Go Wrap up
Parallel Architectures

Chris Rossbach
cs378 Fall 2018
10/15/2018

Outline for Today

e Questions?
e Administrivia

* Agenda
* Go
 Parallel Architectures (GPU background)

* Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz questions

* How are promises and futures different or the same as goroutines

* What is the difference between a goroutine and a thread?

* What is the difference between a channel and a lock?

* How is a channel different from a concurrent FIFO?

* What is the CSP model?

* What are the tradeoffs between explicit vs implicit naming in message passing?

* What are the tradeoffs between blocking vs. non-blocking send/receive in a shared memory environment? In a distributed one?
* What is hardware multi-threading; what problem does it solve?

* What is the difference between a vector processor and a scalar?

* Implement a parallel scan or reduction

* How are GPU workloads different from GPGPU workloads?

* How does SIMD differ from SIMT?

* List and describe some pros and cons of vector/SIMD architectures.

* GPUs historically have elided cache coherence.Why? What impact does it have on the the programmer?
* List some ways that GPUs use concurrency but not necessarily parallelism.

Google Search

* Workload:
* Accept query
e Return page of results (with ugh, ads)

e Get search results by sending query to
* Web Search
* Image Search
* YouTube
* Maps
* News, etc
* How to implement this?

Search 1.0

* Google function takes query and returns a slice of results (strings)
* Invokes Web, Image, Video search serially

func Google(query string) (results []Result) {
results = append(results, Web(query))
results = append(results, Image(query))
results = append(results, Video(query))
return

Search 2.0

 Run Web, Image, Video searches concurrently, wait for results
* No locks, conditions, callbacks

func Google(query string) (results []Result) {
c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

for 1 := 0; 1 < 3; i++ {

result := <-c

results = append(results, result)
}
return

Search 2.1

* Don’t wait for slow servers: No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

timeout := time.After(80 * time.Millisecond)
for 1 := 0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return

¥
}

return

Search 3.0

* Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)

go func() { c <- First(query, Web1, Web2) } ()

go func() { c <- First(query, Imagel, Image2) } ()
go func() { c <- First(query, Videol, Video2) } ()

timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {

select {

case result := <-c:

results = append(results, result)
case <-timeout:

fmt.Println("timed out")

return

¥
}

return

func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { c <- replicas[i](query) }
for 1 := range replicas {

go searchReplica(i)

}

return <-c

(GO: magic? ...or threadpools and concurrent Qs?

 We’ve seen several abstractions for
* Control flow/exection
e Communication

* Lots of discussion of pros and cons
* Ultimately still CPUs + instructions

* Go: just sweeping issues under the language interface?
 Why is it OK to have 100,000s of goroutines? VON NEUMANN ARCHITECTURE
 Why isn’t composition an issue? MEMORY

CPU
INPUT > * OUTPUT

CONTROL ||ARITHMETIC/
UNIT LOGIC UNIT

Go implementation details

Go implementation details

* M = “machine” = OS thread

Go implementation details

e M = “machine” = 0OS thread
| e P = (processing) context

Go implementation details

e M = “machine” = 0OS thread
| e P = (processing) context
i e e G = goroutines

Go implementation details

* M = “machine” = OS thread

: | * P = (processing) context
. . p e * G = goroutines
| | * Each ‘M’ has a queue of goroutines

Go implementation details

* M = “machine” > OS thread
| e P = (processing) context
i e * G = goroutines
| * Each ‘M’ has a queue of goroutines

e Goroutine scheduling is cooperative
* Switch out on complete or block
* Very light weight (fibers!)
* Scheduler does work-stealing

Go implementation details

* M = “machine” > OS thread
* P = (processing) context
* G = goroutines

stackguard; // stack guard information

P L— G} P G
| ‘ . ‘ | struct G
c) (B () @&
: *F bytex
, l | | bytex stackbase;
(5 2 bytex stackO;
S bytex entry;
void*x param;
intl6 status;
int32 goid;
M lockedm;

// base of stack

// current stack pointer

// initial function

// passed parameter on wakeup
// status

// unique id

// used for locking M’s and G’s

Go implementation details

* M = “machine” > OS thread
| e P = (processing) context
i e * G = goroutines
| * Each ‘M’ has a queue of goroutines

e Goroutine scheduling is cooperative
* Switch out on complete or block
* Very light weight (fibers!)
* Scheduler does work-stealing

Go implementation details

* M = “machine” = OS thread

M M
[’ | | e P= (processmg) context
- F G P —E * G = goroutines
| ‘ | struct M o i
G (e G G | {
-« G curg; // current running goroutine
| int32 id ; // unique id
i " int32 locks; // locks held by this M
-) MCache *mcache; // cache for this thread
G lockedg; // used for locking M’s and G’s
uintptr createstack [32]; // Stack that created this thread
M nextwaitm; // next M waiting for lock

Go implementation details

y \‘\ ,""/ .\‘\ Vi . g .\\
(I i

0 — O — @ |
\ J Y J \ ,1'

M
P (8
I
/ ,-\
G o

struct Sched {

* M = “machine” = OS thread

I \

Lock; // global sched lock.

// must be held to edit G or M queues
G xgfree; // available g’s (status == Gdead)
G *ghead; // g’s waiting to run queue
G xgtail ; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive

int32 grunning; // number of g’s running on cpu
// or in syscall

M xmhead; // m’s waiting for work 3

int32 mwait; // number of m’s waiting for work

int32 mcount; // number of m’s that have been created

Go implementation details

y \‘\ ,""/ .\‘\ Vi . g .\\
(I i

0 — O — @ |
\ J Y J \ ,1'

M

P (8
/ * .

G o

struct Sched {

* M = “machine” = OS thread

I \

Lock; // global sched lock.

// must be held to edit G or M queues
G xgfree; // available g’s (status == Gdead)
G *ghead; // g’s waiting to run queue
G xgtail ; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive
int32 grunning; // number of g’s running on cpu
// or in syscall

M xmhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

Go implementation details

y \‘\ ,""/ .\‘\ Vi . g .\\
(I i

0 — O — @ |
\ J Y J \ ,1'

M

P (8
/ * .

G o

struct Sched {

* M = “machine” = OS thread

I \

Lock; // global sched lock.

// must be held to edit G or M queues
G xgfree; // available g’s (status == Gdead)
G *ghead; // g’s waiting to run queue
G xgtail ; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive
int32 grunning; // number of g’s running on cpu
// or in syscall

M xmhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

1000s of go routines?

testQ(consumers int) {
startTimes["testQ"] = time.Now()
wg sync.WaitGroup
wg.Add(consumers)
ch := make(int)
for i:=0; i<consumers; i++ {
go (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()
H(1)

}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

1000s of go routines?

