Foundations:
Concurrency Concerns
Synchronization Basics

Chris Rossbach
CS378H

Multithreaded programming

it ..‘;‘r = -

Today

e Questions?
e Administrivia
* You've started Lab 1 right?

* Foundations
* Parallelism
e Basic Synchronization
* Threads/Processes/Fibers, Oh my!
* Cache coherence (maybe)

* Acknowledgments: some materials in this lecture borrowed from

Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger)
e Mark Silberstein (who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta)

¢ Andy Tannenbaum

e Don Porter

° me..

* Photo source: https://img.devrant.com/devrant/rant/r_10875_uRYQF.jpg

Fa UX QU IZ (answer any 2, 5 min)

* Who was Flynn? Why is her/his taxonomy important?

* How does domain decomposition differ from functional
decomposition? Give examples of each.

e Can a SIMD parallel program use functional decomposition?
Why/why not?

* What is an RMW instruction? How can they be used to construct
synchronization primitives? How can sync primitives be constructed
without them?

Who is Flynn?

Michael J. Flynn

* Emeritus at Stanford

* Proposed taxonomy in 1966 (!!)
* 30 pages of publication titles

* Founding member of SIGARCH

* (Thanks Wikipedia)

Review: Flynn’s Taxonomy

SISD SIMD

Single Instruction stream Single Instruction stream

Y AXIS: Single Data stream Multiple Data stream

Instruction |

Streams MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

X AXIS:
Data Streams

Review: Problem Partitioning

Problem Data Set

* Domain Decomposition

* SPMD | I |
e Input domain |-| . . -
* Qutput Domain m— ___ — S
* Both

* Functional Decomposition PfaBlginstruction Set
* MPMD

* Independent Tasks
* Pipelining

Domain decomposition

e Each CPU gets part of the input

CPUO

CPU 1

Issues?

Accessing Data
* Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead
Load Balance
Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* Jocks, semaphores, barriers, conditionals....

Performance: Amdahl’s law

Py Spf\f\l\llnu\ HP PR [P HPY P gy B
*Sp . .
G serial run time
pee up —)
parallel run time
e #CPUS
Speedup(#CPUs) = Tseria _ v L
parallel + (1 _ A)

#CPUs

Amdahl Action Zone

—50% —75% —90% 95% —99%
120
100
80
60
40
20

SPEEDUP

™ ® © ™
v X %) >
S O D SN 2

NUMBER OF CPUS

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N =#CPUs, § =serial portion=1-A4

* Amdahl's law: Speedup(N) = %

‘H‘I‘S

= Strong scaling: Speedup (N) calculated given total amount of work is fixed
* Solve same problems faster when problem size is fixed and #CPU grows /

* Assuming parallel portion is fixed, speedup soon seizes to increase

* Gustafson's law: Speedup(N) = N+ (N—1)-S
» Weak scaling: Speedup (N) calculated given amount of work per CPU is fixed

» Keep the amount of work per CPU when adding more CPUs to keep the
granularity fixed

* Problem size grows: solve larger problems
* Consequence: speedup upper bound much higher

When is Gustavson’s law a better metric?

When is Amdahl’s law a better metric?

Super-linear speedup

] happen?
e Possible due to cache .

Speodup

e But usually just poor methodology

* Baseline: *best* serial algorithm e

* Example: Superlinear

Efficient bubble sort

e Serial: 150s Sublinear

e Parallel 40s
150

® SpEEdUp.' E =3757 Processors

NO NO NO!

» Serial quicksort: 30s

* Speedup = 30/40 = 0.75X Why insist on best serial algorithm as baseline?

Concurrency and Correctness

If two threads execute this program concurrently,
how many different final values of X are there?

Initially, X == 0.

Thread 1

void increment () ({
int temp = X;
temp = temp + 1;
X = temp;

Thread 2

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2

/tmpl =
tmp2 X;
tmpl = X; N tmp2 = X;

tmp2 = tmp2 + 1;
tmpl = tmpl + 1;_ Ltmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmp2;

X = tmpl; —> X = tmpl;
X = thZ;/

\ 7]

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
* But it limits concurrency, and hence scalability/performance

Is mutual exclusion a good abstraction?

Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks
e Simple to develop

Greater concurrency

* Easy to avoid deadlock Greater code complexity

* Few data races Potential deadlocks

e Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
LOCK (4d) ; move (a, b, keyl);

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;

UNLOCK (s) ; DEADLOCK!

move (b, a, key2);

Review: correctness conditions

» Safety Th - -
eorem: cver roperty is a
* Only one thread in the critical region .. y Property
combination of a safety property
* Liveness and a liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider
« Even if other thread takes forever in non-critical region https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

* Bounded waiting

. Al L | : | tical . e
boundednumberofoperations——— —— — — — — —————————
* Ifathreadiisin entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while (1) {

[]

Mutex, spinlock, etc. / C :

: . : ment\ Critical section
[

Did we get all the important conditions? —] |
Why is correctness defined in terms of locks? Non-critical section

Implementing Locks

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)
; //spin
*lock = 1;

}

Lock::Release() {
*lock = O;
}

Completely and utterly broken.
How can we fix it?

What are the problem(s) with this?
» A. CPU usage
» B. Memory usage
» C. Lock::Acquire() latency
» D. Memory bus usage
» E. Does not work

HW Support for Read-Modifty-Write (RMW)

IDEA: hardware

implements Preview of Techniques:
something like:
bool rmw(addr, value) { * Bus IOCkmg
atomic { . . .
tmp = *addr: * Single Instruction ISA extensions
newval = modify(tmp); e Test&Set

*addr = newval;

* CAS: Compare & swap
* Exchange, locked increment, locked decrement (x86)

}
Why is that hard? Multi-instruction ISA extensions:
HOW Can we do its e LLSC: (PowerPC,Alpha, MIPS)

e Transactional Memory (x86, PowerPC)

}

More on this later...

Implementing Locks with Test&set

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (testéset(lock) == 1) _ (test & set ~= CAS ~= LLSC)
; //spin TST: Test&set

} * Reads a value from memory

* Write “1” back to memory location

Lock::Release() { What are the problem(s) with this?
*lock = O: » A. CPU usage
} » B. Memory usage
» C. Lock::Acquire() latency
» D. Memory bus usage
» E. Does not work

More on this later...

Programming and Machines: a mental model

Source code

a
b

"hellD":
a + Illll';

Compiler

—
L |

program.exe

instructi
instruecti
instructi
instruecti

onl
on?
ond
ond

struct machine_state{
uint64 pc;
uint64 Registers[16];
uint64 cr[6]; // control registers crO-cr4d and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

}

void execute_instruction(i) {
switch(opcode) {
case add_rr:
machine.Registers[i.dst] += machine.Registers[i.src];
break;

Parallel Machines: a mental model

prev instruct

prev instruct

prev instruct

program.exe
Source code
Compiler instructionl | instructienl instruetionl | instructionl
= "hello": instruction2 instruction instruction? instruction
a (= o ; : : - - - " . "
b = 4 omyn, instruction3 instruction3 instruction3 instruction3
= a - | I instructiond instructiond instructiond instructiond

struct machine_state{
uinté4 pc;
uint64 Registers[16];

struct machine_stated{
uint64 pc;
uint64 Registers[16];
uint6é4 cr(6]; // control registers crO-cr4 and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

} }

void execute_instruction(i) { void execute_instruction(i) {
switch(opcode) { switch(opcode) {
case add_rr: case add_rr:
machine .Registers[i.dst] += machine.Registers[i.src]; machine.Registers[i.dst] += machine.Registers[i.src];
break; break;

load A(1) call funcD do 10 i=1,N
load B(1) x=y*z alpha=w**3
C(1)=A(1)*B(1) sum=x*2 zeta=C(i)
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

uint64 cr(6]; // control registers crO-cr4 and EFER on AMD

awiy

Processes and Threads and Fibers...

e Abst

ractions

* Containers
* State

FFFFFFFF

C0400000

1GB

C0000000

—

3GB

Where is shared state?
How is it accessed?
Is it mutable?

