu);
* Within single thread vi=vi: vi= v
* Between threads ! .
]] Unlock(mu); Unlock(mu);
* Accessing variables not ordered | | |
/ _ /

by “happens-before” is a race
* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1

N\
* Happens-before relation Locki(mu);
* Within single thread V= v
* Between threads !
]] Unlock(mu);
* Accessing variables not ordered 4
“« ” T_ll‘ead 2
by “happens-before” is a race p N
* Captures locks and dynamism TlaccesstoV [~
“Happens-before” | Lock (mu);
* How to track “happens-before”? T2 access to V 1
vV =vtl;
* Sync objects are ordering events |
* Generalizes to fork/join, etc Unlock(mu);

N /

Ordering and Causality

Time
—

Ordering and Causality

Time

A_* A, B, C have local orders
B = a - - -/ '

Ordering and Causality

Time

— A, B, C have local orders
A m = =} =
 Want total order
e But only for causality
B = a - - -/ '

Ordering and Causality

Time
— A, B, C have local orders
A m = =} =
 Want total order
e But only for causality
B = a " - - /7 I

Different types of clocks

Ordering and Causality

Time

— A, B, C have local orders
A m = =} =
 Want total order
e But only for causality
B = a " - - /7 I

Different types of clocks
* Physical

Ordering and Causality

Time

— A, B, C have local orders
A m = =} =

* Want total order

e But only for causality

B = a " - - I

Different types of clocks

* Physical
C—a » . - e Logical

* TS(A) later than others A knows about

Ordering and Causality

Time
— A, B, C have local orders
A m = =} =
* Want total order
e But only for causality
B = a " - - I
Different types of clocks
* Physical
C—= " o " * Logical
* TS(A) later than others A knows about
* Vector

* TS(A): what A knows about other TS's

Ordering and Causality

Time

— A, B, C have local orders
A m = =} =
 Want total order
e But only for causality
B ma " - - I
Different types of clocks
* Physical
C-—= . . .= * Logical
* TS(A) later than others A knows about
* Vector
* TS(A): what A knows about other TS's
* Matrix

e TS(A) is N*2 showing pairwise
knowledge

A Naive Approach

e Each system records each event it performed and its timestamp
e Suppose events in the this system happened in this real order:

A Naive Approach

e Each system records each event it performed and its timestamp

e Suppose events in the this system happened in this real order:

* Time Tc0: System C sent data to System B (before C stopped
responding)

TcO

A Naive Approach

e Each system records each event it performed and its timestamp

e Suppose events in the this system happened in this real order:

* Time Tc0: System C sent data to System B (before C stopped
responding)

* Time Ta0: System A asked for work from System B

TcO Ta0

A Naive Approach

e Each system records each event it performed and its timestamp

e Suppose events in the this system happened in this real order:

* Time Tc0: System C sent data to System B (before C stopped
responding)

* Time Ta0: System A asked for work from System B
* Time TbO0: System B asked for data from System C

TcO Ta0 TbhO

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A
System B
System C
sent data
System C

Tc

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A Ta
System A
asked for
System B work
System C
sent data
System C

Tc

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A Ta
System A
asked for Th
System B work
System B
System C asked for
sent data data
System C

Tc

A Naive Approach (cont)

* But in reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A Ta
>
System A
asked for Th
System B work
=
System B
System C asked for
sent data data
System C
>

Tc

A Naive Approach (cont)

* But in reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A Ta
>
System A
asked for Th
System B work
=
System B
asked for
data
System C
>

Tc Tc

Rules for Ordering of Events

* |local events precede one another = precede one another globally:
e If ef,e/" € h; and k < m, then ef—e;"

* Sending a message always precedes receipt of that message:
* If e;=send(m) and e= receive(m), then e;,—e;

* Event ordering is transitive:
e Ife—e’ande’— e”, then e — e”

Space-time Diagram for Distributed Computation

e11 812 313 814 815 816
P;
9 >
e,! e, 3
P
9 9 >
e;’ e;? e e; e;’ 6
Ps
@ O o o @ 9 >

