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Why you should take this course

* Concurrency is super-cool, and super-important
* You'll learn important concepts and background

* Have fun programming cool systems

GPUs! FGPAs!

Modern Programming languages: Go! Rust!

Interesting synchronization primitives (not just boring old locks)
Programming tools people use to program super-computers (ooh...)

Two perspectives:

* The “just eat your kale and quinoa” argument
* The “it’s going to be fun” argument




My first computer

Wires +
gobble-dy-gook

(sp?)

screen

Storage

Tape drive!
(also good for playing heavy metal music)



My current computer

Too boring...




Another of my current computers

A lot has changed but...
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Modern Technology Stack

Applications

device device
APIs APlIs APls

Runtime Runtime Runtime
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Concurrency and Parallelism are Everywhere

Applications
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are everywhere

How much parallel and concurrent programming

have you learned so far?

* Concurrency/parallelism can’t be avoided
anymore (want a job?)
A program or two playing with locks and threads
isn’t enough
I’ve worked in industry a lot—I know

Course goal is to expose you to lots of ways of
programming systems like these

...So “you should take this course because it’s good for you” (eat your #$(*& kale!)




Goal: Make Concurrency Your Close Friend
Method: Use Many Different Approaches to Concurrency

Abstract | Concrete

Locks and Shared Memory Synchronization

Language Support

Parallel Architectures

HPC
Distributed Computing / Big Data

Modern/Advanced Topics

Whatever Interests YOU

Prefix Sum with pthreads

Go lab: condition variables, channels, go routines
Rust lab: 2PC

GPU Programming Lab
FPGA Programming Lab

Optional MPI lab
Rust 2PC / MPI labs

» Specialized Runtimes / Programming Models
e Auto-parallelization
* Race Detection

Project
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Serial vs. Parallel Program

l instructions /
N

13 2 t1

CS378h I I

Key concerns:

* Programming model

* Execution Model

* Performance/Efficiency
e Exposing parallelism



Free lunch...
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Free lunch —is over ®
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Flynn’s Taxonomy

SISD SIMD

MISD MIMD




Execution Models: Flynn’s Taxonomy

: Our main focus
Normal Serial program

Uncommon architecture:
Fault — tolerance
Pipeline parallelism 18




SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)}
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn
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e Example: vector operations (e.g., Intel SSE/AVX, GPU)



MIMD

* Example: multi-core CPU

prev instruct

prev instruct

load A(1)

call funcD

load B(1)

X=y*z

C(1)=A(1)*B(1)

sum=x*2

store C(1)

call sub1(i,j)

next instruct

P1

next instruct

P2

prev instruct

do 10 i=1,N

alpha=w**3

zeta=C(i)

10 continue

next instruct

Pn

awy



Problem Partitioning

Problem Data Set

* Decomposition: Domain v. Functional

* Domain Decomposition ' '
SPMD . .

Input domain
Output Domain
Both

* Functional Decomposition
* MPMD
* Independent Tasks
* Pipelining

Problem Instruction Set




Game of Life

* Given a 2D Grid:
c v:(i,]) = F(vt_l(of all its neighbors))
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-1 What model fits “best”?
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Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

M
/

MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream




Domain decomposition

e Each CPU gets part of the input

CPUO

How could we do a functional decomposition?

Issues?
* Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
e Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
e Task Management Overhead
* Load Balance
* Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* locks, semaphores, barriers, conditionals....



Load Balancing

* Slowest task determines performance

CPUO

4F—

CPU 2

1+1

CPU 1

CPU 3

Task O

Task 1

Task 2

Task 3

work |

time

24



Granularity

* Fine-grain parallelism
* Gissmall
* Good load balancing
* Potentially high overhead
* Hard to get correct

sw}

Computation
Communication e Coarse-grain parallelism
 Gislarge
* Load balancing is tough
* Low overhead
* Easier to get correct

G =

sw}

¥

[ communication
" computation



Performance: Amdahl’s law
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Amdahl’s law

X seconds

X/2 seconds X/2 seconds

| | | |
Serial Parallelizable

|”

What makes something “serial” vs. parallelizable?