P1

free

S
><o<

_——

_

access possible in user mode

used

\

instruectionl
instruction?
instruction3
instructiond

instructionl
instruction2
instruction3
instructiond

instruectionl
instruction?
instruction3
instructiond

instructionl
instruction2
instruction3
instructiond

FFFFFFFF £
Process Address Space

C0400000

m access requires kernel mode

O
C0000000_" free

‘
= <S>
S)) used
| access possible in user mode
O e

Anyone see an issue?

Processes

Model Implementation
One program counter
N— S Four program counters
& A | switch /\ .- _ Process management Memory management File management
Yy B 8 Reqisters Pointer to text segment Root directory
S 2 g - - Program counter Pointer to data segment | Working directory
W B A‘ BY c * DY Bl — — Program status word Pointer to stack segment | File descriptors
B Al =— —_— Stack pointer User ID
C\v D Time — Process state Group ID
Priority
(a) (b) (©) Scheduling parameters

e Multiprogramming of four programs
e Conceptual model of 4 independent, sequential processes

* Only one program active at any instant

Process ID
Parent process
Process group
Signals

Time when process started

CPU time used
Children’s CPU time
Time of next alarm

25

Thregd MnAdal

Ke
sSp

Thread 1's
stack

Thread 2

\
Thread 1 Thread 3
\

/

xR

_—~Process

Thread 3's stack

- B B-

Kernel

vvrier rriyrit (U) pe yewer uidril (U)r viee versur

The Thread Model

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers
Stack
State

Process management

[

Program status word

* ltems shared by all threads in a process

* [tems private to each thread

Process state

)
—/

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Using threads

Ex. How mig

Quick Access Toolbar Ribbon Tabs

Fage e Beferescer Wadegs

ht we use threads in a word processor program?

Window Controls

no- Kt

o L Y

Fage 16l1 WenStO Enghuh (wind S I

Keyboard

Four score and ssven
years ago, our fathers
brought forth upon this
cantinent a new nation:
conceived in liberty,
and dedicated 1o the
propesition that all
men are created equal

Now we ar engaged
in a great civil war
testing whether thar

nation, or any nation
sa conceived and so0
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come to
dedicats a portion of
that field as a final
resting place for thoss
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we shovld
o this.

But, ina largsrsense,
we cannet dedicate, we
camnat camsecrate we
cannat hallow this
gwound. The bmve
men, living and dead,

wha struggled here
have cansecrated it, far
above omr poor pawer
to add or detract. The
world will little note,
mor long temember,
what we say here, but
it can never forget
what they did here

1t is for ws the living,
mther, to be dedicated

here to the unfinished
work which they wha
fought her hive ths
far 50 nably advanced
1t is mther for ve to be
here dedicated 1o the
geat task remaining
before s, that from
these honored dead we
take increased devotion
o that cause for which

they gave the last full
measure of devation,
that we here highly
rasalve that these dead
shall net have died in
vain that this natian,
under Ged, shall have
a nzw birth of freedom
and that government of
the people by the
peaple, for the peaple

~

Kernel

D

IS

k

28

Where to Implement Threads:

User Space
Process Thread
r \\ /
User
space<
=
=
Kernel
space Kernel
X
/ \
Run-time Thread Process
system table table

A user-level threads package

Kernel Space
Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel

Blah blah fibers
blah exception
handling blah...

Threads vs Fibers

* Like threads, just an abstraction for flow of control

* Lighter weight than threads
* In Windows, just a stack, subset of arch. registers, non-preemptive
* *Not™ just threads without exception support

* stack management/impl has interplay with exceptions
e Can be completely exception safe

