
Language-level
Concurrency Support:

Go
Chris Rossbach

cs378h

Outline for Today
• Questions?

• Administrivia
• Lab 3 looms large: Go go go!

• K-Means discussion → office hours

• Agenda
• Message Passing background

• Concurrency in Go

• Thoughts and guidance on Lab 3

• Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz questions

• How are promises and futures different or the same as goroutines

• What is the difference between a goroutine and a thread?

• What is the difference between a channel and a lock?

• How is a channel different from a concurrent FIFO?

• What is the CSP model?

• What are the tradeoffs between explicit vs implicit naming in
message passing?

• What are the tradeoffs between blocking vs. non-blocking
send/receive in a shared memory environment? In a distributed one?

Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle

• Shared state requires locks →
• Priority inversion

• Deadlock

• Incorrect synchronization

• …

• Events: restructure programming model to have no threads!

Event-based Programming: Motivation

Remember
this slide?

Message Passing: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks →

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Message passing:
• Threads aren’t the problem, shared memory is
• restructure programming model to avoid communication through shared memory

(and therefore locks)

Message Passing

• Threads/Processes send/receive messages

• Three design dimensions
• Naming/Addressing: how do processes refer to each other?

• Synchronization: how to wait for messages (block/poll/notify)?

• Buffering/Capacity: can messages wait in some intermediate structure?

Naming: Explicit vs Implicit
Also: Direct vs Indirect

• Explicit Naming
• Each process must explicitly name the other party

• Primitives:
• send(receiver, message)

• receive(sender, message)

• Implicit Naming
• Messages sent/received to/from mailboxes

• Mailboxes may be named/shared

• Primitives:
• send(mailbox, message)

• receive(mailbox, message)

Q P

Q P

Synchronization

• Synchronous vs. Asynchronous
• Blocking send: sender blocks until received
• Nonblocking send: send resumes before message received
• Blocking receive: receiver blocks until message available
• Non-blocking receive: receiver gets a message or null

• If both send and receive block
• “Rendezvouz”
• Operation acts as an ordering primitive
• Sender knows receiver succeded
• Receiver knows sender succeeded
• Particularly appealing in distributed environment

Blocking:
+ simple
+ avoids wasteful spinning
- Inflexible
- Can hide concurrency
Non-blocking:
+ maximal flexibility
- error handling/detection tricky
- interleaving useful work non-trivial

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
• Non-buffered message passing

• No shared memory
• Send/recv are blocking

• Explicit naming of src/dest processes
• Also called direct naming
• Receiver specifies source process
• Alternatives: indirect

• Port, mailbox, queue, socket
• Guarded commands to let processes wait

 Transputer!

An important problem in the CSP model:

• Processes need to receive messages from different senders

• Only primitive: blocking receive(<name>, message)

Q

R

S

P recv_multi(Q) {

receive(Q, message)

receive(R, message)

receive(S, message)

}
Is there a problem

with this?

X

X

Blocking with Indirect Naming

• Processes need to receive messages from different senders

• blocking receive with indirect naming
• Process waits on port, gets first message first message arriving at that port

Q

R

S

P receive(port, message)

OK to block (good)
Requires indirection (less good)

Non-blocking with Direct Naming

• Processes need to receive messages from different senders

• Non-blocking receive with direct naming
• Requires receiver to poll senders

Q

R

S

P

Polling (bad)
No indirection (good)

while(…) {

try_receive(Q, message)

try_receive(R, message)

try_receive(S, message)

}

Blocking and Direct Naming

• How to achieve it?

• CSP provides abstractions/primitives for it

Q

R

S

P

Alternative / Guarded Commands
Guarded command is delayed until either

• guard succeeds→ cmd executes or

• guard fails→command aborts

Alternative command:

• list of one or more guarded commands

• separated by ”||”

• surrounded by square brackets

[x y -> max:= x || y x -> max:= y]

• Enable choice preserving concurrency
• Hugely influential
• goroutines, channels, select, defer:

• Trying to achieve the same thing

Go Concurrency

• CSP: the root of many languages
• Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

• Go is a Newsqueak-Alef-Limbo derivative
• Distinguished by first class channel support

• Program: goroutines communicating through channels

• Guarded and alternative-like constructs in select and defer

A boring function

Ignoring a boring function

• Go statement runs the function
• Doesn’t make the caller wait
• Launches a goroutine
• Analagous to & on shell command

• Keep main() around a while
• See goroutine actually running

Goroutines

• Independently executing function launched by go statement

• Has own call stack

• Cheap: Ok to have 1000s…100,000s of them

• Not a thread
• One thread may have 1000s of go routines!

• Multiplexed onto threads as needed to ensure forward progress
• Deadlock detection built in

Channels

• Connect goroutines allowing them to communicate
• When main executes <-c, it blocks

• When boring executes c <- value it blocks

• Channels communicate and synchronize

Select: Handling Multiple Channels
• All channels are evaluated

• Select blocks until one communication can proceed
• Cf. Linux select system call, Windows WaitForMultipleObjectsEx

• Cf. Alternatives and guards in CPS

• If multiple can proceed select chooses randomly

• Default clause executes immediately if no ready channel

Google Search

• Workload:

• Accept query

• Return page of results (with ugh, ads)

• Get search results by sending query to
• Web Search
• Image Search
• YouTube
• Maps
• News, etc

• How to implement this?

