
Synchronization:
Implementing Barriers

Promises + Futures
Chris Rossbach

CS378H

Today

• Questions?

• Administrivia
• Lab 2 due sooner than you’d like

• Material for the day
• Barrier implementation

• Promises & Futures

• Acknowledgements
• Thanks to Gadi Taubenfield: I borrowed from some of his slides on barriers

Faux Quiz (answer any N, 5 min)

• How are promises and futures related? Since there is disagreement
on the nomenclature, don’t worry about which is which—just
describe what the different objects are and how they function.

Barriers

Review: Barrier Basics

5

B
ar
ri
e
r

P1P1

P2P2

P3P3

P4P4

B
ar
ri
e
r

P1P1

P2P2

P3P3

P4P4

P1P1

P2P2

P3P3

P4P4

time

B
ar
ri
e
r

four threads
approach the
barrier

all except
P4 arrive

Once all
arrive, they
continue

➢ Coordination mechanism

➢ participants wait until all reach same point.

➢ Once all reach it, all can pass.

➢ Workhorse of BSP programming models

Review: Barrier API

Type pthread_barrier_t

int pthread_barrier_init(pthread_barrier_t *barrier,

const pthread_barrierattr_t *attr,

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

Wait();

Init/Destroy();

Barriers: Goals

8

Desirable barrier properties:

• Low shared memory space complexity

• Low contention on shared objects

• Low shared memory references per process

• No need for shared memory initialization

• Symmetric: same amount of work for all

• Algorithm simplicity

• Simple basic primitive

• Minimal propagation time

• Reusability of the barrier (must!)

Let’s build a Barrier
(woot!)

class Barrier {

initialize() {

}

wait() {

}

};

10

• Conditions

• Semaphores

• Atomic Bit

• Atomic Register

• Fetch-and-increment register

• Test and set bits

• Read-Modify-Write register

Barrier Building Blocks

Barrier with Semaphores

Barrier using Semaphores
Algorithm for N threads

12

shared sem_t arrival = 1; // sem_init(&arrival, NULL, 1)

sem_t departure = 0; // sem_init(&departure, NULL, 0)

atomic int counter = 0; // (gcc intrinsics are verbose)

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else

sem_post(departure);

sem_wait(departure);

if(--counter > 0)

sem_post(departure)

else

sem_post(arrival)

1

2

3

4

5

6

7

8

9

10

First N-1 threads post on
arrival, wait on departure

Phase I

Phase II

Nth thread post on
departure, releasing
threads into phase II

(what is value of arrival?)

First N-1 threads post on
departure, last posts arrival

Semaphore Barrier Action Zone
N == 3

13

shared sem_t arrival = 1;

sem_t departure = 0;

atomic int counter = 0;

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else

sem_post(departure);

sem_wait(departure);

if(--counter > 0)

sem_post(departure)

else

sem_post(arrival)

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else

sem_post(departure);

sem_wait(departure);

if(--counter > 0)

sem_post(departure)

else

sem_post(arrival)

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else

sem_post(departure);

sem_wait(departure);

if(--counter > 0)

sem_post(departure)

else

sem_post(arrival)

CPU 0 CPU 1 CPU 2

1

0

01

0

0

1

23

0

110

0

0

1

1

1

2

Do we need two
phases?

Still correct if
counter is not

atomic?

// why two phases:

for(…) {

do_something();

wait();

}

Barrier using Semaphores
Properties

• Pros:
• Very Simple

• Space complexity O(1)

• Symmetric

• Cons:
• Required a strong object

• Requires some central manager

• High contention on the semaphores

• Propagation delay O(n)

• Pros:

• Cons:

Barriers based on counters

16

Fetch-and-Increment register

• A shared register that supports a F&I operation:

• Input: register r

• Atomic operation:

• r is incremented by 1

• the old value of r is returned

Counter Barrier Ingredients

function fetch-and-increment (r : register)

orig_r := r;

r:= r + 1;

return (orig_r);

end-function

Await

• For brevity, we use the await macro

• Not an operation of an object

• This is just “spinning”

macro await (condition : boolean condition)

repeat

cond = eval(condition);

until (cond)

end-macro

17

1 local.go := go

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 go := 1 - go

6 else await(local.go ≠ go)

shared counter: fetch and increment reg. – {0,..n}, initially = 0

go: atomic bit, initial value does not matter

local local.go: a bit, initial value does not matter

local.counter: register

Simple Barrier Using an Atomic Counter

SM

Simple Barrier Using an Atomic Counter
Run for n=2 Threads

? ?counter go

1 local.go := go

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 go := 1 - go

6 else await(local.go ≠ go)

P1
?local.go

?local.counter
P2

?local.go

?local.counter

P1

19

P1P2

SM0 0counter go

?