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 312 313 814 815 816
P;
9 >
e,! e, 3
P
<o . >
e;’ e;? e e; e;’ 6
Ps
o O o o @ 9 >

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 elz 313 814 e15 816
P;
o >
e,! e,? 3
P>
<o ¥ >
e;’ e;? e e; e;’ 6
P3
9 9 9 9 9 N g >

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 312 313 814 815 816
P;
9 >
e,! e, 3
P s
<o .
e;’ e;? e e; e;’ 6
Ps
9 @ 9 9 o N g >
e, e;f

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 312 313 814 815 816
Pi
9 >
e,! e,? 3
P> s
<o ¥
e;’ e;? e e; e;’ 6
Ps3
9 9o 9 9 9 N g >
3219336

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 elz 313 814 e15 816
Pi
9 >
e,! e,? 3
P> s
<o ¥
e;’ e;? e e; e;’ 6
Ps3
9 9o 9 9 9 N g >
3219336

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 elz 313 814 e15 816
Pi
9 >
e,! e,? 3
P> s
<o ¥
e;’ e;? e e; e;’ 6
Ps3
9 9o 9 9 9 N g >
3219336

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 elz 313 814 e15 816
Pi
9 >
e,! e,? 3
P> s
<o ¥
e;’ e;? e e; e;’ 6
Ps3
9 9o 9 9 9 N g >
3219336

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 812 313 814 e15 816
P;
9 >
e, e, 3
P s
<o .
e;’ e;? e e; e;’ 6
Ps
9 @ 9 9 o N >
e,'->es® e’ esf

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

811 812 313 814 e15 816
Pi
9 >
e,’ e,? 3
P> s
<o ¥
e;’ e;? e e; e;’ 6
Ps3
9 9o 9 9 9 N >
e,1->esf e’ || es®

local events precede one another = precede one another globally:
If e/ ,e;" € h; and k < m, then e}—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e;= receive(m), then e, —e;
Event ordering is associative:
Ife —» e’and e’ — e”, then e — e”’

Cuts of a Distributed Computation

* Suppose there is an external monitor process

* External monitor constructs a global state:
* Asks processes to send it local history

* Global state constructed from these local histories is:
a cut of a distributed computation

Example Cuts

e;! e;?
P1
821
P
@
831 e32
Ps

Example Cuts

Example Cuts

Pi
e 1
P> y
o
e 1
Ps3 3

Consistent vs. Inconsistent Cuts

* A cut is consistent if
* for any event e included in the cut
* any event e’ that causally precedes e is also included in that cut

* For cut C:
(e€C)A(e’>—e)=e’€C

Are These Cuts Consistent?

: X// S

,,3 /// \

Are These Cuts Consistent?

e;! e;? e’ \ e’ e;? e’
9 >
o o >
831 \832 e/ 834 835 6
o @ o

o o \ >
CI

Are These Cuts Consistent?

e;! e;? e’ \ e’ e;? e’
9 >
o o >
831 \832 e/ 834 835 6
o @ o

° ‘\9/\ >
CI

Are These Cuts Consistent?

e;! e;? e’ \ e’ e;? e’
9 >
o o >
831 \832 e/ 834 835 6
o @ o

° & >
\mwsistent

CI

Are These Cuts Consistent?

e;! e;? e’ \ e’ e;? e’
9 >
J o >
831 \832 e/ 834 835 6

o ° o o >
- inconsistent
included
in C ¢

Are These Cuts Consistent?

e;! e;? e’ \ e’ e;?
;/ / x\\‘g

D o >
831 \832 e/ 834 835 6

causally
precedes e,°

o ° o o >
- inconsistent
included
in C ¢

causally
precedes e,°

Are These Cuts Consistent?
..but notJ
included

e;! e;? e’ \ e’ e;?

