
Transactions
Transactional Memory

Chris Rossbach

cs378h

Outline for Today
• Questions?

• Administrivia
• Lab 1 grades

• Lab 2 due: Go go go!

• Next lab: GPUs!

• Agenda
• Consistency Overview

• Transactions

• Transactional Memory

• Acks: Yoav Cohen for some STM slides

Faux Quiz questions

• How are promises and futures related? Since there is disagreement
on the nomenclature, don’t worry about which is which—just
describe what the different objects are and how they function.

• How does HTM resemble or differ from Load-linked Stored-
Conditional?

• What are some pros and cons of HTM vs STM?

• What is Open Nesting? Closed Nesting? Flat Nesting?

• How does 2PL differ from 2PC?

• Define ACID properties: which, if any, of these properties does TM
relax?

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

4

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order

• Read returns value of last write

• How is this different from coherence?

• Why do modern CPUs not implement SC?

• Requirements: program order, write atomicity

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS

5

Can both P1 and P2 wind up in the
critical section at the same time?

Do we need Sequential Consistency?

Initially, A = B = 0

P1 P2 P3

A = 1
if (A == 1)

B = 1
if (B == 1)

register1 = A

6

Key issue:
• P2 and P3 may not see writes to A, B in the same order
• Implication: P3 can see B == 1, but A == 0 which is incorrect
• Wait! Why would this happen?

Write Buffers
• P_0 write → queue op in write buffer, proceed
• P_0 read → look in write buffer,
• P_(x != 0) read → old value: write buffer hasn’t drained

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

7

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)

write(header)

add (file, dir)

}

Problem: crash in the middle
• Modified data in memory/caches

• Even if in-memory data is durable, multiple disk updates

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B

• Create file (update free list, inode, data block)

• Bank transfer (move $100 from my account to VISA account)

• Move directory from server A to B

• Machines can crash, messages can be lost Can we use messages? E.g.
with retries over unreliable
medium to synchronize with
guarantees?

No.
Not even if all messages get
through!

General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!

General A → General B: let’s attack at dawn
General B → General A: OK, dawn.
General A → General B: Check. Dawn it is.
General B → General A: Alright already—dawn.

…

• Even if all messages
delivered, can’t assume–
maybe some message
didn’t get through.

• No solution: one of the
few CS impossibility
results.

Transactions can help
(but can’t solve it)

• Solves weaker problem:
• 2 things will either happen or not

• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several

• Distributed transactions
• 2 phase commit

• One machine has final say for all machines

• Other machines bound to comply

What is the role of
synchronization here?

Transactional Programming Model

begin transaction;

x = read(“x-values”,);

y = read(“y-values”,);

z = x+y;

write(“z-values”, z,);

commit transaction;

What has changed from
previous programming
models?

ACID Semantics

• Atomic – all updates happen or none do

• Consistent – system invariants maintained across updates

• Isolated – no visibility into partial updates

• Durable – once done, stays done

• Are subsets ever appropriate?
• When would ACI be useful?

• ACD?

• Isolation only?

What are they?
• A
• C
• I
• D begin transaction;

x = read(“x-values”,);

y = read(“y-values”,);

z = x+y;

write(“z-values”, z,);

commit transaction;

Transactions: Implementation

• Key idea: turn multiple updates into a single one

• Many implementation Techniques
• Two-phase locking

• Timestamp ordering

• Optimistic Concurrency Control

• Journaling

• 2,3-phase commit

• Speculation-rollback

• Single global lock

• Compensating transactions

Key problems:
• output commit
• synchronization

Implementing Transactions

BEGIN_TXN();

x = read(“x-values”,);

y = read(“y-values”,);

z = x+y;

write(“z-values”, z,);

COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
LOCK(single-global-lock);

}

COMMIT_TXN() {
UNLOCK(single-global-lock);

}

Pros/Cons?

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH

What happens on failures?

B commits
changes that
depend on A’s
updates

Two-phase commit

• N participants agree or don’t (atomicity)

• Phase 1: everyone “prepares”

• Phase 2: Master decides and tells everyone to actually commit

• What if the master crashes in the middle?

2PC: Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator
Example—move: C→S1: delete foo from /, C→S2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT

2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log

2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout

• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all

• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W

2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?