1 local.go := go

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 go := 1 - go

6 else await(local.go ≠ go)

0

120 1

local.go

P1 Busy wait

?0local.counter
P2

?0local.go

?1local.counter

0+1≠21+1=2

Simple Barrier Using an Atomic Counter
Run for n=2 Threads

Pros/Cons?

• There is high memory contention on go bit

• Reducing the contention:

• Replace the go bit with n bits:
go[1],…,go[n]

• Process pi may spin only on the bit go[i]

shared counter: fetch and increment reg. – {0,..n}, initially = 0

go[1..n]: array of atomic bits, initial values are immaterial

local local.go: a bit, initial value is immaterial

local.counter: register

A Local Spinning Counter Barrier
Program of a Thread i

1 local.go := go[i]

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 for j=1 to n { go[j] := 1 – go[j] }

6 else await(local.go ≠ go[i])

SM

A Local Spinning Counter Barrier
Example Run for n=3 Threads

21

0 ?counter go ? ?

1 local.go := go[i]

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 for j=1 to n { go[j] := 1 – go[j] }

6 else await(local.go ≠ go[i])

P1
?loc.go

?loc.counter
P2

?loc.go

?loc.counter
P3

?loc.go

?loc.counter

0 0 0

P2

0

1

0

0+1≠3

P1

P1 Busy wait

0

2

1

1+1≠3

P1,P2 Busy wait

P3

0

3

2

2+1=3

0 1 1 1

Pros/Cons?

Does this

actually reduce

contention?

Comparison of counter-based Barriers

Simple Barrier Simple Barrier with go array

22

• Pros:

• Cons:

• Pros:

• Cons:

Simple Barrier Simple Barrier with go array

23

• Pros:

• Very Simple

• Shared memory: O(log n) bits

• Takes O(1) until last waiting p is
awaken

• Cons:

• High contention on the go bit

• Contention on the counter
register (*)

• Pros:

• Low contention on the go array

• In some models:

• spinning is done on local
memory

• remote mem. ref.: O(1)

• Cons:

• Shared memory: O(n)

• Still contention on the counter
register (*)

• Takes O(n) until last waiting p is
awaken

Comparison of counter-based Barriers

Tree Barriers

A Tree-based Barrier

25

• Threads are organized in a binary tree

• Each node is owned by a predetermined thread

• Each thread waits until its 2 children arrive

• combines results

• passes them on to its parent

• Root learns that its 2 children have arrived→tells children they can go

• The signal propagates down the tree until all the threads get the message

7654

32

1

26

1098 11 12 13 14 15

7654

32

1

Assume 𝑛

= 2𝑘 − 1

arrive

go

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2𝑖
+1

𝑖

2𝑖

A Tree-based Barrier: indexing

Indexing starts from 2
Root → 1, doesn’t need wait objects

Step 1: label numerically
with depth-first traveral

A Tree-based Barrier
program of thread i

27

shared arrive[2..n]: array of atomic bits, initial values = 0

go[2..n]: array of atomic bits, initial values = 0

1 if i=1 then // root

2 await(arrive[2] = 1); arrive[2] := 0

3 await(arrive[3] = 1); arrive[3] := 0

4 go[2] = 1; go[3] = 1

5 else if i ≤ (n-1)/2 then // internal node

6 await(arrive[2i] = 1); arrive[2i] := 0

7 await(arrive[2i+1] = 1); arrive[2i+1] := 0

8 arrive[i] := 1

9 await(go[i] = 1); go[i] := 0

10 go[2i] = 1; go[2i+1] := 1

11 else // leaf

12 arrive[i] := 1

13 await(go[i] = 1); go[i] := 0 fi

14 fi

Root

Internal

Leaf

Root:
• Wait for arriving children
• Tell children to go

Internal:
• Wait for arriving children
• Tell parents about it
• Wait for parent go signal
• Tell children to go

Child:
• arrive
• Wait for parent go signal

7654

32

1

A Tree-based Barrier
Example Run for n=7 threads

28

arrive

go

2 3 4 5 6 7

11 1

7654

32

1

7654

32

1

7654

32

1

7654

32

1

7654

32

1

Waiting for
p4 to arrive

Waiting for
go[5]

Waiting for
go[4]

7654

32

1

Waiting for
go[2]

0 0

7654

32

1

1 0 0 1

7654

32

1

Waiting for
go[6]

7654

32

1

Waiting for
p3 to arrive

arrive[2]=1

?

