Transactions Transactional Memory

Chris Rossbach

cs378h

Outline for Today

- Questions?
- Administrivia
 - Lab 1 grades
 - Lab 2 due: Go go go!
 - Next lab: GPUs!
- Agenda
 - Consistency Overview
 - Transactions
 - Transactional Memory
- Acks: Yoav Cohen for some STM slides

Faux Quiz questions

- How are promises and futures related? Since there is disagreement on the nomenclature, don't worry about which is which—just describe what the different objects are and how they function.
- How does HTM resemble or differ from Load-linked Stored-Conditional?
- What are some pros and cons of HTM vs STM?
- What is Open Nesting? Closed Nesting? Flat Nesting?
- How does 2PL differ from 2PC?
- Define ACID properties: which, if any, of these properties does TM relax?

Sequential Consistency

- Result of *any* execution is same as if all operations execute on a uniprocessor
- Operations on each processor are *totally ordered* in the sequence and respect program order for each processor

- Why do modern CPUs not implement SC?
- Requirements: *program order, write atomicity*

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2 Flag1 = 1 Flag2 = 1 if (Flag2 == 0) if (Flag1 == 0) enter CS enter CS

Can both P1 and P2 wind up in the critical section at the same time?

Do we need Sequential Consistency?

Initially, A = B = 0

P2 A = 1if (A == 1) B = 1

Key issue:

- P2 and P3 may not see writes to A, B in the same order ٠
- Implication: P3 can see B == 1, but A == 0 which is incorrect ٠
- Wait! Why would this happen? ٠

P1

Write Buffers

- P_0 write \rightarrow queue op in write buffer, proceed
- P 0 read \rightarrow look in write buffer,
- $P_(x = 0)$ read \rightarrow old value: write buffer hasn't drained

Relaxed Consistency Models

- **Program Order** relaxations (different locations)
 - $W \rightarrow R$; $W \rightarrow W$; $R \rightarrow R/W$
- Write Atomicity relaxations
 - Read returns another processor's V
- Requirement: synchronization pri
 - Fence, barrier instructions etc

Relaxation	$W \rightarrow R$	$W \rightarrow W$	$R \rightarrow RW$	Read Others'	Read Own	Safety net
	Order	Order	Order	Write Early	Write Early	
SC [16]					\checkmark	
IBM 370 [14]	\checkmark					serialization instructions
TSO [20]	\checkmark				\checkmark	RMW
PC [13, 12]	\checkmark			\checkmark	\checkmark	RMW
PSO [20]		\checkmark			\checkmark	RMW, STBAR
WO [5]	\checkmark	\checkmark	\checkmark		\checkmark	synchronization
RCsc [13, 12]		\checkmark	\checkmark		\checkmark	release, acquire, nsync,
						RMW
RCpc [13, 12]	\sim	\sim	\checkmark	\sim	\checkmark	release, acquire, nsync,
						RMW
Alpha [19]			\checkmark		\checkmark	MB, WMB
RMO [21]	\sim	\sim	\sim		\checkmark	various MEMBAR's
PowerPC [17, 4]	\checkmark	\checkmark	\checkmark	\sim	\checkmark	SYNC

Transactions and Transactional Memory

- 3 Programming Model Dimensions:
 - How to specify computation
 - How to specify communication
 - How to specify coordination/control transfer
- Threads, Futures, Events etc.
 - Mostly about how to express control
- Transactions
 - Mostly about how to deal with shared state

Transactions

Core issue: multiple updates

Canonical examples:

```
move(file, old-dir, new-dir) { create(file, dir) {
    delete(file, old-dir)
    add(file, new-dir)
} create(file, dir) {
    alloc-disk(file, header, data)
    write(header)
    add (file, dir)
    }
}
```

Problem: crash in the middle

- Modified data in memory/caches
- Even if in-memory data is durable, multiple disk updates

Problem: Unreliability

- Want reliable update of two resources (e.g. in two disks, machines...)
 - Move file from A to B
 - Create file (update free list, inode, data block)
 - Bank transfer (move \$100 from my account to VISA account)
 - Move directory from server A to B
- Machines can crash, messages can be lost

Can we use messages? E.g. with retries over unreliable medium to synchronize with guarantees?

No.

Not even if all messages get through!

General's paradox

- Two generals on separate mountains
- Can only communicate via messengers
- Messengers can get lost or captured
- Need to coordinate attack
 - attack at same time good, different times bad!

General A → General B: let's attack at dawn General B → General A: OK, dawn. General A → General B: Check. Dawn it is. General B → General A: Alright already—dawn.