• 2PC: always has risk of indefinite blocking

• Solution: (yes) 3 phase commit!
• Reliable replacement of crashed “leader”

• 2PC often good enough in practice

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

• Nested transaction returns name and parameters of compensating transaction

• Parent includes compensating transaction in log of parent transaction

• Invoke compensating transactions from log if parent transaction aborted

• Consistent, atomic, durable, but not isolated

Transactional Memory: ACI

Transactional Memory :

• Make multiple memory accesses atomic

• All or nothing – Atomicity

• No interference – Isolation

• Correctness – Consistency

• No durability, for obvious reasons

• Keywords : Commit, Abort, Speculative
access,

Checkpoint

remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);

if(pos)

erase(list, pos);

TXEND();

}

The Real Goal remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);

if(pos)

erase(list, pos);

TXEND();

}

remove(list, x) {

atomic {

pos = find(list, x);

if(pos)

erase(list, pos);

}

}

• Transactions: super-awesome
• Transactional Memory: also super-awesome, but:
• Transactions != TM
• TM is an implementation technique
• Often presented as programmer abstraction
• Remember Optimistic Concurrency Control

Key Ideas:

 Critical sections
execute concurrently

 Conflicts are
detected dynamically

 If conflict
serializability is
violated, rollback

Key Abstractions:

• Primitives
• xbegin, xend, xabort

• Conflict
• Φ != {W_A} {W_B U W_R}

• Contention Manager
• Need flexible policy

TM Primer

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set

R{ }

W{}
A,B,C

PC: 7

Working Set

R{ }

W{ }
A,B

C

CONFLICT:

C is in the read set of

cpu0, and in the write

set of cpu1

Assume contention

manager decides cpu1

wins:

cpu0 rolls back

cpu1 commits

PC: 0

Working Set

R{}

W{}

PC: 8

Working Set

R{}

W{}

TM basics: example

TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

Conflict Detection and Resolution
• Pessimistic Concurrency Control
• Optimistic Concurrency Control

Conflict Detection Granularity
• Object Granularity
• Word Granularity
• Cache line Granularity

TM Design Alternatives
• Hardware (HTM)

• Caches track RW set, HW speculation/checkpoint

• Software (STM)
• Instrument RW

• Inherit TX Object

Hardware

Memory

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Hardware

Memory

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

STM

Hardware Transactional Memory

• Idea: Track read / write sets in HW
• commit / rollback in hardware as well

• Cache coherent hardware already manages much of this

• Basic idea: cache == speculative storage
• HTM ~= smarter cache

• Can support many different TM paradigms
• Eager, lazy

• optimistic, pessimistic

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

D
at

a

L1 $

Core

Regular
Accesses

Transactional $L1 $

Ta
g

D
at

a

Ta
g

A
d

d
l.

Ta
g

O
ld

 D
at

a

N
ew

 D
at

a

Transactional
Accesses

L1 $

Key ideas

• Checkpoint architectural state

• Caches: ‘versioning’ for memory

• Change coherence protocol

• Conflict detection in hardware

• ‘Commit’ transactions if no conflict

• ‘Abort’ on conflict (or special cond)

• ‘Retry’ aborted transaction

Pros/Cons?

Case Study: SUN Rock

• Major challenge: diagnosing cause of Transaction aborts
• Necessary for intelligent scheduling of transactions

• Also for debugging code

• debugging the processor architecture / µarchitecture

• Many unexpected causes of aborts

• Rock v1 diagnostics unable to distinguish distinct failure modes

A Simple STM

remove(list, x) {

begin_tx();

pos = find(list, x);

if(pos)

erase(list, pos);

end_tx();

}

Is this
Transactional

Memory?

TM is a deep area:
consider it for your

project!

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:
▪ Writei(L,v) - thread i writes v to L

▪ Readi(L,v) - thread i reads v from L

▪ LLi(L,v) - thread i reads v from L, marks L read by I

▪ SCi(L,v) - thread i writes v to L
▪ returns success if L is marked as read by i.

▪ Otherwise it returns failure.

Memory

STM Design Overview

Memory

Ownerships

status

version

size

locs[]

oldValues[]

Rec1

status

version

size

locs[]

oldValues[]

Rec2

status

version

size

locs[]

oldValues[]

Recn

This is the

shared memory,

(STM Object)

Pointers to

threads

(Rec

Objects)

Threads: Rec Objects

class Rec {

boolean stable = false;

boolean, int status= (false,0); //can have two values…

boolean allWritten = false;

int version = 0;

int size = 0;

int locs[] = {null};

int oldValues[] = {null};

}

Each thread →

instance of Rec class

(short for record).