* Creates a channel
vy int) { e Creates “consumers” goroutines
es consumers 1n .
e PETAT eS| T eE] — . e Each of them tries to read from the channel
wg sync.WaitGroup * Main either:
wg.Add(consumers) » Sleeps for 1 second, closes the channel

ch := make(int) * sends “consumers” values
for 1:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)

}
time.Sleep(1000 * time.Millisecond)

close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

1000s of go routines?

* C(Creates a channel
— int) { * Creates “consumers” goroutines
es consumers 1n .
e PETAT eS| T eE] — . e * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) » Sleeps for 1 second, closes the channel

ch := make(int) * sends “consumers” values
for 1:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else { PS C:\Users\chris\go\src\cs378\lab3> .\lab3.exe 10
info("channel readd¢estQ: 1.0016706s
} PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100
wg.Done() testQ: 1.0011655s
(1) PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000
} testQ: 1.0084796s
time.Sleep (1000 * time.Millise®S C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 10000
close(ch) testQ: 1.0547925s
wg.Wait() PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100000
stopTimes["testQ"] = time.Now(testQ: 1.39@87835s
PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000000
testQ: 4.2485814s

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
. O if ¢ =nil {
L] if Iblock {
o You Can Just read Ito return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4
1 if blockprofilerate > @ {
1@ = cputicks()

1
lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. e pass the value we want fo send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !'block {
return false

¥

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
() S throw("unreachable™)

if debugChan {

print("chansend: chan=", c, "\n")

if raceenabled {

racereadpc{unsafe.Pointer(c), callerpc, funcPC(chansend))

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
3 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ == nil {
if Iblock {

return false
1
gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !'block {
return false

¥

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
() S throw("unreachable™)

if debugChan {
print("chansend: chan=", c, "\n")

} Race detection! Cool!

I
L

racereadpc{unsafe.Pointer(c), c

if raceenabled

lerpc, funcPC{chansend))

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

=

/%
* generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
3 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ == nil {
if Iblock {

return false
1
gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. e pass the value we want fo send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
. O if ¢ =nil {
L] if Iblock {
o You Can Just read Ito return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4
1 if blockprofilerate > @ {
1@ = cputicks()

1
lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. e pass the value we want fo send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe

123 //gotnosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.
*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ == nil {

* You can just read it:
* https://golang.org/src/runtime/chan.go

144 }
145 gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
146 throw("unreachable")

1
:—'3 if debugcChan {
. . print("chansend: chan=", ¢, "\n")
°® Some h Ighllg if sg := c.recvq.dequeue(); sg !'= nil { }
// Found a waiting receiver. We pass the wvalue we want to send i rﬂfiﬁ::?éiga;pc(unmmmr({\ oo, Ac(craeen)

JJ directly to the receiver, bypassing the channel buffer (if any). !

S ﬂd(c, sg, ep, func { } { unlock { &c.].DCk.:I' } s 3) Jf‘j Fast path: check for failed non-blocking operation without acquiring the lock.

return true :",f After observing that the channel is not closed, we observe that the channel is

/f not ready for sending. Each of these observations is a single word-sized read

} {{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).

{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
. O if ¢ =nil {
L] if Iblock {
o You Can Just read Ito return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4
1 if blockprofilerate > @ {
1@ = cputicks()

1
lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. e pass the value we want fo send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe

123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
123 * generic single channel send/recy
* If block is net nil,

. . 1
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.
13 ¥
* sleep can wake up with g.param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.
133 ¥/
142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You can just read it: ...

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for

8@ ff violating that assumption, but the write barrier has to work.)

201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes

282 /f are not in the heap, so that will not help. We arrange to call ﬂmmﬂmm%

383 f/ memmove and typeBitsBulkBarrier instead. :ﬁngfﬁs

304 et

385 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { ﬂgjﬁﬁimmL

386 // src is on our stack, dst is a slot on another stack. e

387 It the chamel is not
it implies that the

388 // Once we read sg.elem out of sg, it will no longer S

389 // be updated if the destination’'s stack gets copied (shrunk}.

31e // 50 make sure that no preemption points can happen between read & use.

311 dst := sg.elem

312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)

313 memmove({dst, src, t.size)

314 }

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe

123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
123 * generic single channel send/recy
* If block is net nil,

. . 1
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.
13 ¥
* sleep can wake up with g.param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.
133 ¥/
142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You can just read it: ...

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for

8@ ff violating that assumption, but the write barrier has to work.)

201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes

282 /f are not in the heap, so that will not help. We arrange to call ﬂmmﬂmm%

383 f/ memmove and typeBitsBulkBarrier instead. :ﬁngfﬁs

304 et

385 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { ﬂgjﬁﬁimmL

386 // src is on our stack, dst is a slot on another stack. e

387 It the chamel is not
it implies that the

388 // Once we read sg.elem out of sg, it will no longer S

389 // be updated if the destination’'s stack gets copied (shrunk}.

31e // 50 make sure that no preemption points can happen between read & use.

311 dst := sg.elem

312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)

313 memmove({dst, src, t.size)

314 }

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe
123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
125 chansend(c, elem, true, getcallerpe())

1% }

/%
123 * generic single channel send/recy
120 * If block is not nil,

° °
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.
13 ¥
135 * sleep can wake up with g.param == nil
* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
132 * the operation; we'll see that it"s now closed.

139 */
142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You canjustreadit: .. ,

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
8@ ff violating that assumption, but the write barrier has to work.)
201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes
282 /f are not in the heap, so that will not help. We arrange to call :qmngthmd_c'
383 f/ memmove and typeBitsBulkBarrier instead. IHM:E:;::EF%? ;
: : 304 e
‘‘‘‘‘‘‘‘ G 15taCk ﬁ,t.@.‘,:.k. 385 Func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { i"ﬂﬁii-?{‘iiiiZE"“““‘
386 /f src is on our stack, dst is a slot on another stack. e s =
' 387 the chamel 15 rot
G2 stacké """"""" T """" 388 // Once we read sg.elem out of sg, it will no longer ft]m%]mhatthe
: heap 389 /{ be updated if the destination's stack gets copied (shrunk). s
per-goroutine stacks 31e // 50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
G1 writes to G2's stack! 31) R, Sis B,

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe
123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
1 chansend(c, elem, true, getcallerpe())
}

/%
* generic single channel send/recy
* If block is net nil,

° ° 1
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.

CEEEBEBER

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run

% the operation; we'll see that it's now closed.