- Even if all messages delivered, can't assumemaybe some message didn't get through.
- No solution: one of the few CS impossibility results.

Transactions can help (but can't solve it)

- Solves weaker problem:
 - 2 things will either happen or not
 - not necessarily at the same time
- Core idea: one entity has the power to say yes or no for all
 - Local txn: one final update (TxEND) irrevocably triggers several
 - Distributed transactions
 - 2 phase commit
 - One machine has final say for all machines
 - Other machines bound to comply

What is the role of synchronization here?

Transactional Programming Model

begin transaction;

x = read("x-values",); y = read("y-values",); z = x+y; write("z-values", z,); commit transaction;

What has changed from previous programming models?

ACID Semantics

- Atomic all up What are they?
- Consistent sy A
- Isolated no vi C
- Durable once |
- Are subsets eve D
 - When would ACI be useful?
 - ACD?
 - Isolation only?

oss updates

begin transaction;

x = read("x-values",); y = read("y-values",); z = x+y; write("z-values", z,); commit transaction;

Transactions: Implementation

- Key idea: turn multiple updates into a single one
- Many implementation Techniques
 - Two-phase locking
 - Timestamp ordering
 - Optimistic Concurrency Control
 - Journaling
 - 2,3-phase commit
 - Speculation-rollback
 - Single global lock
 - Compensating transactions

Key problems:

- output commit
- synchronization

Implementing Transactions

BEGIN_TXN(); x = read("x-values",); y = read("y-values",); z = x+y; write("z-values", z,); COMMIT_TXN(); BEGIN_TXN() {
 LOCK(single-global-lock);

COMMIT_TXN() {
 UNLOCK(single-global-lock);
}

Pros/Cons?

Two-phase locking

- Phase 1: only acquire locks in cl
- Phase 2: unlock at commit
- avoids deadlock

```
BEGIN_TXN();
Lock x, y
x = x + 1
y = y - 1
unlock y, x
COMMIT_TXN();
```

B commits changes that depend on A's updates

A: grab locks A: modify x, y, A: unlock y, x B: grab locks B: update x, y B: unlock y, x B: COMMIT A: CRASH BEGIN_TXN() {
 rwset = Union(rset, wset);
 rwset = sort(rwset);
 forall x in rwset
 LOCK(x);
}

COMMIT_TXN() {
 forall x in rwset
 UNLOCK(x);

Pros/Cons? What happens on failures?

Two-phase commit

- N participants agree or don't (atomicity)
- Phase 1: everyone "prepares"
- Phase 2: Master decides and tells everyone to actually commit
- What if the master crashes in the middle?

2PC: Phase 1

- 1. Coordinator sends REQUEST to all participants
- 2. Participants receive request and
- 3. Execute locally
- 4. Write VOTE_COMMIT or VOTE_ABORT to local log
- 5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: $C \rightarrow S1$: delete foo from /, $C \rightarrow S2$: add foo to /

Failure case:	Success case:
S1 writes rm /foo, VOTE COMMIT to log	S1 writes rm /foo, VOTE COMMIT to log
S1 sends VOTE COMMIT	S1 sends VOTE COMMIT
S2 decides permission problem	S2 writes add foo to /
S2 writes/sends VOTE_ABORT	S2 writes/sends VOTE_COMMIT
_	—

2PC: Phase 2

- Case 1: receive VOTE_ABORT or timeout
 - Write GLOBAL_ABORT to log
 - send GLOBAL_ABORT to participants
- Case 2: receive VOTE_COMMIT from all
 - Write GLOBAL_COMMIT to log
 - send GLOBAL_COMMIT to participants
- Participants receive decision, write GLOBAL_* to log

2PC corner cases

<u>Phase 1</u>

- 1. Coordinator sends REQUEST to all participants
- X 2. Participants receive request and
 - 3. Execute locally
 - 4. Write VOTE_COMMIT or VOTE_ABORT to local log
 - 5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

<u>Phase 2</u>

- Y Case 1: receive VOTE_ABORT or timeout
 - Write GLOBAL_ABORT to log
 - send GLOBAL_ABORT to participants
 - Case 2: receive VOTE_COMMIT from all
 - Write GLOBAL_COMMIT to log
 - send GLOBAL_COMMIT to participants
- Z Participants recv decision, write GLOBAL_* to log

- What if participant crashes at X?
- Coordinator crashes at Y?
- Participant crashes at Z?
- Coordinator crashes at W?

