
Lab 1:
Synchronization Basics

post-mortem
CS378 Fall 2023
Chris Rossbach



Outline

• Some tips and tricks
• Overview of how I coded it
• Overview of my approach to scripting

• Analyzing the Data
• Step 1
• Step 2
• Step 3
• Step 4

• Discussion



Code Structure

• Guiding Principles
• “DRY” code
• Maintain readability in the face of many options
• Avoid performance impact from instrumentation
• Make it easy to make graphs and write report

• Produce output that is easy to script and graph
• This is a critical skill for empirical method 



Shared logic/instrumentation 
from OOP

• Use a super-class with virtual methods
• Each sub-class implements virtual methods differently
• Maximizes instrumentation reuse

• Note the alignment __attribute
• What does it do?
• Why is it important?



Shared logic/instrumentation 
from OOP

• Use a super-class with virtual methods
• Each sub-class implements virtual methods differently
• Maximizes instrumentation reuse

• Note the alignment __attribute
• What does it do?
• Why is it important?



Shared logic/instrumentation 
from OOP

• Use a super-class with virtual methods
• Each sub-class implements virtual methods differently
• Maximizes instrumentation reuse

• Note the alignment __attribute
• What does it do?
• Why is it important?



Clean instrumentation
• [Performance] debug output is useful

• It also impacts performance
• And gets in the way of scriptable output

• I almost always use a verbose flag, and variadic _info()



Producing Scriptable 
Output

• This lab requires you to run the same program 100s of times

• Collecting data to graph and keeping track of it manually is tedious

• Good empirical method: program your measurements/experiments
• Produce machine-readable output
• Write scripts manage runs and collect data
• Write scripts to run and graph steps



Producing Scriptable 
Output

• This lab requires you to run the same program 100s of times

• Collecting data to graph and keeping track of it manually is tedious

• Good empirical method: program your measurements/experiments
• Produce machine-readable output
• Write scripts manage runs and collect data
• Write scripts to run and graph steps



Scripting Graph Production



Producing 
Scriptable 
Output

• Added command line options 
to control:
• Human vs machine-readable
• Manage quirks in Rscript
• etc



Methodology

Languedoc.csres.utexas.edu
• 64 cores 2-way hyperthreaded
• Ubuntu 20.04
• 192GB RAM
• Lightly shared



Step 1: Unsynchronized Counting

• The program gets slower with more threads. Why?

• Many lost updates. Obvious why…

• Load imbalance can be greater than 2x

• Ideas: 
• Balance load
• Eliminate contention
• Is it possible to scale *at all* if you remove all contention?



Step 1a: Privatize the 
Counter

• It can indeed be made to scale!
• Load can be balanced
• Diagnosis: lost updates and coherence are 

perf-killers; in my case lost updates were 
worse

• Problem: there is no actual shared state
• Solution: synchronize



Step 2: Synchronize 
the Counter



Step 2: Synchronize 
the Counter



Step 2: Synchronize 
the Counter



Step 3
• Use/abuse affinity

• 1 core vs all cores?
• What did you expect for load imbalance
• What did you expect for scaling?

Ru
nt

im
e 

(s
ec

on
ds

)



Step 4

Spinlocks Atomics

• Read-write ratios
• What did you expect for scaling?



Discussion