133 ¥/

142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You can just read it: .. ,

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297 ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
8@ ff violating that assumption, but the write barrier has to work.)
201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes
282 /f are not in the heap, so that will not help. We arrange to call :qmngthmd_c'
rTTETrmmRsma s ; 383 f/ memmove and typeBitsBulkBarrier instead. IHM:E:;::EF%? ;
: 304 e
‘‘‘‘‘‘‘‘ G 15taCk ﬁ,t.@.‘,:.k. 385 Func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { i"ﬂﬁii-?{‘iiiiZE"“““‘
386 /f src is on our stack, dst is a slot on another stack. e s =
. 387 it the chamel 15 not
G2 stacké """"""" T """" 388 // Once we read sg.elem out of sg, it will no longer ft]m%]mhatthe
heap 389 /{ be updated if the destination's stack gets copied (shrunk). s
per-goroutine stacks 31e // 50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
G1 writes to G2's stack! 31) R, Sis B,

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

Transputers did this in hardware in the 90s btw.

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:
* https://golang.org/src/runtime/chan.go

* Some highlights:

Race detection built in

Fast path just write to receiver stack

Often has no capacity = scheduler hint!
Buffered channel implementation fairly standard

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

{/gotnosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

generic single channel send/recy
If block is net nil,

then the protecol will not
sleep but return if it could
not complete,

sleep can wake up wi
* when a channel i ed in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

ap
/

th g.param == nil

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

if ¢ == nil {
if Iblock {
return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

if debugcChan {
print("chansend: chan=", ¢, "\n")

if raceenabled {
racereadpc (unsafe.pointer(c), callerpc, funcPC{chansend))

Fast path: check for failed non-blocking operation witheut acquiring the lock.

not ready for sending. Each of these observations is a single word-sized read
(first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
Because a closed channel cannot transition from 'ready for sending' to

‘not ready for sending', even if the channel is closed between the two cbservations,
they imply a moment between the two when the channel was both not yet closed

and nct ready for sending. We behave as if we observed the channel at that mement,
and report that the send cannot proceed.

."Ii
."..J
/[After observing that the channel is not closed, we observe that the channel is
/]
1

It is okay if the reads are reordered here: if we observe that the channel is not
ready for sending and then observe that it is not closed, that implies that the
channel wasn't closed during the first observation.

if Iblock & c.closed == B & ((c.datagsiz == @ & c.recvq.first == nil) |

(c.datagsiz » @ & c.qoount == c.datagsiz)) {
refurn false

var 1@ inte4
if blockprofilerate > @ {
te = cputicks()

lock(&c.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

if sg i= c.recvg.dequeue(); sg != nil {

Found 3 waiting receiver. We pass the value we want to send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%

https://golang.org/src/runtime/chan.go

-

po-d

N " ——
.—q l--
L .

g

R

}

uiim
‘B

s oo Wt e
rw« R ™

L—
.

» 3

b and n

T

- ""—:.f-:.' ==
W=y £
B i =
e B =iy Y ée
S

-
-

. w——— v—

[

Ny, ¢
P

b bt

" A Lt

bean i +—

|..—~

A modern GPU: Volta V100

PCI Express 3.0 Host Interface

Memory Controller
Jej101u0) Kiowepy

i

2
'3
8
S
S
2

910309 Kiowop

Memory Controller
seii00U00 Aiowem

(010D Kiowe

Memory Controller

NVLink NVLink

A modern GPU: Volta V100

* 80 SMs

e Streaming Multiprocessor

PCI Express 3.0 Host Interface

Memory Controller
1u0D Aiowop

1)

2
'3
8
S
S
2

910309 Kiowop

Memory Contry
seii00U00 Aiowem

nu0) Kiowap

Memory Controller

e L e
NVLink NVLink

A modern GPU: Volta V100

* 80 SMs

e Streaming Multiprocessor

PCI Express 3.0 Host Interface

Memory Controller
Jej101u0) Kiowepy

910309 Kiowop

2
'3
8
S
S
2

Memory Controller
seii00U00 Aiowem

Memory Controller
J0jj0nu0D Kiowap

-y =y N High-S, "
NVLink NVLink NVLink

A modern GPU: Volta V100

* 80 SMs

e Streaming Multiprocessor

PCI Express 3.0 Host Interface

Memory Controller
1u0D Aiowop

1)

2
'3
8
S
S
2

910309 Kiowop

Memory Contry
seii00U00 Aiowem

nu0) Kiowap

Memory Controller

e L e
NVLink NVLink

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

INT [FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

Streaming Multiprocessor
i o o et ConeCoRe 64 cores/SM

FP32 FP32 FP32 FP32
* 5210 threads
FP32 FP32 FP32 FP32 .
FP32 FP32 FP32 FP32
LD/ LD/ LD LD/ LD/ LD/ LD/ LD/ LD/ . ; I I
ST ST ST ST ST ST ST ST ST ST

PCI Express 3.0 Host Interface LO Instruction Cache L0 Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Yor

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

RMOTY Gon.,

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32

Memory Controller

TENSOR TENSOR e FP2FP32 1eNSOR TENSOR

FP64 INT FP32 FP32 CORK CORK FP64 INT FP32 FP32 CORE CORE

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

Memory Controller

FP64 INT FP32 FP32 FP64 INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/

SFU LD/ LD/ LD/ LD/ LD/ LD/ LD
ST 5T ST ST ST ST 5T ST

8T ST ST ST ST 8T ST ST

128KB L1 Data Cache / Shared Memory

Tex Tex

Memory Controller

£33 5 re - T4
NVLink NVLink NVLink

L1 Instruction Cache

LO Instruction Cache
Warp Scheduler (32 thread/clk)

L0 Instruction Cache
‘Warp Scheduler (32 thread/clk)

A modern

Roughly: all

Yor

4
5
z
s
£
A

Memory Controller Memory Controller

Memory Controller

PCI Express 3.0 Host Interface

NVLink

£33
NVLink

LD/
ST

FP64

FP64

FP64

FP64

FP64

FP64

FPG4

FP64

LD/
5T

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32 .
e Streami
FP32 FP32 FP32 FP32
FP32 FP32 TENSOR TENSOR FP32 FP32 TENSOR TENSOR . 64 CO r S S IVI
Frad Ep3s CORE | CORE P32 Epag CORE | CORE
FP32 FP32 FP32 FP32
e 5210/threads!
FP32 FP32 FP32 FP32)
FP32 FP32 FP32 FP32
- e 15.7 TFLOPS
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ .

ST ST ST

ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT

INT

INT

INT

INT

INT

INT

INT

LD/
ST

INT FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST ST

TENSOR
CORE

LD/ LD/
5T ST

128KB L1 Data Cache / Shared Memory

Tex

TENSOR
CORE

SFU

LD/
8T

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/
ST

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

ST ST 8T

ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

INT

INT

INT

INT

INT

INT

INT

INT

LD/
ST

Tex

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST 8T

TENSOR
CORE

LD/ LD/
ST ST

TENSOR
CORE

* 80 SMs

of k-means

1,000s X/sec

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

INT [FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

Streaming Multiprocessor
i o o et ConeCoRe 64 cores/SM

FP32 FP32 FP32 FP32
* 5210 threads
FP32 FP32 FP32 FP32 .
FP32 FP32 FP32 FP32
LD/ LD/ LD LD/ LD/ LD/ LD/ LD/ LD/ . ; I I
ST ST ST ST ST ST ST ST ST ST

PCI Express 3.0 Host Interface LO Instruction Cache L0 Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Yor

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

RMOTY Gon.,

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32

Memory Controller

TENSOR TENSOR e FP2FP32 1eNSOR TENSOR

FP64 INT FP32 FP32 CORK CORK FP64 INT FP32 FP32 CORE CORE

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

Memory Controller

FP64 INT FP32 FP32 FP64 INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/

SFU LD/ LD/ LD/ LD/ LD/ LD/ LD
ST 5T ST ST ST ST 5T ST

8T ST ST ST ST 8T ST ST

128KB L1 Data Cache / Shared Memory

Tex Tex

Memory Controller

£33 5 re - T4
NVLink NVLink NVLink

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

INT [FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

Streaming Multiprocessor
i o o et ConeCoRe 64 cores/SM
- —— 5210 threads!

FP32 FP32 FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ 1 5 . ; I F LO I S
ST ST ST ST ST

ST ST ST ST ST

PCI Express 3.0 Host Interface LO Instruction Cache L0 Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk) ® 6 4 O Te n S O r C O re S

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Yor

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

RMOTY Gon.,

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32
FP64 INT FP32 FP32 FP64 INT FP32 FP32
FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 TENSOR TENSOR FP64 INT FP32 FP32 TENSOR TENSOR

FP64 INT FP32 FP32 CORK CORK FP64 INT FP32 FP32 CORE CORE

Memory Controller

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

Memory Controller

FP64 INT FP32 FP32 FP64 INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/

SFU LD/ LD/ LD/ LD/ LD/ LD/ LD
ST 5T ST ST ST ST 5T ST

8T ST ST ST ST 8T ST ST

128KB L1 Data Cache / Shared Memory

Tex Tex

Memory Controller

£33 5 re - T4
NVLink NVLink NVLink

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

FP32 FP32 INT FP32 FP32

FP32 FP32 INT FP32 FP32

Streaming Multiprocessor
i o o s R TooR 64 cores/SM

FP32 FP32 INT FP32 FP32
e 5210 threads!

FP32 FP32 INT FP32 FP32 .

FP32 FP32 INT FP32 FP32
e 15.7 TFLOPS

LD/ LD/ LD/ LD/ LD/ LDr LD/ LD/ LD/ .

sT ST ST ST ST ST ST ST ST ST
PCI Express 3.0 Host Interface LO Instruction Cache LO Instruction Cache
) " Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk) o 6 4 O I e n S O r C O re S

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT FP32 FP32 INT INT FP32 FP32 I I B M 2 I I l e I I | O ry
FP64 INT FP32 FP32 INT INT FP32 FP32 .

e 4096-bit bus
FP64 INT FP32 FP32 INT INT FP32 FP32
FP64 INT FP32 FP32 TENSOR TENSOR INT INT FP32 FP32 TENSOR TENSOR

* No cache coherence!

FP64 INT FP32 FP32 INT INT FP32 FP32

FP64 INT FP32 FP32 INT INT FP32 FP32

Memory Controller

FP64 INT FP32 FP32 INT INT FP32 FP32

LD/ LDl LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
3] SFU

ST ST ST ST ST ST ST ST ST ST ST T
128KB L1 Data Cache / Shared Memory

Tex Tex

a L e
NVLink NVLink

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

FP32 FP32 INT FP32 FP32

FP32 FP32 INT FP32 FP32

Streaming Multiprocessor
i o o s R TooR 64 cores/SM

FP32 FP32 INT FP32 FP32
e 5210 threads!

FP32 FP32 INT FP32 FP32 .

FP32 FP32 INT FP32 FP32
e 15.7 TFLOPS

LD/ LD/ LD/ LD/ LD/ LDr LD/ LD/ LD/ .

sT ST ST ST ST ST ST ST ST ST
PCI Express 3.0 Host Interface LO Instruction Cache LO Instruction Cache
) " Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk) o 6 4 O I e n S O r C O re S

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT FP32 FP32 INT INT FP32 FP32 I I B M 2 I I l e I I | O ry
FP64 INT FP32 FP32 INT INT FP32 FP32 .

e 4096-bit bus
FP64 INT FP32 FP32 INT INT FP32 FP32
FP64 INT FP32 FP32 TENSOR TENSOR INT INT FP32 FP32 TENSOR TENSOR

* No cache coherence!

FP64 INT FP32 FP32 INT INT FP32 FP32

FPe4 | INT FP32 FP32 SO g 1 6 G B m e m O ry

FP64 INT FP32 FP32 INT INT FP32 FP32

Memory Controller

LD/ LDl LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
3] SFU

ST 5T ST ST 5T ST 5T ST

pew s e PCle-attached

128KB L1 Data Cache / Shared Memory

Tex Tex

a L e
NVLink NVLink

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S IVI S

FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

Streaming Multiprocessor
i o o et ConeCoRe 64 cores/SM

INT FP32 FP32 FP32 FP32
e 5210 threads!

INT FP32 FP32 FP32 FP32 .

INT [FP32 FP32 FP32 FP32
e 15.7 TFLOPS

LD/ LD/ LD/ LD/ LD/ LDr LD/ LD/ LD/ .

sT ST ST ST ST ST ST ST ST ST

PCI Express 3.0 Host Interface LO Instruction Cache LO Instruction Cache
g : Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk) o 6 4 O I e n S O r C O re S

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT FP32 FP32 INT INT FP32 FP32 I I B M 2 I I l e I I | O ry
FP64 INT FP32 FP32 INT INT FP32 FP32 .

e 4096-bit bus
FP64 INT FP32 FP32 INT INT FP32 FP32
FP64 INT FP32 FP32 TENSOR TENSOR INT INT FP32 FP32 TENSOR TENSOR

* No cache coherence!

FP64 INT FP32 FP32 INT INT FP32 FP32

FPe4 | INT FP32 FP32 SO g 1 6 G B m e m O ry

FP64 INT FP32 FP32 INT INT FP32 FP32

Memory Controller

' / /
LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/

ST 5T ST ST 5T ST 5T ST

pew s e PCle-attached

128KB L1 Data Cache / Shared Memory

Tex Tex

a - ‘ - - e
NVLink NVLink

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

FP32 FP32 INT FP32 FP32

FP32 FP32 INT FP32 FP32

Streaming Multiprocessor
i o o s R TooR 64 cores/SM

FP32 FP32 INT FP32 FP32
e 5210 threads!

FP32 FP32 INT FP32 FP32 .