* Takeaway: diversity of abstractions/containers for execution flows

x86 64 Architectural Registers

ZMMO [YMMO ZMM1 [YMM1 sT(0)[MMo || sT(1)[MM1 || [[Er9AXEAX|RAX||C=] rev] reo| Ra|fE=Rizw[r120R12| | CRO || CR4
ZMM2 | YMM2 [XMM2 || ZMM3 [YMM3 [XMM3 || sT(2)[MM2 || ST(3)[MM3 | RBXRBD| R9ru=u|R13 CR1 || CR5
ZMM4 [YMM4 XMM4 J| ZMM5 [YMM5 [XMM5] [5T(4)[MM4][ST(5)[MM5 | RCX|[Esewuoor10][ETweoR 14] [CR2 || CR6
ZMM6 [YMM6 ZMM7 [YMM7 ST(6)[MM6 || ST(7)[MM7 | [EEDXEDXR DX|[ErkuwfruclR11|fE=RewrscR15| | CR3 || CR7
ZMM8 | YMM8 [XMM8 || ZMM9 | YMM9 [XMM3 || [ErIBPERPRBP| [2 DIEDI|RDI MEIF‘l RIP| | CR3 || CR8
ZMM10 [YMM10 XMM10]| zZMM11 [YMM11 cw [[Fr_ir[Fr_pp|Fr_cs| [EISIEsRsI| [E5PESPRSP MSW || CR9
ZMM12 [YMM12 XMM1Z]| ZMM13 [YMM13 XMM13]| | SwW CR10
zvvia_[vviapomell zwis [vwispomas] [Tw | B e e ey LCRLL
ZMM16|| ZMM17|| ZMM18|| ZMM19|| ZMM20|| ZMM21|| ZMM22|| ZMM23 FP_DS CR12
ZMM24|(ZMM25(| ZMM26(] ZMM27| ZMM28|| ZMM29|[ZMM30|| ZMM31| |FP_OPC FP_DP FP_IP CS SS DS GDTR IDTR DRO DR6 CR13
ES || F5 || GS TR || LDTR | | DR1 || DR7 | |CR14
[l =RFLAGS DR2 || DR8 | | CR15 [MXCSR
DR3 || DR9
DR4 || DR10||DR12 | DR14
DR5 |[DR11|[DR13 | DR15

* Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

switch_to(x,v) should switch tasks from x to y.

This could still be optimired:
- fold all the options into a flag word and test it with a single test.
- could test fs/gs bitsliced

® % % % %

Linux x86_64 context
switch excerpt

*
* Kprobes not supported here. Set the probe on schedule in.
* Function graph tracer not supported too.
=

__visible __notrace_funcgraph struct task_str

__switch_to(struct task_struct *prev_p, struct task_struct *next_p)

{

Complete fiber

context switch on
Unix and Windows

struct thread_struct *prev = Eprev_p-=thread;

struct thread_struct *next = Enext_p-=thread;

struct fpu *prev_fpu = &prev-=fpu;

struct fpu *next_fpu = &next-=fpu:

int cpu = smp_processor_id();

struct tss_struct “tss = Aper_cpu(cpu_tss_rw, cpul; * The AMDE4 architecture provj
* 128-bit SSE registers,

s 16 general 64-bit registers together with 16
erlapping with 8 legacy 8@-bit x87 floating point

WARN_ON_ONCE(IS_EMABLED(CONFIG_DEBUG_ENTRY) && * registers

ZMMO i S) (= 1k ST(0)|MMO || ST(1)|MM1. CRO || CR4

(zvm2] switeh-fpu_prapare(prev_fps. cou: sT(2)[MM2 || sT(3)[MM3 - o e e e cR1l || crRs

= e
J* We must save %fs and %gs before load TLS() becouse o Result register

ZMM4 [:%fs and %gs may be cleared by load TLS(). ST(4) |MM4 ST(S) |MM5 : o Mast be preserves CRZ CRG

