Language-level

Concurrency Support:
GO

Chris Rossbach
cs378h

Outline for Today

e Questions?

e Administrivia
* Lab 3 looms large: Go go go!
* K-Means discussion = office hours

* Agenda
* Message Passing background
* Concurrency in Go
* Thoughts and guidance on Lab 3

* Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz questions

* How are promises and futures different or the same as goroutines
* What is the difference between a goroutine and a thread?

* What is the difference between a channel and a lock?

* How is a channel different from a concurrent FIFO?

* What is the CSP model?

* What are the tradeoffs between explicit vs implicit naming in
message passing?

 What are the tradeoffs between blocking vs. non-blocking
send/receive in a shared memory environment? In a distributed one?

. o © e Mot

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle

» Shared state requires locks =2
* Priority inversion
* Deadlock this slide?
* Incorrect synchronization

Remember

* Events: restructure programming model to have no threads!

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load ' ignment brittle

* Message passing:
* Threads aren’t the problem, shared memory is

* restructure programming model to avoid communication through shared memory
(and therefore locks)

Message Passing

* Threads/Processes send/receive messages

* Three design dimensions
* Naming/Addressing: how do processes refer to each other?
» Synchronization: how to wait for messages (block/poll/notify)?
» Buffering/Capacity: can messages wait in some intermediate structure?

Message

Sending Object Receiving Object

Message Passing

Naming: Explicit vs Implicit

Also: Direct vs Indirect

* Explicit Naming
e Each process must explicitly name the other party
* Primitives:
* send(receiver, message) -
* receive(sender, message)
* Implicit Naming
* Messages sent/received to/from mailboxes
* Mailboxes may be named/shared
* Primitives:

* send(mailbox, message)
* receive(mailbox, message)

@ A9 [

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

 |f both send and receive block
e “Rendezvouz” Blocking:
Operation acts as an ordering primitive + simple e
. + avoids wasteful spinning
Sender knows receiver succeded
Receiver knows sender succeeded

Particularly appealing in distributed environment St
+ maximal flexibility

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
* Non-buffered message passing

* No shared memory

* Send/recv are blocking
« Explicit naming of src/dest processes

e Also called direct naming

* Receiver specifies source process

e Alternatives: indirect

sequential communication
process channel

v

* Port, mailbox, queue, socket m single thread of control m synchronous
* Guarded commands to let processes wait ® autonomous m reliable
m encapsulated m unidirectional
m named m point-to-point
m static m fixed topology

EEEEEE
EasEEE 3
EEEEEE
EEEEEE

.

EEEEE]

< Transputer!

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

- . recv_multi(Q) {

receive(Q, message)
receive(R, message)

/ receive(S, message)
)

-X
s X

Is there a problem
with this?

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

"P| receive(port, message)

OK to block (good)
Requires indirection (less good)

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

while(...) {
- try_receive(Q, message)
try_receive(R, message)
- - try_receive(S, message)

s | }

Polling (bad)

No indirection (good)

Blocking and Direct Naming

* How to achieve it?
» CSP provides abstractions/primitives for it

Alternative / Guarded Commands

Guarded command is delayed until either Alternative command:

e guard succeeds - cmd executes or e |ist of one or more guarded commands
e guard fails > command aborts e separated by ”||”

Gunrded Commmands e surrounded by square brackets

<guard>— <command list>
y [x=2y->max:i=x || y=x->max:=y]

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

* Enable choice preserving concurrency

n <10—Alindex(n); n :=n + 1; * Hugely influential
n < 10; A?index(n) —next = MyArray(n);

e goroutines, channels, select, defer:
* Trying to achieve the same thing

Go Concurrency

e CSP: the root of many languages
* Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

* Go is a Newsqueak-Alef-Limbo derivative
* Distinguished by first class channel support
* Program: goroutines communicating through channels
* Guarded and alternative-like constructs in select and defer

A boring function

func boring(msg string) {
for i :=0; ; i++ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

}

func main() {
boring("boring!")
}

lgnoring a boring function

Go statement runs the function
Doesn’t make the caller wait
Launches a goroutine

Analagous to & on shell command

* Keep main() around a while
e See goroutine actually running

package main
I'm listening.

import (boring! 0
"fmt" boring!
"math/rand" boring!
"time" boring!