Search 1.0

• Google function takes query and returns a slice of results (strings)

• Invokes Web, Image, Video search serially

Search 2.0

• Run Web, Image, Video searches concurrently, wait for results

• No locks, conditions, callbacks

Search 2.1

• Don’t wait for slow servers: No locks, conditions, callbacks!

Search 3.0

• Reduce tail latency with replication. No locks, conditions, callbacks!

Other tools in Go

• Goroutines and channels are the main primitives

• Sometimes you just need a reference counter or lock
• “sync” and “sync/atomic” packages

• Mutex, condition, atomic operations

• Sometimes you need to wait for a go routine to finish
• Didn’t happen in any of the examples in the slides

• WaitGroups are key

WaitGroups
func testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {

fmt.Printf("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

}

Go: magic or threadpools and concurrent Qs?

• We’ve seen several abstractions for
• Control flow/exection

• Communication

• Lots of discussion of pros and cons

• Ultimately still CPUs + instructions

• Go: just sweeping issues under the language interface?
• Why is it OK to have 100,000s of goroutines?

• Why isn’t composition an issue?

Go implementation details

• M = “machine” → OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines? • Creates a channel
• Creates “consumers” goroutines
• Each of them tries to read from the channel
• Main either:

• Sleeps for 1 second, closes the channel
• sends “consumers” values

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

Transputers did this in hardware in the 90s btw.

Race detection! Cool!

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights:
• Race detection built in

• Fast path just write to receiver stack

• Often has no capacity → scheduler hint!

• Buffered channel implementation fairly standard

https://golang.org/src/runtime/chan.go

33

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

34

Now. Let’s discuss Lab 3

Binary Search Trees

• Each node has a value

• Left nodes have smaller values

• Right nodes have greater values

• Want to detect duplicate trees
• Insertion order affects layout

• Linearize trees for comparison
• Makes comparison expensive

35

Hashing BSTs

func initialHash() uint64 {

return 1

}

func hash(uint64 hash, uint64 val) {

val2 = val + 2

prime = 4222234741

return (hash*val2+val2)%prime

}

• Initialize hash

• Traverse tree in-order

• Incorporate values into hash

• Hash function doesn’t have to be
very complex

• Just make sure it handles zeros
and similar numbers nicely

Processing pipeline

• Read in trees from file
• Array / slice of BSTs

• Hash trees + insert hashes
• Map from hash to tree indexes

• Compare trees
• Equivalence matrix

• num trees x num trees

Parallelizing the pipeline

Step 2

• Implement just hashing first

• Goroutines
• 1 per tree

• Dedicated inserter goroutine(s)
• Communicate via channel

• Thread pool
• hash-workers threads

• Acquire lock(s) to insert

• Multiple data-workers optional

Step 3

• Goroutines
• 1 per comparison

• Thread pool
• comp-workers threads

• Send work via channel
• (Optional) custom implementation

• Queue, mutex, and conditions

• Store results directly in matrix

Go: command-line flags

import "flag"

func main() {

intPtr = flag.Int("num", 0, "number argument")

flag.Parse()

num : = *flagPtr

}

./my_program -num=1

Go: file parsing

import ("io/ioutil" "strconv" "strings")

func main() {

fileData, err := ioutil.ReadFile(fileName)

fileData = fileData[:len(fileData)-1] // remove EOF

fileLines := strings.Split(string(fileData), "\n")

for _, line := range fileLines {

// parse line with strings.Split and strconv.Atoi()

}

}

Go: timing

import "time"

func main() {

start := time.Now()

// do some work

timeTakenStr:= time.Since(start)

fmt.Printf("Doing work took %s\n", timeTakenStr)

}

Go: functions and return values

func notMain() (int, bool) { // multiple return values

return (3, false)

}

func main() {

i, b := notMain()

j, _ := notMain() // throw away value

}

Go: synchronization

import "sync" // contains WaitGroups

func main() {

var *mutex = &sync.Mutex{} // pointer to mutex

var *cond = &sync.NewCond(mutex) // mutex condition

mutex.Lock()

cond.Wait() // releases lock on mutex

cond.Signal() // wakes threads waiting on cond

mutex.Unlock()

}

Go: slices

func main() {

mySlice := make([]int, 2)

mySlice[1] = 5 // can use like an array

mySlice = append(mySlice, 10) // can use like a list

l := len(mySlice)

subSlice := mySlice[0:1] // can slice like in Python

fromStartToTwo := mySlice[:2]

fromOneToEnd := mySlice[1:]

}

Go: maps

func main() {

mapIntBool := make(map [int] bool) // map from ints to bools

mapIntBool[5] = true

for key, value := range mapIntBool {

// use key or value

}

}

// map value can be a slice

Go: misc

type myStruct struct {

mySlice []int

myChan chan int

mySliceOfSlice [][]bool

myPtr *myStruct

}

var ms myStruct // declare variable without initialization

// use dot operator for structs, pointers, and pointers to structs

ms.myPtr.mySlice[2]