= * (e.g. xen_load tis()) rex Fourth argument First argument
ZMM6 =/ ST(G) MM6 ST(7) MM7 * rdx Third argument Second argument CR3 CR7
L save_fsgs(prev_p); . .
—— rsp Stack pointer, must be preserved
ZMMB [VA * rbp Frame pointer, must be preserved CR3 CRB
s— * load TLS before restoring any segments so that segment loads *® psi Second argument Must be preserved
ZMM10 [* reference the correct GOT entries. CW FP IPIIFP DP|FP C~ r First argument Must be preserved MSW CR9
= 1:;‘1 TLS(next, cpu). = = — * r3 Fifth argument Third argument
ZMM 1 2 [- : ’ SW * ro Sixth argument Fourth argument CR 10
L i* * rle-ril Volatile
* leave lazy mode, flushing any hypercalls made here. This . B-bit registe|* ri2-r1s Must be preserved reqister
ZMM14 [* nust be done after leading TLS entries in the GDT but before TW g * mmB-5 Volstile g CRll
—— * loading segments that might reference them, and and it must — 16-bit ist ist
* be done before fpu restore(), so the TS bit is up to - ILTegisti. me1s volatile Must be preserved register
ZMM16| ZMM s *P_DS ¢ fpesr Mon volmtile CR12
* * mxcsr Non volatile
ZMM24|| ZMM arch_end_context_switch(next_p); ‘P_OPC FP DP|FP IP [. DR6 CR13
/* Switch DS and ES. * Thus for the two architectures we get slightly different lists of registers
= [" to preserve. DR7 CR14
* Reading them enly returns the selectors, but writing them (if *
* nonzero) loads the full descriptor from the GDT or LDT. The . . - " .
* 10T for next is loaded in switch_mm, and the GDT is loaded Reglsters “ouned” by caller: DRB CR]-S MXCSR
= ghove. * Unix: rbx, rsp, rbp, r12-ri5, mxcsr (control bits), =87 CW
* * Windows: rbx, rsp, rbp, rsi, rdi, ril2-ri5, xmm&-15 DRg
* we therefore need to write new values to the segment *

* registers on every context switch unless both the new and old

* values are zero. DR4 || DR10 |DR12 (|DR14

=
* Note that we don't need to do anything for CS and 55, as
* those are saved and restored as part of pt_regs. DRS DR]- 1 DR13 DR 1 5
=
"/

savesegment{es, prev-=es);

if (unlikely(next--es | prev-=es))
loadsegment(es, next--es);

savesegment(ds, prev--ds);
if (unlikelv(next-=ds | prev-=ds))
loadsegment(ds, next-=ds); o
* Reg B o 'wn work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525
e “Fetnder. next - febase, FS);
load_seg_legacy(prev-=gsindex, prev-=gshase,
next-=gsindex, next-=gsbase. GS):

Xx86 64 Registers and Threads

-

DR4

DR10

DR12

DR14

DR5

DR11

DR13

DR15

Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

x86 64 Registers and Fibers

ZMMO [YMMO ZMM1 YMM1 sT(0)[MMO || ST(1)[M 1ﬂ |CRO CR4
ZMM2 | YMM2 [XMM2 || ZMM3 [YMM3 [XMM3 || ST(2)[MM2 || ST(3)[MM3 H L | CR1 || CR5
ZMM4 [YMM4 [XMMa]| ZMM5 [YMM5_[XMM5]| [5T(4)[MM4][ST(5)[MM5 | = R1 | crR2 |[cre
ZMM6 [YMM6 ZMM7 [YMM7) [sT(6)[MM6 || ST(7) MM7]]m«rr«unm:k | CR3 || CR7
ZMM8 [YMMB ZMM9 [YMMO9 | IP[EIP[RIP| | CR3 | CR8
ZMM10 [YMM10 ZMM11 [YMM11 CW |[|FP_IP|[FP_DP FP_CS| F MSW || CR9
ZMM12 [YMM12 ZMM13 [YMM13 SW CR10
zis [mal Jawis Teomsl J[w] Remees Roviens Qe REeeny [
ZMM16|| ZMM17|| ZMM18|| ZMM19|| ZMM20|| ZMM21|| ZMM22|| ZMM23 FP_DS CR12
ZMM24| ZMM25((ZMM26|| ZMM27|| ZMM28|| ZMM29|| ZMM30(| ZMM31| FP_OPC|FP_DP|(FP_IP CS || SS || DS GDTR || IDTR DRO || DR6 CR13
ES || FS || GS TR || LDTR | | DR1 || DR7 | |CR14
[l RFLAGS DR2 || DR8 | | CR15 [MXCSR
The takeaway: DR3 || DR9
* Many abstractions for flows of control DR4 || DR10 | DR12 | DR14
 Different tradeoffs in overhead, flexibility DRS ||DRI1DRI3JDR15

* Matters for concurrency: exercised heavily

* Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

Pthreads

* POSIX standard thread model,
 Specifies the APl and call semantics.
* Popular — most thread libraries are Pthreads-compatible