2PC limitation(s)

- Coordinator crashes at W, never wakes up
- All nodes block forever!
- Can participants ask each other what happened?
- 2PC: always has risk of indefinite blocking
- Solution: (yes) 3 phase commit!
 - Reliable replacement of crashed "leader"
 - 2PC often good enough in practice

Nested Transactions

- Composition of transactions
 - E.g. interact with multiple organizations, each supporting txns
 - Travel agency: canonical example
- Nesting: view transaction as collection of:
 - actions on unprotected objects
 - protected actions that my be undone or redone
 - real actions that may be deferred but not undone
 - nested transactions that may be undone
- Nested transaction returns name and parameters of compensating transaction
- Parent includes compensating transaction in log of parent transaction
- Invoke compensating transactions from log if parent transaction aborted
- Consistent, atomic, durable, but not isolated

Transactional Memory: ACI

Transactional Memory :

- Make multiple memory accesses atomic
- All or nothing Atomicity
- No interference Isolation
- Correctness Consistency
- No durability, for obvious reasons
- Keywords : Commit, Abort, Speculative access, Checkpoint

```
remove(list, x) {
   lock(list);
   pos = find(list, x);
   if(pos)
      erase(list, pos);
   unlock(list);
}
```

```
remove(list, x) {
   TXBEGIN();
   pos = find(list, x);
   if(pos)
      erase(list, pos);
   TXEND();
}
```

The **Real** Goal

```
remove(list, x) {
  atomic {
    pos = find(list, x);
    if(pos)
        erase(list, pos);
    }
}
```

- Transactions: super-awesome
- Transactional Memory: also super-awesome, but:
- Transactions != TM
- TM is an *implementation technique*
- Often presented as programmer abstraction
- Remember Optimistic Concurrency Control

```
ist, x)
remov
    .k(list);
      = find(list, x)
  f()
         re(list, pos);
     er
 unlock ist);
emove(list,
  TXBEGIN();
  pos = find(lis
                    x);
   f(pos)
     erase(list, po
     ND();
```

TM Primer

Key Ideas:

- Critical sections execute concurrently
- Conflicts are detected dynamically
 Conflict
- If conflict serializability is violated, rollback

Key Abstractions:

- Primitives
 - xbegin, xend, xabort
 - Conflict $\emptyset \neq \{W_a\} \cap \{R_b \cup W_b\}$
- Contention Manager
 - Need flexible policy

TM basics: example

Data Versioning

- Eager Versioning
- Lazy Versioning

Conflict Detection and Resolution

- Pessimistic Concurrency Control
- Optimistic Concurrency Control

Conflict Detection Granularity

- Object Granularity
- Word Granularity
- Cache line Granularity

TM Design Alternatives

- Hardware (HTM)
 - Caches track RW set, HW speculation/checkpoint
- Software (STM)
 - Instrument RW
 - Inherit TX Object

Hardware Transactional Memory

- Idea: Track read / write sets in HW
 - commit / rollback in hardware as well
- Cache coherent hardware already manages much of this
- Basic idea: cache == speculative storage
 - HTM ~= smarter cache
- Can support many different TM paradigms
 - Eager, lazy
 - optimistic, pessimistic

Hardware TM

"Small" modification to cache

Key ideas

- Checkpoint architectural state
- Caches: 'versioning' for memory
- Change coherence protocol
- Conflict detection in hardware
- 'Commit' transactions if no conflict
- 'Abort' on conflict (or special cond)
- 'Retry' aborted transaction

Case Study: SUN Rock

- Core Fou uCore Fou uCore Fou uCore Fou uCore Fou uCore Fou uCore L2\$ L2\$ Core L2\$ L2\$ Core L2\$ L2\$ Core McU McU
- Major challenge: diagnosing cause of Transaction aborts
 - Necessary for intelligent scheduling of transactions
 - Also for debugging code
 - debugging the processor architecture / µarchitecture
- Many unexpected causes of aborts
- Rock v1 diagnostics unable to distinguish distinct failure modes

Mauk	Name	Description and example cause
0±001	REOG	Enogenous - Intervening code has run: con register contents are invalid.
0±002	C08	Caherunce - Conflicting memory operation.
0±004	TCC	Trap Instruction - A trap instruction evaluates to "taken".
0=008	INST	Unsupported Instruction - Instruction not supported mails transactions.
0=010	PREC	Precise Exception - Execution generated a precise exception.
0±020	ASYNC	Agynt - Received an asynchronous interrupt.
0±040	SIZ	Sine - Transaction write set enceeded the size of the store queue.
0±080	110	Load - Cache line in read set evicted by transaction.
0x100	ST	Stere - Deta TLB miss on a store.
0x200	CTI	Cantrol transfer - Magnedicted branch.
02400	FP	Fleating point - Divide instruction.
0=900	UCTI	Unresolved cambral transfer - branch executed without resolving load on which it depends

while 1. ope register: bit definitions and example failure reasons that set them.