Amdahl’s law > CPUS

X/4 seconds
X/2 seconds , X/Z—ﬁeconds

Parallelizable

Serial alizable
Parallelizable

End to end time: KXg@coXd4) = (3/4)X seconds

What is the “speedup” in this case?

Speodun — serial runtime 1 _ 1 _ 1333
peeaup = parallel runtime A 5 ] -
A -4 +(1-5)
#CPUs 2 cpus




Speedup exercise o DO

(3X/4)/8 seconds

3 * X/4 seconds

P
X/4 seconds 5
P
. P
Serial 5
P
P .
p End to end time: X seconds
What is the “speedup” in this case?
Speedup = serial runtime 1 B 1 B
peeavp = parallel runtime A B = 2.9Ix

#cpus T (1~ 4) 75/8 + (1-.75)



Amdahl Action Zone
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Amdahl Action Zone
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Amdahl Action Zone

—50% —75% —90% 95% —99%
120
100
80
60
40
20

SPEEDUP

™ ® © ™
v X %) >
S O D SN 2

NUMBER OF CPUS



Strong Scaling vs Weak Scaling

e Amdahl vs. Gustafson

* N=#CPUs, S =serial portion=1—A
* Amdahl's law: Speedup(N) = Ai
ﬁ+5
* Strong scaling: Speedup (N) calculated given total amount of work is fixed
* Solve same problems faster when problem size is fixed and #CPU grows
* Assuming parallel portion is fixed, speedup soon seizes to increase

* Gustafson's law: Speedup(N) = N+ (N-1)-S

* Weak scaling: Speedup (N) calculated given amount of work per CPU is fixed

* Keep the amount of work per CPU when adding more CPUs to keep the
granularity fixed

* Problem size grows: solve larger problems
* Consequence: speedup upper bound much higher



Super-linear speedup

Speedup
* Possible due to cache i
[l
* But usually just poor methodology -
Superlinear
» Baseline: *best* serial algorithm
Sublinear

* Example:

* Efficient bubble sort takes:
* Parallel 40s
* Serial 150s

* Speedup = % = 3757

Processors

* NO!
* Serial quicksort runs in 30s
« = Speedup = 0.75



Concurrency and Correctness

If two threads execute this program concurrently,
how many different final values of X are there?

Initially, X == 0.

Thread 1

void increment () ({
int temp = X;
temp = temp + 1;
X = temp;

Thread 2

void increment () {
int temp = X;
temp = temp + 1;
X = temp;




Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2

/tmpl =
tmp2 X;
tmpl = X; N tmp2 X;

tmp2 = tmp2 + 1;
tmpl = tmpl + 1;_ Ltmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmp2;

X = tmpl; —> X = tmpl;
X = thZ;/

\ 7]

If X==0 initially, X == 1 at the end. WRONG result!



Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
e But it limits concurrency, and hence scalability/performance

Is mutual exclusion a good abstraction?



Why Locks are Hard

e Coarse-grain locks * Fine-grain locks
e Simple to develop e Greater concurrency
* Easy to avoid deadlock * Greater code complexity
* Few data races e Potential deadlocks
e Limited concurrency * Not composable
e Potential data races

// WITH FINE-GRAIN LOCKS * Which lock to lock?

void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
LOCK (d) ; move (a, b, keyl);

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;

UNLOCK (s) ; DEADLOCK!

move (b, a, key2);



The correctness conditions

Safety

* Only one thread in the critical region

Liveness

* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region

Bounded waiting

* A thread that enters the entry section enters the critical section within some
bounded number of operations.

Failure atomicity
* Itis OK for a thread to die in the critical region
* Many techniques do not provide failure atomicity

while (1) {
Entry section
Critical section
Exit section
Non-critical section



Read-Modify-Write (RMW)

# Implement locks using read-modify-write instructions

e As an atomic and isolated action

1. read a memory location into a register, AND
2. write a new value to the location

Implementing RMW is tricky in multi-processors

[0 Requires cache coherence hardware. Caches snoop the memory bus.