FP32 FP32 INT FP32 FP32
e 15.7 TFLOPS

LD/ LD/ LD/ LD/ LD/ LDr LD/ LD/ LD/ .

sT ST ST ST ST ST ST ST ST ST
PCI Express 3.0 Host Interface LO Instruction Cache LO Instruction Cache
) " Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk) o 6 4 O I e n S O r C O re S

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT FP32 FP32 INT INT FP32 FP32 I I B M 2 I I l e I I | O ry
FP64 INT FP32 FP32 INT INT FP32 FP32 .

e 4096-bit bus
FP64 INT FP32 FP32 INT INT FP32 FP32
FP64 INT FP32 FP32 TENSOR TENSOR INT INT FP32 FP32 TENSOR TENSOR

* No cache coherence!

FP64 INT FP32 FP32 INT INT FP32 FP32

FPe4 | INT FP32 FP32 SO g 1 6 G B m e m O ry

FP64 INT FP32 FP32 INT INT FP32 FP32

Memory Controller

LD/ LDl LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
3] SFU

ST 5T ST ST 5T ST 5T ST

pew s e PCle-attached

128KB L1 Data Cache / Shared Memory

Tex Tex

a L e
NVLink NVLink

L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

FP32 FP32 INT FP32 FP32

FP32 FP32 INT FP32 FP32

Streaming Multiprocessor
i o o s R TooR 64 cores/SM

FP32 FP32 INT FP32 FP32
e 5210 threads!
FP32 FP32 INT FP32 FP32)
FP32 FP32 INT FP32 FP32
- e 15.7 TFLOPS
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ .
8T ST ST ST ST ST ST ST ST ST
PCI Express 3.0 Host Interface LO Instruction Cache LO Instruction Cache
- e v——— S * 640 Tensor cores

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT FP32 FP32 INT INT FP32 FP32 I I B M 2 I I I e I I l O ry
FP64 INT FP32 FP32 INT INT FP32 FP32 .
e 4096-bit bus
FP64 INT FP32 FP32 INT INT FP32 FP32
FP64 INT FP32 FP32 TENSOR TENSOR INT INT FP32 FP32 TENSOR TENSOR

* No cache coherence!

FP64 INT FP32 FP32 INT INT FP32 FP32

= 0 * 16 GB memory
 PCle-attached

Memory Controller

LD/ LDl LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
3] SFU

ST ST ST ST ST ST ST ST ST ST ST ST
128KB L1 Data Cache / Shared Memory

Tex Tex

e o - - - e
NVLink NVLink NVLink NVLink

How do you program a machine
like this? pthread_create()?

GPUs: Outline

e Background from many areas

* Architecture
* Vector processors
* Hardware multi-threading
* Graphics
* Graphics pipeline
* Graphics programming models

e Algorithms
* parallel architectures - parallel algorithms

* Programming GPUs
* CUDA

* Basics: getting something working
e Advanced: making it perform

Architecture Review: Pipelines

Processor algorithm:

main() {

while(true)
do_next_instruction();

}

Architecture Review: Pipelines

Processor algorithm:

main() §

while(true)
do_next_instruction();

}

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

Architecture Review: Pipelines

Processor algorithm:

main() §
v main(){
pthread create(do_instructions);
} pthread create(do_decode);
pthread create(do_execute);

do n
inst
ops
exel }
access_memory(ops, regs);
write back(regs);

pthread join(...);

Architecture Review: Pipelines

Processor algorithm: do_instructions){
while(true) {
main() { instruction = fetch();
enqueue(DECODE, instruction);
v main(){ 3
pthread create(do_instructions);
. do_decode() {
} pthread create(do_decode); while(true) {
pthread_create(do_execute); instruction = dequeue();
— — ops, regs = decode(instruction);
vee enqueue(EX, instruction);
do_n pthread join(...); 3
INst
ops. ot do_execute() {
exe } while(true) {
) instruction = dequeue();
accj_ess_memory(OpS, regs), execute calc_addrs(ops, regs);
Wnte_back(regs); enqueue(MEM, instruction);

¥ B

Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

}

Architecture Review: Pipelines

Processor algorithm: do next_instruction() {
main() { instruction = fetch();
while(true) { ops, regs = decode(instruction);
do_next_instruction(); execute calc_addrs(ops, regs);
] access_memory(ops, regs);

write back(regs);

Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

}

Instruction Elnstr. Decode Execute : Memory Write
Fetch ' Aeq. Fetch ' Addr. Calg ; Access . Back

Next PC 7] nedaseapc) Nestsearc [T]
RS1
= 2 —
| - :'_Irn.'.u
= ? i g
—
—- -
-é‘m
(=]
menl 2
oy

arrdi

FER]]

BB B

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

}

Architecture Review: Pipelines

Processor algorithm: do_next_instruction() {

main() { instruction = fetch();
while(true) { ops, regs = decode(instruction);
do_next_instruction(); execute calc_addrs(ops, regs);
] access_memory(ops, regs);
v v oooce | Eote | womoy | ot write back(regs);

Fetch ' Aeq. Fetch ' Addr. Calg ; Access . Back

Next PC 7] neaseapc 7] NextseQPC [T] }
RS1
A F Instr No. Pipeline Stage
i - .
— 2 - []"' 1 IF | ID | EX IMEM| WB

8 2 IF | ID | EX |MEM wB
= ‘ 3 IF | ID | EX |[MEM| WB
5 ™ / | 4 IF | ID | EX |[MEM
E 3 g%“ 5 IF | ID | EX
A ‘ - & g';:._‘i'é 1|2|3|a|5|6]|7
A |2 |2 2

Architecture Review: Pipelines

Processor algorithm: do next_instruction() {
main() { instruction = fetch();
while(true) { ops, regs = decode(instruction);
do_next_instruction(); execute calc_addrs(ops, regs);
} access_memory(ops, regs);
Instruction Elrrs-tr. Decode Execute Memory Write Write_baCk(regS);
Fetch Reg. Fetch * Addr. Galc ; Access Back }
F:as!‘ ,J Instr No. Pipeline Stage
— 'g i 1 IF | ID | EX [MEM| wB
—.__. 2 IF [ID | EX [MEM| WB
= ‘ 3 IF | ID | EX [MEM| WB
; 4 IF | ID | EX [MEM]|
| i"f 5 IF | ID | EX
A A

What is the name of this kind of parallelism?

Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

Instruction Elrrstr. Decode Execute Memory Write
Fetch * Aeg. Fetch * Addr. Galc !

Next PC] wessearc [] MextSEQPC

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

RS1

L =

3
#

—)

Instr No.

Plpeline Stage

1

EX [MEM| WB

ID | EX |MEM

MEM| WB

2
3
4

EX |MEM|

|

BB 2

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

What is the name of this kind of parallelism?

Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

Instruction Elrrstr. Decode Execute Memory Write
Fetch * Aeg. Fetch * Addr. Galc ; Access * Back

Next PC) weasearc [0] MextsEorC [T k, [
RS1
A

BB 2

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Instr No. Pipeline Stage
1 IF | ID | EX |MEM| WB

2

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

What is the name of this kind of parallelism?

nsoru

on

32KB L1 I-Cache Pre decode

Branch Prediction Unit

m?

[
'stalls?

Memory Control

lelism?

Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

Instruction Elrrstr. Decode Execute Memory Write
Fetch * Aeg. Fetch * Addr. Galc ; Access * Back

Next PC) weasearc [0] MextsEorC [T k, [
RS1
A

BB 2

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Instr No. Pipeline Stage
1 IF | ID | EX |MEM| WB

2

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

What is the name of this kind of parallelism?

Multi-core/SMPs

Multi-core/SMPs

Instruction Elrw.tr_ Decode
Fetch ' Reg. Fetch

Mext PC] wesseorc |7

RS1T
A

o4 Bay

ER B

Multi-core/SMPs

Multi-core/SMPs

Elm«r. Decode ' Execute Memory Write
Fetch : Reg. Fetch H Addr, Calc 4 ACCOSS Back
Next PC Q PC Noxt SEQ PC
Asy
w
£ e
2

-
T

— — —
Elmtt. D ' Execute ' Memory
Fetch : Reg. Fetch H Addr. Calc 2 ACCOsS
Next PC Q PC Noxt SEQ PC
Asy

— — —
flmlr. Decode ' Execute ' Memory '
Fetch : Reg. Fetch H Addr, Calc 2 ACCOsS -
Next PC Q PC Noxt SE£Q PC
As
w
£ it
2

e
—_— — —
Instruction : Instr. Decode : Execute : Memory : Write
Fetch : Reg. Fetch i Adgdr. Calc 2 Access - Back
Next PC lext SEQ PC Noxt SEQ PC
AsS
=
z —

Multi-core/SMPs

Instruction : Instr. Decode :
Fot

Execut Memory

: =
Fetch : Reg. ch H Addr, Calc Accoss

e) —cmcsoce g _se—eorc —j—l @ main() {
‘ % | for(i=0; i<CORES; i++) {
: pthread create(

do_instructions());

}
}

do_instructions() {
while(true) {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

1

——

* Pros: Simple

* Cons: programmer has to find the parallelism!

Instruction Instr. Execute

Multi-core/SMPs

main() {
for(i=o; i<CORES; i++) {
pthread create(
do_instructions());

}
}

do_instructions() {
while(true) {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

1

COREA COREA

* Pros: Simple

* Cons: programmer has to find the parallelism!

Multi-core/SMPs

instr. De

Instr. H 1 e
Fetch : Reg. Fetch i Agdr. Calc

= e e m main() {
- ' S] .]
0 for(i=0; i<CORES; i++) {
i
- G) : pthread create(
Rl o = - do_instructions());
— = : === TITTTTITITTTITTrTIveT)
' }
’ & ' do_instructions() {
Ly v v while(true) {
R = | " instruction = fetch();
£ -
3 ops, regs = decode(instruction);
- i s . execute calc_addrs(ops, regs);
— access_memory(ops, regs);
T e _ write_back(regs);
Ll : - !
= Other techniques extract
: - = parallelism here, try to let the

find parallelism

Superscalar processors

Superscalar processors

Remove extra
instruction streams

Superscalar processors

Superscalar processors

INstruction L inatr. Decode H Exacute H Pl s ey H W rite
Fatah L Rag. Fatch H Addr. Cale H Aceann : Back

[] Fduaxct ESPmCT pres Flaxt SEQ P

==

[IED

Ty

[EE]

| s

112

ik T

b
_|

112

J e e
Bl

EHE]

Ty

g

Pdasxt ESESEE IS vy SELa PO [
p—
TER @
Ll
——| ?

(]
1

b
Y
-~
[}
FEM]
[E 03]
EOIE]

Eal)

Superscalar processors i)

for(i=0; i<CORES; i++)
| pthread create(decode_exec);
. while(true) {
instruction = fetch();
enqueue(instruction);

Py i
- w
[{]E]
1
gl
g3 by 0
1fg
a3l
'+
z z
H HB
i - By
4 ole
i m/ | B
-
»a
1]
- 08
by
e

{:
6
B
0
k.
EEIQ,

]
1
Jii]

| B
3
G
dig
DF
|| PR
P
L
ol

‘%mg;c }"' b—‘\;{'—"i_l' | I } }
— &
__J

instruction = dequeue();

ops, regs = decode(instruction);

execute calc_addrs(ops, regs);

—® access_memory(ops, regs);
_3

write_back(regs);

e . = decode exec(){
m

7]
1
)
dig
e
]
[
L
QBN

P
P

]
1
!
ﬂgg aly ([0
El
. ! ﬁ
m/ (i 3
L 1]

L]

Superscalar processors i)

for(i=0; i<CORES; i++)
pthread create(decode_exec);

oSk i g =P 7 1 .
uuuuuu 1 :;-:d&zcl [ar=3 1 Flose SEG) B [[Whlle(true) {
> = =
=

i

L s
[{E]
1
E]
|
-~
g
1
L] *

instruction = fetch();
3]§ enqueue(instruction);
m

,,,,,,,, = e = }
e :, |
/= =
]

N
I
I12

P

i

[{E]

1
8
m\‘

g
1
[|> LE 1] *
D, 0N
-
EED N

}

P
il

i

| D i+
1
i
nm\‘
[}
[|> 1
[|> L 1] *
P
-
EEN B

instruction = dequeue();

ops, regs = decode(instruction);

_ execute calc_addrs(ops, regs);

el o : —® access_memory(ops, regs);
1

write back(regs);
= Ll ' }

Doesn’t look that different does it? Why do it?

Ea%c e 5 W decode exec(){
-

Bl

i

a4ty
i

ad
1
i
m\
[}
FEI]
[E 03] *
[TTET
B

Superscalar processors i)

for(i=0; i<CORES; i++)
pthread create(decode_exec);

oSk g PSS 1 Memaw .
Pt Tz 1 :;.,: aaaaaa 1 Flose SEG) B [[Whlle(true) {
> = =
=

i

| s
[{E]
1
E]
|
-~
g
1
L] *

instruction = fetch();
3]§ enqueue(instruction);
m

,,,,,,,,, e = }
e
/= =
]

N
I
I12

P

i

}

[{E]

1
8
nm\‘

g
1
[D LE 1] *
D, 0N
-
EED N

P
il

i

i+
1
i |
ol]
[}
1
L 1] *

W

instruction = dequeue();
ops, regs = decode(instruction);
_ :.] execute calc_addrs(ops, regs);
== ; —» access_memory(ops, regs);
1

write back(regs);

e — > | decode_exec() {
1

B
|6
B
b
il

i

ad
1
i
ma\
[}
FEI]
* .
H
5
n
L]
[TTET
B

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.