) boring!

boring! 5
You're boring; I'm leaving.

func main() {
go boring("bor
}

Program exited.

func main() {
go boring("boring!")
fmt.Println("I'm listening.")
time.Sleep(2 * time.Second)
fmt.Println("You're boring; I'm leaving.")

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

* Not a thread
* One thread may have 1000s of go routines!

* Multiplexed onto threads as needed to ensure forward progress
* Deadlock detection built in

Channels

* When main executes <-c, it blocks

* Connect goroutines allowing tt
8 &1, When boring executes c <- value it blocks

func main() { * Channels communicate and synchronize
c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; i++ {
fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
¥

fmt.Println("You're boring; I'm leaving.")

You say: "boring! 0"
You say: "boring! 1"
You say: "boring! 2"
You say: "boring! 3"

func boring(msg string, c chan string) {
for 1 :=0; ; 1++ {
¢ <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any s
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

You say: "boring! 4"
You're boring; I'm leaving.

Program exited.

Select: Handling Multiple Channels

* All channels are evaluated

* Select blocks until one communication can proceed
e Cf. Linux select system call, Windows WaitForMultipleObjectsEx
» Cf. Alternatives and guards in CPS

* |If multiple can proceed select chooses randomly

* Default clause executes immediately if no ready channel

select {
case v1 := <-c1:

fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)
default:
fmt.Printf("no one was ready to communicate\n")

Google Search

* Workload:
* Accept query
e Return page of results (with ugh, ads)

e Get search results by sending query to
* Web Search
* Image Search
* YouTube
* Maps
* News, etc
* How to implement this?

Search 1.0

* Google function takes query and returns a slice of results (strings)
* Invokes Web, Image, Video search serially

func Google(query string) (results []Result) {
results = append(results, Web(query))
results = append(results, Image(query))
results = append(results, Video(query))
return

Search 2.0

 Run Web, Image, Video searches concurrently, wait for results
* No locks, conditions, callbacks

func Google(query string) (results []Result) {
c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

for 1 := 0; 1 < 3; i++ {

result := <-c

results = append(results, result)
}
return

Search 2.1

* Don’t wait for slow servers: No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

timeout := time.After(80 * time.Millisecond)
for 1 := 0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return

¥
}

return

Search 3.0

* Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)

go func() { c <- First(query, Web1, Web2) } ()

go func() { c <- First(query, Imagel, Image2) } ()
go func() { c <- First(query, Videol, Video2) } ()

timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {

select {

case result := <-c:

results = append(results, result)
case <-timeout:

fmt.Println("timed out")

return

¥
}

return

func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { c <- replicas[i](query) }
for 1 := range replicas {

go searchReplica(i)

}

return <-c

Other tools in Go

e Goroutines and channels are the main primitives

* Sometimes you just need a reference counter or lock
* “sync” and “sync/atomic” packages
* Mutex, condition, atomic operations

* Sometimes you need to wait for a go routine to finish
e Didn’t happen in any of the examples in the slides
* WaitGroups are key

WaitGroups

testQ() {

e e\ int)

for 1:=0; i<4; i++ {
go (id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {
fmt.Printf("channel reader #%d terminated with nothing.\n", id)

}
time.Sleep(1000 * time.Millisecond)

<

Go: magic or threadpools and concurrent Qs?

 We’ve seen several abstractions for
* Control flow/exection
e Communication

* Lots of discussion of pros and cons
e Ultimately still CPUs + instructions

e Go: just sweeping issues under the language interface?
 Why is it OK to have 100,000s of goroutines? VON NEUMANN ARCHITECTURE
 Why isn’t composition an issue? MEMORY

CPU
INPUT > * OUTPUT

CONTROL ||ARITHMETIC/
UNIT LOGIC UNIT

Go implementation details

* M = “machine” = OS thread

[B struct Sched { .
a [T 4 Lock; // global sched lock.
P —NEN P —. // must be held to edit G or M queues
| _ J s) ‘ . G xgfree; // available g’s (status == Gdead)
s) |;fG - _:-/ - ""] . G *g}IE:’:ld; //g’g waiting to run queue
A 4 G xgtail; // tail of g’s waiting to run queue
| | int32 gwait; // number of g’s waiting to run
A int32 gcount; // number of g’s that are alive
L e 2 int32 grunning; // number of g’s running on cpu
— - // or in syscall .
ad

M smhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

1000s of go routines?