Rec instance defines

current transaction on thread

Memory: STM Object

public class STM {

int memory[];

Rec ownerships[];

public boolean, int[] startTranscation(Rec rec, int[] dataSet){...};

private void initialize(Rec rec, int[] dataSet)

private void transaction(Rec rec, int version, boolean isInitiator) {...};

private void acquireOwnerships(Rec rec, int version) {...};

private void releaseOwnershipd(Rec rec, int version) {...};

private void agreeOldValues(Rec rec, int version) {...};

private void updateMemory(Rec rec, int version, int[] newvalues) {...};

}

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

release

Ownerships

isInitiator?

ThreadsSTM

(Failure,failed loc)

FT

Initiate

helping

transaction

to failed loc

(isInitiator:=F)

(Null, 0)

Success

Failure

Implementation

public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);

rec.stable = true;

transaction(rec, rec.version, true);

rec.stable = false;

rec.version++;

if (rec.status) return (true, rec.oldValues);

else return false;

}

This notifies

other threads

that I can be

helped

rec – The thread that

executes this

transaction.

dataSet – The

location in memory it

needs to own.

Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {

acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);

if (status == null) { // success in acquireOwnerships

if (versoin != rec.version) return;

SC(rec.status, (true,0));

}

(status, failedLoc) = LL(rec.status);

if (status == true) { // execute the transaction

agreeOldValues(rec, version);

int[] newVals = calcNewVals(rec.oldvalues);

updateMemory(rec, version);

releaseOwnerships(rec, version);

}

else { // failed in acquireOwnerships

releaseOwnerships(rec, version);

if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];

if (failedTrans == null) return;

else { // execute the transaction that owns the location you want

int failedVer = failedTrans.version;

if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}

}

}

}

rec – The thread that

executes this

transaction.

version – Serial

number of the

transaction.

isInitiator – Am I the

initiating thread or

the helper?

Another thread own

the locations I need

and it hasn’t finished

its transaction yet.

So I go out and

execute its

transaction in order

to help it.

Implementation
private void acquireOwnerships(Rec rec, int version) {

for (int j=1; j<=rec.size; j++) {

while (true) do {

int loc = locs[j];

if LL(rec.status) != null return; // transaction completed by some other thread

Rec owner = LL(ownerships[loc]);

if (rec.version != version) return;

if (owner == rec) break; // location is already mine

if (owner == null) { // acquire location

if (SC(rec.status, (null, 0))) {

if (SC(ownerships[loc], rec)) {

break;

}

}

}

else {// location is taken by someone else

if (SC(rec.status, (false, j))) return;

}

}

}

}

If I’m not the last one to

read this field, it means that

another thread is trying to

execute this transaction.

Try to loop until I succeed

or until the other thread

completes the transaction

Implementation

private void agreeOldValues(Rec rec, int version) {

for (int j=1; j<=rec.size; j++) {

int loc = locs[j];

if (LL(rec.oldvalues[loc]) != null) {

if (rec.version != version) return;

SC(rec.oldvalues[loc], memory[loc]);

}

}

}

private void updateMemory(Rec rec, int version, int[] newvalues) {

for (int j=1; j<=rec.size; j++) {

int loc = locs[j];

int oldValue = LL(memory[loc]);

if (rec.allWritten) return; // work is done

if (rec.version != version) return;

if (oldValue != newValues[j]) SC(memory[loc], newValues[j]);

}

if (! LL(rec.allWritten)) {

if (rec.version != version) SC(rec.allWritten, true);

}

}

Copy the dataSet

to my private

space

Selectively update

the shared

memory

HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

How would you get the best of both?

Hybrid-TM

• Best-effort HTM (use STM for long trx)

• Possible conflicts between HW,SW and HW-SW Trx
• What kind of conflicts do SW-Trx care about?

• What kind of conflicts do HW-Trx care about?

• Some initial proposals:
• HyTM: uses an ownership record per memory location

(overhead?)

• PhTM: HTM-only or (heavy) STM-only, low instrumentation

Questions?