Superscalar processors

| s
]
1
b
maq\-.
<li%/l
1]
H HLE
; ;o)
n E 7 J
e
!
e

N
I
I12

P

ad
1
5
@I
l@ |
\ia
y*
ETIE]]

®,

P

—1w $t0,20(5s2)

méaddu Stl . BEl, L2
L_——sub $s4,$s4,5t3

=
=

*El'slti $t5,$s4, 20

p

| £

A =

il
1

| B

(]
1

main() {
for(i=0; i<CORES; i++)
pthread_create(decode_exec);
while(true) {
instruction = fetch();
enqueue(instruction);

}
}

decode exec(){
instruction = dequeue();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.

Superscalar processors

uuuuuu

| s
[{]E]

N

i
3
m‘\
1fg
1]
H HLE
; ;o)
E i
n 7
—
EIED
ol

I2
I12
P

a

P

T |

j

El

m\‘-.
g‘j
I

[E]
b

W Sl . 20 (S82
ddu St1,8€0, S5t

Sub S$s4,8s84,5¢t

D

main() {
for(i=0; i<CORES; i++)
pthread_create(decode_exec);
while(true) {
instruction = fetch();
enqueue(instruction);

}
}

decode exec(){
instruction = dequeue();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.

Vector/SIMD processors

C code
for (1i=0; i<64; i++)
C[i] = A[i] + B[i]:

Scalar Code
LI R4, 64

loop:
L.D FO, O(R1l)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0 (R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, 1

Vector/SIMD processors

INstruction L inatr. Decode H Exacute H Pl s ey H W rite
Fatah L Rag. Fatch H Addr. Cale H Aceann : Back

Pdosac POET L et smemes pees 1 [el =N ol=] [I _| 1
m # C code
- =]

a

E|lfor (1=0; i<64; i++)
C[i) = A[i) + B[i]):

[

[
|

Scalar Code

L
4J LI R4, 64
loop:

L.D FO, O(R1l)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8

___]’Hl DADDIU R2, 8
DADDIU R3, 8
- 1

a

[ETE]
EHED

P
({2
L3

DSUBIU R4,
BNEZ R4,

[(E]

[E1E]
EHE]

D
[
15

(]

[EE]
L]

N Mg |

Eal)

Vector/SIMD processors

0 DU 0’ U
- - - - e 4 Exacuts H Pl s ey H W rite
U U o U O edr. Cale : Acoaan : Bac
nnnnnnnnn I
=
[

for (i=0; i<64; i++)
= C[i] = A[i] + B[i]:

e T # Scalar Code

o LI R4, 64
= = 1 3
L.D \FO, O(R1l
L.D , 0(R2
m@— ADD.D ¥4, F2, FO
S.D 4, 0(R3)
DADDIU|R1,
DADDIUJR2,
DADDIUJR3,

DSUBIY R4,
BNEZ R4, loop

HoOoo®

H

Vector/SIMD processors

Vector/SIMD processors main)

for(i=0; i<CORES; i++)
- pthread_create(exec);
while(true) {
ops, regs = fetch_decode();
enqueue(ops, regs);
}
}

.

-9

exec(){
ops, regs = dequeue();
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

-9

- _

Vector/SIMD processors

main() {
for(i=0; i<CORES; i++)
o EET R Lggwe Lowmmw fows pthread create(exec);
S 4 » .
=2 = = while(true) {
- . ops, regs = fetch_decode();

uix

— > enqueue(ops, regs);
}
}
exec(){
ops, regs = dequeue();

execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Single instruction stream, multiple computations

Vector/SIMD processors main)

for(i=0; i<CORES; i++)
pthread create(exec);
while(true) {
ops, regs = fetch_decode();
enqueue(ops, regs);
}
}

exec(){
ops, regs = dequeue();
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Single instruction stream, multiple computations
But now all my instructions need multiple operands!

Vector Processors

* Process multiple data elements simultaneously.
e Common in supercomputers of the 1970’s 80’s and 90’s.

* Modern CPUs support some vector processing instructions
e Usually called SIMD

e Can operate on a few vectors elements per clock cycle in a pipeline or,
* SIMD operate on all per clock cycle

Vector Processors

* Process multiple data elements simultaneously.

e Common in supercomputers of the 1970’s 80’s and 90’s.

* Modern CPUs support some vector processing instructions
e Usually called SIMD

e Can operate on a few vectors elements per clock cycle in a pipeline or,
e SIMD operate on all per clock cycle

* 1962 University of lllinois llliac IV - completed 1972 - 64 ALUs 100-150 MFlops
e (1973) TI's Advance Scientific Computer (ASC) 20-80 MFlops

* (1975) Cray-1 first to have vector registers instead of keeping data in memory

22

Vector Processors

* Process multiple data elements simultaneously.

e Common in supercomputers of the 1970’s 80’s and 90’s.

* Modern CPUs support some vector processing instructions
e Usually called SIMD

e Can operate on a few vectors elements per clock cycle in a pipeline or,
e SIMD operate on all per clock cycle

* 1962 University of lllinois Illiac IV - completed 1972 - 64 ALUs 100-150 MFlops
e (1973) TI's Advance Scientific Computer (ASC) 20-80 MFlops

* (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data 2>
Programming model has to change

Vector Processors

2 Implementation:
fo) . .
3 * Instruction fetch control logic shared

i pon AP SMF * Same instruction stream executed on
" * Multiple pipelines

A 16Bx2

» =¥RE..
“ -*.a_ =1 Multiple different operands in parallel
PERM LSU
1 |

Vector Processors

a= Implementation:
3 * Instruction fetch control logic shared
. LocaIStom§ . .
o pon MR S e Same instruction stream executed on
N = * Multiple pipelines
A 16Bx2 ,I’1SBx3x2 . . -
m — g B * Multiple different operands in parallel
P:.II{J‘JI L;U
Scalar Registers Vector Registers
ro o 0] M [2] [VLRMAX-1]

[63], [127], [258], ...
Vector Length Register | \/LR

Vector Arithmetic 3;
Instructions A ERAERAEAEEA
ADDV v3, v1, v2 v3r ‘ : '
[01 [1] [VLR-1]
Vector Load and Vector Register
Store Instructions Me—e—————=
LVvi, r1, r2 ' '
] Memory

Base, r1 | Stride, r2b

Vector Processors

)

m Local Stona%
Single Port ‘ P SMF
Branch SRAM | |
A — |
> =fBE
A 16B x 2 ,I’HSBxBx?
* h
PERM LSy
]]
Scalar Registers Vector Registers
r15 v15;
v Y 2 [VLRMAX-1]
[63], [127], [255], ...
Vector Length Register | \/LR
Vector Arithmetic 3;
Instructions A ERAERAEAEEA
ADDV v3, v1, v2 v3c———— = = —
01 Ml [VLR-1]
Vector Load and Vector Register
Store Instructions Me——————= . —
LVv1, r1, r2
A ol M
Base, r1 | Stride, r2 emory