Preliminaries

* Include pthread.h in the main file

* Compile program with —1pthread
* gcc -0 test test.c —-lpthread
* may not report compilation errors otherwise but calls will fail

e Good idea to check return values on common functions

Thread creation

* Types:pthread t —type of athread

* Some calls:

int pthread create(pthread t *thread,
const pthread attr t *attr,
void * (*start routine) (void *),
void *argqg);

int pthread join(pthread t thread, void **status);

int pthread detach();

void pthread exit();

No explicit parent/child model, except main thread holds process info
Callpthread exit in main, don’tjust fall through;

When do you need pthread join ?
e status = exitvalue returned by joinable thread
Detached threads are those which cannot be joined (can also set this at creation)

Creating multiple threads

#include <stdio.h>
#include <pthread.h>
#define NUM THREADS 4

void *hello (void *arqg) {
printf (*Hello Thread\n”) ;

}

main () {
pthread t tid[NUM THREADS] ;
for (int i = 0; 1 < NUM THREADS; i-++)
pthread create(&tid[i], NULL, hello, NULL) ;

for (int i = 0; 1 < NUM THREADS; i++)
pthread_juin(tid[i], NULL) ;

Can you find the bug here?

What is printed for myNum?

void *threadFunc (void *pArqg) {

int* p = (int*)pArg;

int myNum = *p;

printf(“Thread number %d\n”, myNum) ;
}

// from main () :
for (int 1 = 0; i < numThreads; i++) {

pthread create(&tid[i], NULL, threadFunc, &i);
}

Pthread Mutexes

* Type:pthread mutex t

int pthread mutex init (pthread mutex t *mutex,
const pthread mutexattr t *attr);
int pthread mutex destroy (pthread mutex t *mutex);
int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);

 Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.

* use defaults
* Important: Mutex scope must be visible to all threads!

Pthread Spinlock

* Type:pthread spinlock t

int pthread spinlock init (pthread spinlock t *lock);
int pthread spinlock destroy (pthread spinlock t *lock);
int pthread spin lock (pthread spinlock t *lock);

int pthread spin unlock (pthread spinlock t *lock);

int

in trylock (pthread spinlock t *lock);

Wait...what’s the _ —
. int pthread mutex init (pthread mutex t *mutex,..);
difference? int pthread:hutex:destroy(pthrgad_muEex_t *mutex) ;
int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);

Review: mutual exclusion model

e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region

while (1) {

Mutex, spinlock, etc. Critical section
are ways to implement \

these]
Non—critical section

Multiprocessor Cache Coherence

Physics | Concurrency
F=ma ~ coherence

Multiprocessor Cache Coherence

cache ‘ cache ‘ cache ‘

Tag State Tag State Tag State
X O X: ??
Memory X: 0 I'0 devices
* P1: read X '
e P2:read X
* P2: X++

e P3: read X

Multiprocessor Cache Coherence

MR MODIFIED
. VA

Tag State Cata Tag State Cata Tag State Cata 1 H\L
BusRd/Flush
R f \ EXCLUSIVE
PrRad- | | \‘\ |
Bmfu',' \ BushdxFush
I \ [
P | I
Mﬂmﬂw /0 devices _::Bu:ndwrrmnlrlr SHARED
PrRdi- | ; ff
. BusRafhsh |
Each cache line has a state (M, E, S, 1))

</ INVALID

i

* Processors “snoop” bus to maintain states
Initially =2 ‘I’ = Invalid

Read one > ‘E’ - exclusive

Reads = ‘S’ = multiple copies possible

Write 2 ‘M’ = single copy = lots of cache coherence traffic

MR MODIFIED

prod x \

Cache Coherence: single-thread

cache ‘ cache ‘ cache ‘

Tag State Data Tag State Cata Tag State Cata

[cache W [lock: D
eviction]

E 'EXCLUSIVE

e h}rd"f\ lmLmme
11yl

_ j / I

mSHARED

‘r / f-

e /|

g
| ~ZINVALID

PrRd/-

@ Memnrlyock. @ I'O devices
P1 g

// (straw-person lock impl)
// Initially, lock == @ (unheld)

lock() {

try: 1load lock, RO
test RO
bnz try

store lock, 1

—

Tl

M “XMODIFIED

LY

Cache Coherence Action Zone
- E “;EXCLUSIVE

A |

PrRal- ‘Lde\
!"‘T f\ BushaxFush
— ‘,‘ f I
L
cache cache cache ', “‘SHARED
Tag State Cata Tag State Cata Tag State Cata PrRa- \"r ; /
I'I IOCk:m s IOCk: 1 . BusRdX/fiush / J..!
oS J
I ~’INVALID