;/ /‘ x\\g u
o o >

831 \832 e/ 834 835 6

o ° o o >
- inconsistent
included
in C ¢

Are These Cuts Consistent?

causally]

precedes e,°
e;! e;? e’ e’ e;?
>
...but not
included
1 .
e, € in C
@ 9 >
e31 e32 e e34 e35 6
Q 9 9 Q >
- inconsistent
included
in C c’

A consistent cut corresponds to a consistent global state

What Do We Need to Know to
Construct a Consistent Cut?

causally
precedes e;®

>
...but not
We must know the causal included
ordering of events. If we € in C
>

do we can detect an
inconsistent cut

included
in C

>
inconsistent

CI

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

LC=1 LC=2 LC=3

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

LC=1 LC=2 LC=3 LC=4

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

LC=1 LC=2 LC=3 LC=4 LC=5

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

e;! e;? e’ e’ e;? e,®
o O O O @ 9 >

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending event at the
sending process

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending event at the
sending process

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending event at the
sending process

LC=1

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending event at the
sending process

611 elz 313 814 815 816
o o o o o >
Le=1 send(m)

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e;! e;? e’ e’ e;’ e,®
o @ o o o >
LC=1 send(m)
ezl
9 >

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e;! e;? e’ e’ e;’ e,®

te=l send(m) TS(m) =1

What is the LC
value of e,??
e21 2
> >

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

send(m) TS(m)=1

What is the LC
value of e,??
e21 2
> >

LC=1 LC=2

llustration of a Logical Clock

//\\

llustration of a Logical Clock

XN

// \

llustration of a Logical Clock

TN

// \

llustration of a Logical Clock

TN

// \

llustration of a Logical Clock

TN

// \

llustration of a Logical Clock

TN

// \

llustration of a Logical Clock

AVANN

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

T NC

// \

llustration of a Logical Clock

T NC

// \

llustration of a Logical Clock

T NC

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

N

// \

llustration of a Logical Clock

P

Pi
Awesome, right?
Any drawbacks?
P

llustration of a Logical Clock

P

Pi
Awesome, right?
Any drawbacks?
P

e x<e .y =2 TS(e x)<TS(e y), but
T (e_x) < TS(e_y) doesn’t guaranteee x<e_y

Vector Clock

Vector Clock

Replace Single Logical value with Vector!

Vector Clock

Replace Single Logical value with Vector!

V.[i] : #events occurred at i

V.[j] : #events i knows occurred at j
Update

* Onlocal-event: increment V,[I]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V/[k] = max(
Vilk],Vilk])
* V[i] = V[i]+1 (increment local clock)

e Receiver learns about number of
events sender knows occurred
elsewhere

Vector Clock

Vector Clock Replace Single Logical value with Vector!

V.[i] : #events occurred at i

V.[j] : #events i knows occurred at j
Update

* On local-event: increment V;[l]

* On send-message: increment,
piggyback entire local vector V

* On recv-message: V/[k] = max(

Vilk],Vilk])
* V[i] = V[i]+1 (increment local clock)
- A:é A:é * Receiver learns about number of
FI F;‘ F;‘ events sender knows occurred
C:3 c:4| |C:5 elsewhere

Vector Clock

Vector Clock Replace Single Logical value with Vector!

V.[i] : #events occurred at i

V.[j] : #events i knows occurred at j
Update

* On local-event: increment V;[l]

* On send-message: increment,
piggyback entire local vector V

* On recv-message: V/[k] = max(

Vilk],Vilk])
* V[i] = V[i]+1 (increment local clock)
- A:é A:é * Receiver learns about number of
FI F;‘ F;‘ events sender knows occurred
C:3 c:4| |C:5 elsewhere

Vector Clock

Vector Clock Replace Single Logical value with Vector!

V.[i] : #events occurred at i

V.[j] : #events i knows occurred at j
Update

* On local-event: increment V;[l]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V/[k] = max(
Vilk[,Vilk])
* V[i] = V[i]+1 (increment local clock)

e Receiver learns about number of
events sender knows occurred
elsewhere

Vector Clock

/
Vector Clock
Time
—
A
A0 Not ordered!
A:3>2
B:3<4
B
A:2 A2
B:4 B:
B:0 C:1 C:
C .
B:3
C: C:2
C:0

Replace Single Logical value with Vector!
V.[i] : #events occurred at i
V.[j] : #events i knows occurred at j