* C(Creates a channel
— int) { * Creates “consumers” goroutines
es consumers 1n .
e PETAT eS| T eE] — . e * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) » Sleeps for 1 second, closes the channel

ch := make(int) * sends “consumers” values
for 1:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else { PS C:\Users\chris\go\src\cs378\lab3> .\lab3.exe 10
info("channel readd¢estQ: 1.0016706s
} PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100
wg.Done() testQ: 1.0011655s
(1) PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000
} testQ: 1.0084796s
time.Sleep (1000 * time.Millise®S C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 10000
close(ch) testQ: 1.0547925s
wg.Wait() PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100000
stopTimes["testQ"] = time.Now(testQ: 1.39@87835s
PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000000
testQ: 4.2485814s

TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe
123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
125 chansend(c, elem, true, getcallerpe())

1% }

/%
123 * generic single channel send/recy
120 * If block is not nil,

1

° °
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.

func chansend{c *hchan, ep unsafe.Pointer,

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

1 * been closed. it is easiest to leop and re-run
132 * the operation; we'll see that it"s now closed.

block bool, callerpc uintptr) bool { S

142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

° Y if ¢ == nil { f ifc“gi’l!éleck{ B
if !block { 295 J/f Sends and receives on unbuffered or empty-buffered channels are the
return fal: 296 // only operations where one running goroutine writes to the stack of &
h 297 f/ another running goroutine. The GC assumes that stack writes only
gopark(nil, nil, "¢ 298 // happen when the goroutine is running and are only done by that
® S throw("unreachable’ 299 // goroutine. Using a write barrier is sufficient to make up for
h 8@ ff violating that assumption, but the write barrier has to work.)
201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes
if debugChan { 282 // are not in the heap, so that will not help. We arrange to call e
e print(“"chansend: c} 383 // memmove and typeBitsBulkBarrier instead. b
: » Race detection! Cool zes iy
; 385 Func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { ﬂgjﬁﬁimmL
386 /f src is on our stack, dst is a slot on another stack. e s =
367 it the chamnel is not
- b 388 // Once we read sg.elem out of sg, it will no longer ii:?mum
. heap 389 // be updated if the destination’'s stack gets copied (shrunk}.
;Jerﬁgoroutwuastacks 31e // 50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
G1 writes to G2's stack! 31) R, Sis B,
unlack(Ec. lock)
panic{plaingrror("send on closed channel™))
Transputers did this in hardware in the 90s btw. S i i i SO

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:
* https://golang.org/src/runtime/chan.go

* Some highlights:

Race detection built in

Fast path just write to receiver stack

Often has no capacity = scheduler hint!
Buffered channel implementation fairly standard

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

{/gotnosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

generic single channel send/recy
If block is net nil,

then the protecol will not
sleep but return if it could
not complete,

sleep can wake up wi
* when a channel i ed in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

ap
/

th g.param == nil

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

if ¢ == nil {
if Iblock {
return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

if debugcChan {
print("chansend: chan=", ¢, "\n")

if raceenabled {
racereadpc (unsafe.pointer(c), callerpc, funcPC{chansend))

Fast path: check for failed non-blocking operation witheut acquiring the lock.

not ready for sending. Each of these observations is a single word-sized read
(first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
Because a closed channel cannot transition from 'ready for sending' to

‘not ready for sending', even if the channel is closed between the two cbservations,
they imply a moment between the two when the channel was both not yet closed

and nct ready for sending. We behave as if we observed the channel at that mement,
and report that the send cannot proceed.