+ Examples:

Test&set instructions (most architectures)
[0 Reads avalue from memory
O Write “1” back to memory location

« Compare & swap (68000)

[0 Test the value against some constant

O If the test returns true, set value in memory to different value
[0 Report the result of the test in a flag
O if [addr] ==r1 then [addr] =r2;

Exchange, locked increment, locked decrement (x86)

Load linked/store conditional (PowerPC,Alpha, MIPS)



Implementing Locks with Test&set

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (testéset(lock) == 1) - (test & set ~ CAS ~ LLSC)
; //spin

}

Lock::Release() {
*lock = O;
}
+ What is the problem with this?
» A. CPU usage B. Memory usage C. Lock::Acquire() latency
» D. Memory bus usage E. Does not work



Test & Set with Memory Hierarchies

Initially, lock already held by some other CPU—A, B busy-waiting
What happens to lock variable’s cache line when different cpu’s contend?

Load
can

stall

\Ll\ lock: 1

L2

/

OxFO Tock: 1
Main Memory | 0xF4..




Programming and Machines: a mental model

program.exe
Source code

- - Compiler instruccion] struct machine_stateq
2 _ ahflﬁ?"; I I iiiéjiiﬁia uint64 pc;
L | Fstructiont uint64 Registers[16];
uint64 cr[6]; // control registers crO-cr4d and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

}

void execute_instruction(i) {

switch(opcode) {
case add_rr:
machine.Registers[i.dst] += machine.Registers[i.src];

break;

FFFFFFFF

C0400000

1GB

C0000000

—

3GB




Parallel Machines: a mental model

program.exe
Source code
Compiler instructionl | instructienl instruetionl | instructionl
a = "hello": r"""""1 ?nstruc:%onE ?nstruc:?onﬁ ?nstruc:?onz ?nstruc:?onﬁ
b = wiw. instruction3 instructiond instructiond instructiond
=a+ = | I instructiond instructiond instruectiong instructiond

struct machine_stated{
uint64 pc;
uint64 Registers[16];
uint6é4 cr(6]; // control registers crO-cr4 and EFER on AMD

struct machine_stateq{
uinté4 pc;
uint64 Registers[16];
uint64 cr(6]; // control registers crO-cr4 and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

} }

void execute_instruction(i) { void execute_instruction(i) {
switch(opcode) { switch(opcode) {
case add_rr: case add_rr:
machine .Registers[i.dst] += machine.Registers[i.src]; machine.Registers[i.dst] += machine.Registers[i.src];
break; break;



Processes and Threads

e Abstractions
* Containers

instruectionl
instruction?
instruction3
instructiond

instructionl
instruction2
instruction3
instructiond

instruectionl
instruction?
instruction3
instructiond

instructionl
instruction2
instruction3
instructiond

* State
* Where is shared state?
* How is it accessed?
* Isit mutable?




Processes & Virtual Memory

* Virtual Memory: Goals...what are they again?

* Abstraction: contiguous, isolated memory
* Remember overlays?

* Prevent illegal operations

* Access to others/OS memory
* Fail fast (e.g. segv on *(NULL))
* Prevent exploits that try to execute program data

* Sharing mechanism/IPC substrate



FFFFFFFF .

»

C0400000

1 GB

<«

C0000000_

—

a

3 GB

Process Address Space

—_—

access requires kernel mode

-

free

“

used

—_—

access possible in user mode



Processes
The Process Model

One program counter

N Four program counters
A Prgcess
E switch o D —_—
Y B 2
o C —
o
B A i B Y C Jr DY B| =— —
(= LT —
j . Time —=

(a) (b) (c)

e Multiprogramming of four programs
e Conceptual model of 4 independent, sequential processes

* Only one program active at any instant



Implementation of Processes

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Fields of a process table entry




Threads
The Thread Model (1)

Process 1 Process 1 Process 1 Process
\\ | | i
User y
space
Thread Thread
Kernel
space Kernel Kernel

(a) (b)

(a) Three processes each with one thread
(b) One process with three threads



The Thread Model

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

* ltems shared by all threads in a process

* [tems private to each thread



The Thread Model

Thread 1's
stack

Thread 2

Thread 1 Thread 3

/

/

_—~ Process

Thread 3's stack

H4

Kernel

Each thread has its own stack



Using threads

Ex. How mig

Quick Access Toolbar Ribbon Tabs

Fage e Beferescer  Wadegs

ht we use threads in a word processor program?