A Simple STM

```
pthread mutex t g global lock;

Begin tx() {

     pthread mutex lock(g global lock);
- }
⊟end tx() {
     pthread mutex unlock(g global lock);
 }
⊟abort() {
```

// can't happen

```
remove(list, x) {
    begin_tx();
    pos = find(list, x);
    if(pos)
        erase(list, pos);
    end_tx();
}
```

Is this Transactional Memory?

TM is a deep area: consider it for your project!

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:

- Writeⁱ(L,v) thread i writes v to L
- Readⁱ(L,v) thread i reads v from L
- LLⁱ(L,v) thread i reads v from L, marks L read by I
- SCⁱ(L,v) thread i writes v to L
 - returns success if L is marked as read by i.
 - Otherwise it returns *failure*.

Threads: Rec Objects

class Rec {

```
boolean stable = false;
boolean, int status= (false,0); //can have two values...
boolean allWritten = false;
int version = 0;
int size = 0;
int size = 0;
int locs[] = {null};
int oldValues[] = {null};
```

Each thread → instance of Rec class (short for record).

Rec instance defines current transaction on thread

Memory: STM Object

public class STM {
 int memory[];
 Rec ownerships[];

public boolean, int[] startTranscation(Rec rec, int[] dataSet){...};

private void initialize(Rec rec, int[] dataSet)
private void transaction(Rec rec, int version, boolean isInitiator) {...};
private void acquireOwnerships(Rec rec, int version) {...};
private void releaseOwnershipd(Rec rec, int version) {...};
private void agreeOldValues(Rec rec, int version) {...};
private void updateMemory(Rec rec, int version, int[] newvalues) {...};

Flow of a transaction

private void transaction(Rec rec, int version, boolean isInitiator) { acquireOwnerships(rec, version); // try to own locations

> (status, failedLoc) = LL(rec.status); if (status == null) { // success in acquireOwnerships if (versoin != rec.version) return; SC(rec.status, (true,0));

(status, failedLoc) = LL(rec.status);

f (status == true) {	<pre>// execute the transaction</pre>
agreeOldValues(re	c, version);
<pre>int[] newVals = cale</pre>	cNewVals(rec.oldvalues);
updateMemory(ree	c, version);
releaseOwnerships	s(rec, version);

// failed in acquireOwnerships else { releaseOwnerships(rec, version); if (isInitiator) { Rec failedTrans = ownerships[failedLoc]; if (failedTrans == null) return; else {

// execute the transaction that owns the location you wan

int failedVer = failedTrans.version;

if (failedTrans.stable) transaction(failedTrans, failedVer, false);

rec – The thread that executes this transaction. version – Serial number of the transaction. isInitiator - Am I the initiating thread or the helper?

> Another thread own the locations I need and it hasn't finished its transaction yet.

So I go out and execute its transaction in order to help it.

```
private void acquireOwnerships(Rec rec, int version) {
       for (int j=1; j<=rec.size; j++) {
               while (true) do {
                       int loc = locs[j];
                       if LL(rec.status) != null return; // transaction completed by some other thread
                       Rec owner = LL(ownerships[loc]);
                       if (rec.version != version) return;
                       if (owner == rec) break; // location is already mine
                       if (owner == null) {
                                              // acquire location
                               if (SC(rec.status, (null, 0))) {
                                 if ( SC(ownerships[loc], rec) ) {
                                   break;
                                                                                                                   If I'm not the last one to
                                                                                                                  read this field, it means that
                                                                                                                   another thread is trying to
                       else {// location is taken by someone else
                                                                                                                   execute this transaction.
                               if (SC(rec.status, (false, j))) return;
                                                                                                                   Try to loop until I succeed
                                                                                                                  or until the other thread
                                                                                                                   completes the transaction
```


HTM vs. STM

Hardware	Software
Fast (due to hardware operations)	Slow (due to software validation/commit)
Light code instrumentation	Heavy code instrumentation
HW buffers keep amount of metadata low	Lots of metadata
No need of a middleware	Runtime library needed
Only short transactions allowed (why?)	Large transactions possible

How would you get the best of both?

Hybrid-TM

- Best-effort HTM (use STM for long trx)
- Possible conflicts between HW,SW and HW-SW Trx
 - What kind of conflicts do SW-Trx care about?
 - What kind of conflicts do HW-Trx care about?
- Some initial proposals:
 - HyTM: uses an ownership record per memory location (overhead?)
 - PhTM: HTM-only or (heavy) STM-only, low instrumentation

Questions?