P2 zeros

arrive[4,5]

Arrive[2]=1

?

7654

32

1

7654

32

1

Waiting for
go[7]

7654

32

1

P3 zeros

arrive[6,7]

1 0 01 0 0 1

P1 zeros

arrive[2]

0 0 0 10 0 0 1 10 0 0 0 00 1 0 0 0 0

Waiting for
go[3]

7654

32

1

P1 zeros

arrive[3]

0 0 0 0 0 0

7654

32

1

0 0 0 0 0 0

1 1

0 0 0 0 0 0

1 1 1 1 1 1

Finished!!

At this point

all non-root

threads in some

await(go) case

29

• Pros:
• Low shared memory contention

• No wait object is shared by more than 2 processes
• Good for larger n

• Fast – information from the root propagates after log(n) steps
• Can use only atomic primitives (no special objects)
• On some models:

• each process spins on a locally accessible bit
• # (remote memory ref.) = O(1) per process

• Cons:
• Shared memory space complexity – O(n)
• Asymmetric –all the processes don’t the same amount of work
• Corner cases for n != 2^k-1

Tree Barrier Tradeoffs

Butterfly Barrier

• When would this be preferable?

Hardware Supported Barriers

CPU

GPU

• When would this be useful?

Barriers Summary

32

Seen:

• Semaphore-based barrier

• Simple barrier
• Based on atomic fetch-and-increment counter

• Local spinning barrier
• Based on atomic fetch-and-increment counter and go array

• Tree-based barrier

Not seen:

• Test-and-Set barriers
• Based on test-and-test-and-set objects
• One version without memory initialization

• See-Saw barrier

• Book has condition barriers

Asynchronous Programming
Events, Promises, and Futures

Programming Models for Concurrency

• Concrete model:
• CPU(s) execute instructions sequentially

• Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Message passing vs shared memory
• Preemption vs Non-preemption

• Dimensions/techniques not always orthogonal

Futures & Promises

• Values that will eventually become available

• Time-dependent states:
• Completed/determined

• Computation complete, value concrete

• Incomplete/undetermined
• Computation not complete yet

• Construct (future X)
• immediately returns value

• concurrently executes X

Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)

• Where (on what thread) does the lambda expression run?

Futures and Promises:
Why two kinds of objects?

Promise: “thing to be done”

Future: encapsulation
(something to give caller)

Promise to do something in the future

Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception
Language Promise Future

Algol Thunk Address of async
result

Java CompletableFuture<T> Future<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::future

Mnemonic:
Promise to do something

Make a promise for the future

Putting Futures in Context
My unvarnished opinion

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Programming Model between:

• Event-based programming

• Thread-based programming Events vs. Threads!

GUI Programming

GUI Programming

GUI programming
void OnMove() { … }
void OnSize() { … }

void OnPaint() { … }

Over 1000 last
time I checked!

GUI Programming Distilled

Pros

• Simple imperative programming

• Good fit for uni-processor

Cons

• Awkward/verbose

• Obscures available parallelism

GUI Programming Distilled
How can we
parallelize

this?

Parallel GUI Implementation 1

Parallel GUI Implementation 1

Pros:
• Encapsulates parallel work
Cons:
• Obliterates original code structure
• How to assign handlers→CPUs?
• Load balance?!?
• Utilization

DoThisProc

DoThatProc

OtherThing

Pros/cons?

Parallel GUI Implementation 2
Pros:
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Extremely difficult to solve
without changing the whole

programming model…so

change it

Pros/cons?

Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle

• Shared state requires locks →
• Priority inversion

• Deadlock

• Incorrect synchronization

• …

• Events: restructure programming model to have no threads!

Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

• Basic primitives
• create_event_queue(handler) → event_q

• enqueue_event(event_q, event-object)
• Invokes handler (eventually)

• Scheduler decides which event to execute next
• E.g. based on priority, CPU usage, etc.

Event-based programming

Runtime

Is the problem solved?

Another Event-based Program

Blocks!Burns CPU!Uses Other Handlers!
(call OnPaint?)

No problem!
Just use more events/handlers, right?

Continuations, BTW

Stack-Ripping

Stack-based state out-of-scope!
Requests must carry state

Threads vs Events

• Thread Pros
• Overlap I/O and computation

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level
Futures: the
sweet spot?

Threads vs Events

• Thread Pros
• Overlap I/O and computation

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level
Futures: the
sweet spot?

Thread Pool Implementation

Cool project
idea: build a
thread pool!

Thread Pool Implementation

ThreadPool Implementation

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

• Event-based programming

• Thread-based programming

Currently: 2nd renaissance IMHO

Questions?