."Ii
."..J
/[After observing that the channel is not closed, we observe that the channel is
/]
1

It is okay if the reads are reordered here: if we observe that the channel is not
ready for sending and then observe that it is not closed, that implies that the
channel wasn't closed during the first observation.

if Iblock & c.closed == B & ((c.datagsiz == @ & c.recvq.first == nil) |

(c.datagsiz » @ & c.qoount == c.datagsiz)) {
refurn false

var 1@ inte4
if blockprofilerate > @ {
te = cputicks()

lock(&c.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

if sg i= c.recvg.dequeue(); sg != nil {

Found 3 waiting receiver. We pass the value we want to send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

Go: Sliced Bread 2.0?

Lacks compile-time generics
* Results in code duplication
 Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

Pauses and overhead of garbage collection

e Limit Go’s use in systems programming compared to languages with manual memory
management

Right tradeoffs? None of these problems have to do with concurrency!

33

Now. Let’s discuss Lab 3

34

Binary Search Trees

e Each node has a value
e Left nodes have smaller values
* Right nodes have greater values

* Want to detect duplicate trees
* Insertion order affects layout

* Linearize trees for comparison
* Makes comparison expensive

35

Hashing BSTs

func initialHash() uint64 { ° |nitia|ize hash

return 1

* Traverse tree in-order

* Incorporate values into hash
func hash(uint64 hash, uint64 val) {

val2 =val + 2

orime = 4222234741 * Hash function doesn’t have to be
very complex

return (hash*val2+val2)%prime

} * Just make sure it handles zeros
and similar numbers nicely

Processing pipeline

e Read in trees from file
* Array / slice of BSTs

* Hash trees + insert hashes
 Map from hash to tree indexes

* Compare trees

* Equivalence matrix
°* num trees x num trees

Parallelizing the pipeline

Step 2
* Implement just hashing first

* Goroutines
* 1 per tree

* Dedicated inserter goroutine(s)
« Communicate via channel

* Thread pool

* hash-workers threads
e Acquire lock(s) to insert

* Multiple data-workers optional

Step 3

e Goroutines
* 1 per comparison

* Thread pool
e comp-workers threads

* Send work via channel
e (Optional) custom implementation
 Queue, mutex, and conditions

* Store results directly in matrix

Go: command-line flags

import "flag"

func main() {
intPtr = flag.Int("num”, 0, "number argument")
flag.Parse()
num : = *flagPtr

./my_program -num=1

Go: file parsing

import ("io/ioutil" "strconv" "strings")

func main() {
¢

f'

f'

for , line := range fileLines {

eData, err := ioutil.ReadFile(fileName)
eData = fileData[:len(fileData)-1] // remove EOF
eLines := strings.Split(string(fileData), "\n")

// parse line with strings.Split and strconv.Atoi()

Go: timing

import "time"
func main() {
start := time.Now()
// do some work
timeTakenStr:= time.Since(start)
fmt.Printf("Doing work took %s\n", timeTakenStr)

Go: functions and return values

func notMain() (int, bool) { // multiple return values

return (3, false)

func main() {
i, b := notMain()
j, _:=notMain() //throw away value

Go: synchronization

import "sync" // contains WaitGroups

func main() {
var *mutex = &sync.Mutex{} // pointer to mutex
var *cond = &sync.NewCond(mutex) // mutex condition
mutex.Lock()
cond.Wait() // releases lock on mutex
cond.Signal() // wakes threads waiting on cond
mutex.Unlock()

Go: slices

func main() {
mySlice := make([]int, 2)
mySlice[1] =5 // can use like an array
mySlice = append(mySlice, 10) // can use like a list
| := len(mySlice)
subSlice := mySlice[0:1] // can slice like in Python
fromStartToTwo := mySlice[:2]
fromOneToEnd := mySlice[1:]

Go: maps

func main() {
maplntBool := make(map [int] bool) // map from ints to bools

maplIntBool[5] = true
for key, value := range maplIntBool {
// use key or value

}

// map value can be a slice

GO: MISC

type myStruct struct {
mySlice []int
myChan chan int
mySliceOfSlice [][]bool
myPtr *myStruct

}

var ms myStruct // declare variable without initialization
// use dot operator for structs, pointers, and pointers to structs
ms.myPtr.mySlice[2]