Update
* On local-event: increment V;[l]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V/[k] = max(
Vilk[,Vilk])
* V[i] = V[i]+1 (increment local clock)

e Receiver learns about number of
events sender knows occurred
elsewhere

Vector Clock Example

Time

Each process i maintains a vector V;

* V/[i] : number of events that have occurred at i
* V[j] : number of events | knows have occurred at

process j
- Update
A:2] AN & * Local event: increment V,[I]
(B:‘ll (B:’i ,g-' * Send a message :piggyback entire vector V
- ' 27 * Receipt of a message: V,[k] = max(V[k],V,[k])
* Receiveris told about how many events the
sender knows occurred at another process k
A2 A2 . Also Vil = Vil
B:3| B:3 B:5||B:5 so Vifi] = Vilil+
C:2| [C:3 C:4(|C:5

Vector Clock Example

Each process i maintains a vector V;,

-] .
% * V/[i] : number of events that have occurred at i

* V/[j] : number of events | knows have occurred at
process j

Update

* Local event: increment V[l]

* Need to order operations

 Can’trely on real-time

e Vector clock: timestamping algorithm s.t.
e TS(A) < TS(B) = A happens before B
* Independent ops remain unordered

See any drawbacks?

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1

f/
* Happens-before relation Locki(mu);
* Within single thread V= v
e Between threads |
]] Unlock(mu);
* Accessing variables not ordered |
_

by “happens-before” is a race
* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1 Thread 2

N\ e N
* Happens-before relation Locki(mu); Locki(mu);
* Within single thread vi=vi: vi= v
* Between threads ! .
]] Unlock(mu); Unlock(mu);
* Accessing variables not ordered | | |
/ _ /

by “happens-before” is a race
* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1

N\
* Happens-before relation Locki(mu);
* Within single thread V= v
* Between threads !
]] Unlock(mu);
* Accessing variables not ordered 4
“« ” T_ll‘ead 2
by “happens-before” is a race p N
* Captures locks and dynamism TlaccesstoV [~
“Happens-before” | Lock (mu);
* How to track “happens-before”? T2 access to V 1
vV =vtl;
* Sync objects are ordering events |
* Generalizes to fork/join, etc Unlock(mu);

N /

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

Thread 1

y =yl
'

Lock(mu);

|

v :=v+l;

|

Unlock(mu);

Thread 2

Lock(mu);

|

v =v+l;

|

Unlock(mu);

|

y =ytl;

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
e T1-acc(v) happens before T2-acc(v)
T1-acc(y) happens before T1-acc(v)

T2-acc(v) happens before T2-acc(y)
Conclusion: no race on Y!

Finding doesn’t generalize

Thread 1

y =yl
'

Lock(mu);

|

v :=v+l;

|

Unlock(mu);

Thread 2

Lock(mu);

|

v =v+l;

|

Unlock(mu);

|

y =ytl;

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
e T1-acc(v) happens before T2-acc(v)
e T1-acc(y) happens before T1-acc(v)

e T2-acc(v) happens before T2-acc(y)
e Conclusion: noraceon!

* Finding doesn’t generalize

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
e T1-acc(v) happens before T2-acc(v)
e T1-acc(y) happens before T1-acc(v)

e T2-acc(v) happens before T2-acc(y)
e Conclusion: noraceon!

* Finding doesn’t generalize

Thread 2

Lock(mu);
V= v+l;

Unlock(mu);

Thread 1 / y =yt
y=y*th /
:

Lock(mu);

v =v+l;

Unlock(mu);

Dynamic Race Detection Summary

o Lockset: verify locking discipline for shared memory
v" Detect race regardless of thread scheduling
x False positives because other synchronization primitives
(fork/join, signal/wait) not supported
o Happens-before: track partial order of program events
v" Supports general synchronization primitives
x Higher overhead compared to lockset
x False negatives due to sensitivity to thread scheduling

False positive using Lockset

1
S 1 t:Fork(u) u Tracking accesses to X
2 il — 1V_
3 :Wr(x) 6 u:Wr(x) Irgin {}
2| 4 t:Unlock(a) 7 u:Unlock(a) 3 Exclusive:t {}