@ Memnrlyrock: @ I'O devices
o1 5 !1 P2

// (straw-person lock impl) // (straw-person lock impl)
// Initially, lock == @ (unheld) // Initially, lock == @ (unheld)
lock() {) lock() {
try: load lock, RO — try: load lock, RO
test RO EE—) test Ro
bnz try > bnz try
store lock, 1 store lock, 1
} — O

| M **MODIFIED

Cache Coherence Action Zone ||
- E “‘EXCLUSIVE

PrRd- 1|I |

h’rd"f\ BushaxFush
U/ ,
cache cache cache “SHARED
Tag State Cata Tag State Cata Tag State Cata PriRdi- \"r | !'
IOCk Q IOCk (D amnmfmnf J..!
s
I = INVALID
: - Memory i - @
° lock: m 'O devices °
P1 g g P2
// (straw-person lock impl) // (straw-person lock impl)
// Initially, lock == @ (unheld) // Initially, lock == @ (unheld)
lock() {) lock() {
try: 1load lock, RO — try: 1load lock, RO
test RO EE——) test RO
bnz try > bnz try
store lock, 1 — store lock, 1
} —— e

Read-Modify-Write (RMW)

Implementing locks requires read-modify-write operations

Required effect is:

e An atomic and isolated action
1. read memory location AND

2. write a new value to the location
* RMW is very tricky in multi-processors

e (Cache coherence alone doesn’t solve it

// (straw-person lock impl)
// Initially, lock == @ (unheld)
lock() {
try: load lock, RO
test RO
bnz try
store lock, 1

Tag State

Data

Tag State

Data

Tag State

Data

Memory

/0 devices

Essence of HW-supported RMW

// (straw-person lock impl)
// Initially, lock == @ (unheld)

lock {
oc()(

try:

\

E—

Make this into a single
(atomic hardware instruction)

HW Support for Read-Modify-Write (RMW)

Test & Set Exchange, locked LLSC: load-linked store-conditional
mcrement/decrement

Most architectures Many architectures PPC, Alpha, MIPS
int TST(addr) { bool cas(addr, old, new) { int XCHG(addr, val) { bool LLSC(addr, val) {
atomic { atomic { atomic { ret = *addr;
ret = *addr; if(*addr == old) { ret = *addr; atomic {
if(!*addr) *addr = new; *addr = val; if(*addr == ret) {
*addr = 1; return true; return ret; *addr = val;
return ret; } } return true;
} return false; } }
} } return false;
} }

void CAS lock(lock) {
while(CAS(&lock, @, 1) != true);
}

HW Support for RMW: LL-SC

LLSC: load-linked store-conditional

PPC, Alpha, MIPS

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}

return false;

}

void LLSC lock(lock) {
while(1) {
old = load-linked(lock);
if(old == @ && store-cond(lock, 1))
return;

* Jload-linked is a load that is “linked” to a subsequent store-conditional
» Store-conditional only succeeds if value from linked-load is unchanged

LLSC Lock Action Zone

State Data

lock: 111.] @

State Data

lock: |

lock: O

P2

P1
‘ lock(lock) {

while(1l) {
old = 11(lock);
if(old == 0)
if(sc(lock, 1))
return;

lock(lock) {
while(1l) {
old = 11(lock);
if(old == 0)
if(sc(lock, 1))
return;

—

LLSC Lock Action Zone |

State Data State Data
lock: SM] 0 lock: SIL] O
lock: O

conditional
fails

P2

P1
‘ lock(lock) {

while(1l) {
old = 11(lock);
if(old == 0)
if(sc(lock, 1))
return;

lock(lock) {
while(1l) {
old = 11(lock);
if(old == 0)
if(sc(lock, 1))
return;

—

Implementing Locks with Test&set

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (testéset(lock) == 1) - (test & set ~ CAS ~ LLSC)
; //spin

}

Lock::Release() {
*lock = O;
}
+ What is the problem with this?
» A. CPU usage B. Memory usage C. Lock::Acquire() latency
» D. Memory bus usage E. Does not work

Test & Set with Memory Hierarchies

Initially, lock already held by some other CPU—A, B busy-waiting
What happens to lock variable’s cache line when different cpu’s contend?