Window Controls

no- Kt

o L Y

Fage 16l1  WenStO  Enghuh (wind S I

Keyboard

Four score and ssven
years ago, our fathers
brought forth upon this
cantinent a new nation:
conceived in liberty,
and dedicated 1o the
propesition that all
men are created equal

Now we ar engaged
in a great civil war
testing whether  thar

nation, or any nation
sa conceived and so0
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come to
dedicats a portion of
that field as a final
resting place for thoss
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we shovld
o this.

But, ina largsrsense,
we cannet dedicate, we
camnat camsecrate we
cannat  hallow  this
gwound.  The bmve
men, living and dead,

wha struggled  here
have cansecrated it, far
above omr poor pawer
to add or detract. The
world will little note,
mor long temember,
what we say here, but
it can never forget
what they did here

1t is for ws the living,
mther, to be dedicated

here to the unfinished
work which they wha
fought her hive ths
far 50 nably advanced
1t is mther for ve to be
here dedicated 1o the
geat task remaining
before s, that from
these honored dead we
take increased devotion
o that cause for which

they gave the last full
measure of devation,
that we here highly
rasalve that these dead
shall net have died in
vain that this natian,
under Ged, shall have
a nzw birth of freedom
and that government of
the people by the
peaple, for the peaple

~

Kernel

D

IS

k
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Thread Usage

Web server process

while (TRUE) { while (TRUE) {
- get_next_request(&buf); wait_for_work(&buf)
, Y handoff_work(&buf); look _for_page_in_cache(&buf, &page);
Dispatcher threza } if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);

2;‘ l Worker thread s return_page(&page);

> space }
? E g (a) (b)
Web page cache

Kernel } i (a) Dispatcher thread
(b) Worker thread

Network
connection

A multithreaded Web server

58



Thread Usage

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server



Implementing Threads in User Space

Process Thread
r \\ /

=3 03

=

—

Kernel
space Kernel
X

/ \
Run-time Thread Process
system table table

A user-level threads package



Implementing Threads in the Kernel

Process Thread

Kernel
—
Process Thread
table table

A threads package managed by the kernel



Pthreads

* POSIX standard thread model,
 Specifies the APl and call semantics.
* Popular — most thread libraries are Pthreads-compatible



Preliminaries

* Include pthread.h in the main file

* Compile program with —1pthread
* gcc -0 test test.c —-lpthread
* may not report compilation errors otherwise but calls will fail

e Good idea to check return values on common functions



Thread creation

* Types:pthread t —type of athread

* Some calls:

int pthread create(pthread t *thread,
const pthread attr t *attr,
void * (*start routine) (void *),
void *argqg);

int pthread join(pthread t thread, void **status);

int pthread detach();

void pthread exit();

No explicit parent/child model, except main thread holds process info
Callpthread exit in main, don’tjust fall through;

Most likely you wouldn’t need pthread join
e status = exitvalue returned by joinable thread
Detached threads are those which cannot be joined (can also set this at creation)



Creating multiple threads

#include <stdio.h>
#include <pthread.h>
#define NUM THREADS 4

void *hello (void *arqg) {
printf (*Hello Thread\n”) ;

}

main () {
pthread t tid[NUM THREADS] ;
for (int i = 0; 1 < NUM THREADS; i-++)
pthread create(&tid[i], NULL, hello, NULL) ;

for (int i = 0; 1 < NUM THREADS; i++)
pthread_juin(tid[i], NULL) ;




Can you find the bug here?

What is printed for myNum?

void *threadFunc (void *pArqg) {

int* p = (int*)pArg;

int myNum = *p;

printf( “Thread number %d\n”, myNum) ;
}

// from main () :
for (int 1 = 0; i < numThreads; i++) {

pthread create(&tid[i], NULL, threadFunc, &i);
}




Pthread Mutexes

* Type:pthread mutex t

int pthread mutex init (pthread mutex t *mutex,
const pthread mutexattr t *attr);
int pthread mutex destroy (pthread mutex t *mutex);
int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);

 Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.

* use defaults
* Important: Mutex scope must be visible to all threads!



Spinlock vs Mutex



Lab #1

* Basic synchronization
* http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

* Start early!!!


http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

Questions?



