cs378: Concurrency: K-Means Lab 2 Writeup Template

You
Department of Computer Science
UT Austin

January 16, 2018

1 Step 2: Coarse Parallelization

Using the random-n65536-d32-c16 sample input, create a graph of scalability for pthread_mutez_t
and pthread_spinlock_t for your solution from 1 to twice the number of physical processors on your
machine for your solution at this step. Please normalize your measurements with the single-threaded
solution from Step 1. This means that unlike in the first lab, where we simply reported execution time,
this graph is speedup over sequential.

e Provide a graph of speedup similar to Figure 1.

1.2

0.8

0.4
0'3 N I- I .I I III |I (| I

N G I I I R R I T T Y S S
RSN R R SRR R R SR
& & &F & FFEFFFFFFF P

S R I I O
VoAl W g AT % O W Y WYY

speedup over sequential

- %

M coarse-mutex M coarse-spinlock

Figure 1: Step 2 scalability sample graph comparing coarse mutex against coarse spinlock. NOTE:
the data in these graphs are random. If your data show different trends that’s GOOD.

_ 1

=

= 0.8

L1k}

=

3 06

%04

S

(18}

2 |

2 0

=

=

@ O & vl & & el] & S el) L]] 5
g PRI I I IS F S
= \,-\'\K @f .@J .@a ;\Qf ;\Q’ QQ: .‘\QJ ;\Qa @» *2’ Q.. {'2: ;\Qv {E« @a
@ \&a‘?-&&*‘@-&g@,&@@@;&,&@

AT W g G AT % RS AR SRR,

W fine-mutex M fine-spinlock
Figure 2: Step 2 scalability sample graph comparing coarse mutex against coarse spinlock. NOTE:
the data in these graphs are random. If your data show different trends that’s GOOD.

2 Step 3: Finer-grain Synchronization

Again using the random-n65536-d32-c16.txt sample input, 20 mazimum iterations, and a threshold
of 0.0000001, create another speedup graph like the one from Step 2, where pthread_mutez_t and
pthread_spinlock_t primitives are used to synchronize en masse updates accumulated privately by
each thread at the end of each iteration. Again your graph should be a speedup graph, where data are
normalized to the single-threaded Step 1 implementation.

e Provide a graph of speedup similar to Figure 2.

3 Step 4: Extra Credit: Even finer-grain synchronization

In this step, you may, for extra credit, explore other ways to make synchronization even finer grained
to reduce contention and increase scalability. Can you use CAS-based updates? HTM? Does padding
data structures to avoid false sharing have any impact on your performance? Locks per-dimension?

=
=

o0
0o

o0
O N B

R G R I I R I T S T S 2 O SO SOy SN
PRI IS
LA A A A A XS AN FINC PN AN

speedup over sequential

m ultra-fine-sync-1 m ultra-fine-sync-2 m ultra-fine-sync-3

ultra-fine-sync-4 M ultra-fine-sync-5

Figure 3: Step 4 speedup sample graph comparing who knows what synchronization techniques.
NOTE: the data in these graphs are random. If your data show different trends that’s GOOD.

Functional decomposition instead of domain decomposition? Extra credit will be given for any reason-
able solution that undertakes this section, as long as the solution is still correct: trying to improve
scalability is a worthwhile endeavor, even if you don’t succeed. If you do this, include graphs, along
with some conjecture explaining the performance behavior of your implementation(s).

e Provide a graph of speedup similar to Figure 3.