Load
can

stall

\Ll\ lock: 1

L2

/

OxFO Tock: 1
Main Memory | 0xF4..

TTS: Reducing busy wait contention

Test&Set Test&Test&Set
Lock::Acquire() { Lock::Acquire() {
while (testé&set(lock) == 1); while(1) {
} while (*lock == 1) ; // spin just reading
if (test&set(lock) == 0) break;
}

Busy-wait on in-memory copy Busy-wait on cached copy
Lock::Release() { Lock::Release() {

*lock = O; *lock = O;
} }

* What is the problem with this?
* A. CPU usage B. Memory usage C. Lock::Acquire() latency
* D. Memory bus usage E. Does not work

Test & Test & Set with Memory Hierarchies

What happens to lock variable’s cache line when different cpu’s contend for the same lock?

L1 lock: 1

. OxFO lock: 1 ¥
Main Memory | 0xF4..

Test & Test & Set with Memory Hierarchies

What happens to lock variable’s cache line when different cpu’s contend for the same lock?

L1 lock: O

lock: O

Wait...why all this
spinning?

Main Memory

OxFO lock: 1
OxF4 ...

How can we improve over busy-wait?

Lock::Acquire() {

while(1) {
while (*lock == 1) ; // spin just reading
if (test&set(lock) == 0) break;

}

Mutex

e Same abstraction as spinlock

* But is a “blocking” primitive
* Lock available =2 same behavior
* Lock held = yield/block

* Many ways to yield
* Simplest case of semaphore

Is it better to use a spinlock or mutex on a uni-processor?

void cm3_lock (u8_t* M) {

u8_t LockedIn = 0;
do
if (__LDREXB (Mutex) == 0) {

// unlocked: try to obtain lock

if (__STREXB(1l, Mutex)) { // got lock
__CLREX(); // remove __LDREXB() lock
LockedIn = 1;

}
else task_yield();

}
else task_yield();

} while (!LockedIn);

// give away cpu

// give away cpu

Is it better to use a spinlock or mutex on a multi-processor?

How do you choose between spinlock/mutex on a multi-
processor?

Priority Inversion

A(prio-0) = enter(l);
B(prio-100) = enter(l); = must wait.

Solution?

Priority inheritance: A runs at B’s priority
MARS pathfinder failure:
http://wiki.csie.ncku.edu.tw/embedded/priority-inversion-on-Mars.pdf

Other ideas?

http://wiki.csie.ncku.edu.tw/embedded/priority-inversion-on-Mars.pdf

pe:

Dekker’s Algorithm

variables

wants to enter : array of 2 booleans

turn : integer

wants_to_enter[@] « false
wants to enter[l] <« false
turn « @ // or 1

wants to enter[@] « true
while wants_to_enter[1] {
if turn # @ {
wants to enter[@] <« false
while turn # @ {
// busy wait
}

wants_to_enter[@] « true

5
J

// critical section

turn « 1
wants_to_enter[@] « false
// remainder section

wants to enter[1l] « true
while wants_to_enter[0] {
if turn # 1 {
wants to enter[l] < false
while turn # 1 {
// busy wait
}

wants_to_enter[1l] « true

.
J

// ecritical section

turn « @
wants_to_enter[1l] « false
// remainder section

<cli= O
&h
c2L=07
N IY M
turnz1 ?
N| D7
cli= 1

4\Arr\= 2 ? 7\
N] Y A

~

critical seckon 1y
4urr\:z‘1 3 C‘\:d_-‘\,'
noncritical 1

L

FFOCGSS 1

THJ Pek ker's

anahhltj: c1,c2,tum= 11,9

Yurn 1?7 A
N yl—

v

criticel sec}ion?;
turn:= 1 s c2i=1;
noncrihca} 2

L

rocess 2

So\u\\-ion

Lab #1

* Basic synchronization
* http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

* Start early!!!

http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

Questions?