............... 6 Shared Modified | {a}

“8 t:Join(u)
9t:Wr(x)
10 t:Fork(v) L 9 Report race {}
11 t:Lock(a) T 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
3 13 t:Unlock(a) N 16 v:Unlock(a)

“17 t-Join(v)

NV

RaceTrack Notations
Notation | Meaning |

A e T. v

L Lockset of thread t ," A e ‘_T Ve > 0] . i

t Inc(V,t) = wwif u=1 then V(u)+ 1 else V(u)
C Lockset of memory x Merge(V,W) = ur— maz(V(u), W (u))

X Remove(V, W) 2w if V(u) < W(u) then 0 else V(u)
B, Vector clock of thread u
SX Threadset of memory x
t Thread t at clock time i

RaceTrack Algorithm

L, Lockset of thread t L = LUl
At t:Unlock(l):
C, Lockset of memory x L — L — {1}
Bt Vector clock of thread t At t:Fork(u):
Ly —{}
S Threadset of memory x B, «— Merge({{u,1)}, B;)
X B; — Inc(By,t)
t Thread t at clock time 1
1 At t:Join(u):
B; — Merge(B:, By)
J é - -V |
'L N {teT:V(t)>0; ' ' At t:Rd(z) or t:Wr(z):
Inc(Vit) = uw— if u=1tthen V(u)+1 else V(u) Sz « Merge(Remove(Sz, Bt), {(t, B:(t))})
Merge(V,W) 2y mazx(V(u), W(u)) if |Sz| >1
Remove(V,W) 2 uif V(u) < W(u) then 0 else V(u) then Cz — Cz M Ly
else C; «— Ly

if |Sz| > 1 A C; = {} then report race

Avoiding Lockset's false positive (1)

N

‘__

2 t:Lock(a) 5 u:Lock(a)
3t:Wr(x) 6 u:Wr(x)
2! 4 t:Unlock(a) \ 7 w:Unlock(a)
‘8..t.::1.oin(u)
9t:Wr(x)
NZ10 t:Fork(v) U
11 t:Lock(a) o

= 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
13 t:Unlock(a) 16 v:Unlock(a)

L, Lockset of thread t

C, Lockset of memory x
B, Vector clock of thread t
S, Threadset of memory x
t, Thread t at clock time 1

0 Al {3y {F] {t - -

1 {t,} {} | {tpuy}
2 {a}

3 {a} {t}

4 {}

5 {a}

6 {ty,uq}

7 {}

8 {tyud - -

Avoiding Lockset's false positive (2)

V

‘\-‘

2 t:Lock(a) - 5 u:Lock(a)
3t:Wr(x) 6 u:Wr(x)
4 t:Unlock(a) v w:Unlock(a)

9 t:Wr(x)

10 t:Fork(v) U

11 t:Lock(a) P 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
13 t:Unlock(a) 16 v:Unlock(a)

{a}

{t2!u1}

{}

{t2!u1}

L, Lockset of thread t

C, Lockset of memory x
B, Vector clock of thread t
S, Threadset of memory x
t, Thread t at clock time 1

{}

{ta}

10

{t3!u1}

{}

{tyvq}

11

{a}

12

{a}

{ts}

13

{}

14

{a}

15
16

{t3,V1}

{}

Avoiding Lockset's false positive (2)

N

‘\‘_

2 t:Lock(a)
3t:Wr(x)
4 t:Unlock(a)

9t:Wr(x)

N\Z10 t:Fork(v) D

11 t:Lock(a)
12 t:Wr(x)
13 t:Unlock(a)

) 5 u:Lock(a)
6 u:Wr(x)
_7 T u:Unlock(a)

14 v:Lock(a)
15 v:Wr(x)
16 v:Unlock(a)

L, Lockset of thread t

C, Lockset of memory x
B, Vector clock of thread t
S, Threadset of memory x
t, Thread t at clock time 1

{a}

{}

{t2!u1}

{t3!u1}

{} {tovy}

11

{a}

12

{a}

{ts}

13

{}

14

{a}

15
16

{t3,V1}

{}

Only one thread!
Are we done?