Implementation:
Instruction fetch control logic shared
e Same instruction stream executed on

* Multiple pipelines
* Multiple different operands in parallel
C code
for (i=0; i<64; i++) H Vector Code
C[i] = A[i] + BI[i]; LI VLR, 64
Scalar Code LV Vi, R1
LI R4, 64 LV V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3
L.D F2, 0 (R2)
ADD.D F4, F2, FO
S.D F4, 0 (R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

Vector Processors

Local Store
Single Port
SRAM
* *’
JZZIZ:!?LSA'H:
|
/" Scalar Registers Vector Registers
ro vo
(01 M1 [2] [VL
(63], [127], [255], ...
Vector Length Register VLR
~ Vector Arithmetic z; = ——
. v «v «v «v «v
Instructions OO Rt
ADDVv3,v1,v2 v3c—————————
[01 [l [VLR-1]
Vector Load and Vector Register
Store Instructions Ve =
wvt,rt,r2 /////
f Memory

. Base, r1 Stride, r2

GPUs: same basic idea

Implementation:

* Instruction fetch control logic shared
e Same instruction stream executed on
* Multiple pipelines

* Multiple different operands in parallel
C code

for (i=0; i<64; i++)

C[i] = A[i] + B[i];

ADD.D F4,

DADDIU R1, 8
DADDIU R2,
DADDIU R3,
DSUBIU R4,

Scalar Code

64

0 (R1)
0 (R2)
F2, FO
0 (R3)

8
8
1
loop

Vector Code

LI VLR, 64
LV V1,
LV V2,
ADDV.D V3,
SV V3,

CSRR

When does vector processing help?

Instruction 'Instr. Decode : Execute : Memory | Write
Fetch * Reg. Fetch ' Addr. Calc s Access : Back

When does vector processing help?

Instruction 'Insir. Decode + Execute : Memory : Wite

Fetch * Reg. Fetch * Addr.Calc : Access : Back e RS Seasas P Amunrsd Rocend Pows

Next PC

What are the potential bottlenecks here?
When can it improve throughput?

When does vector processing help?

Instruction Elnstr. Decode , Execute
Fetch * Reg. Fetch * Addr. Calc

Next PC

What are the potential bottlenecks here?
When can it improve throughput?

Only helps if memory can keep the pipeline busy!

Hardware multi-threading

Hardware multi-threading

* Address memory bottleneck

Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

20 vwmo_xeme ([MMl wmL Jowe | [S1io) a0 |

ZMMz M2_JOTZ]| ZMM3 TMM3 WS] | STi2) MM2

ma| [padeniz

Chd
As| Fodeer13 | CRI | CRS

ZMMA ¥MMA_ PR | ZMMS [YMME RMME] | STi4) MMA s | [EEGT O Rex SRl TR R4 CRE
ZMME YMME XVWE || ZMMT _YMMT XuM7 | [STiE) MMS 117 || [ox ROX S ekl 5h oo RIS CRT

ZMME YMME xema [[ZMMS | YMMO xamg | JriopeseRE? [l EDi RO PEPRIP [CR3 | CRB
Zmm1a__viem1o ool zumil | umiapwna] | cw | rep|Fe_op[re_cs| [s o RS [alseeseR
ZMMLZ _YMM1Z XPWIE| ZMML3 _tMML3 RET3] | 5w CR10

ZMML4 AT RG] ZMMLS HMLE RuRiE] | T M oz st ZEbltrdster opyy

[] [] §
Frne e s] s s " W ot et W b oo Wb
s s e s s G A e DRO_ DR6 | CRI3
| s || o5 F | DRI DR7 | CRI14
—=—racs | DR2 DRe | cRizaxca

CRo

DRI | DRO

DR4_ DR10|[DA12][DR14
DR5 | DRIL|[DAL3[[DA1S

* Address memory bottleneck e

i Share exec unit across
* |nstruction streams
e Switch on stalls

L 4

Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

Thread 0

Thread 0

Thraad 1

ZMMO viemo xwma | zmmL YMML [oam1 | [sTioy Mmo | sTin ML | l|,|l-n,\xbv [“pudrcriz | CRO L CR4
[zwmz WMz o]| zams TMMS Joms] | stezr iz || 5100 ks | [EEBEr Ao TEeferis | cR: | cRs |
ZMMA YNMA XPRA]| ZMMS YMME Zums] 5 [EES e Rox SEewop1e| TR oAl | CR2 | CRE
ZWME_ YMME Kie ||| ZMMT _ YMMT gb7 | ST(7) WM7 | [efeiafoxROX SF ARl S doRls | CR3 | CRT
ZHME_ YMME xvms [[ZMNS _ YMMI s | JpriepeseRen] [edo eniRD] e ee RIP | CR3 CRE
ZwM1a__vwmI10 Xwio]| ZuMLL | vMmLl wawna] | cw | e |FF_OF|FP_cs| Jais os|Rs| mlshrseRse " RS
ZMMLZ YNMI1Z XPRLE| ZMML3 _YMMLI @umid] | 5w CR1D
211 TS avns_ TG | el btrouil-ivtesonliC
e rean][7w g e s e CR1Z
e s wrae] 7o) [porc Fp_DP[FP_P| [cs 55 |[DS | GDTR_IDTR_ [DRO_ DR6 | CRI3
s || o5 TR LOTR [DRI DR7 | CR14
o orriags | DR? | DRe | CRIE sk
DRI DRS
DR4_ DR10] DR12][DA14
DRy | DR1L|[DR13][DR1S
-
-
ZMMO YPM weno [zMmML [vMmL x| [s1o) Mo | Cporaz) [CRD | CR4
ZVMM2 YUMZ_RVMZ]| ZMM3 [YMM3_EMEG] [STiz} M2]| ST(3) B3 | B RBA] e A5 fedeeRly | CRI | CRS
ZVMa WA XA | zMms (YWWE RG] | STie) a]| sTis) s | [EERGFarRcx The a0 TR | CR2 | CRE
IVME YNMG XVMG || ZMMT [vam7 xwa7 | [STiel MMe [|[STi7) kT | [mibox D% Sh o1l S deoils | CR3 | CRT
TNME WME e [[ZMMS | VMM e | JFEPEcPREF] [odo colRD] __w ar RIP Cre
ZVML0 YPM1D memLo][ZMMIL | ymmil kil [cw [Pip]FRoFF |[EEEEE B CRE
Zvmiz vz K| zmmis [vamia m | se cR1D
Zv1a i omm]| zmws TS | T W Gitregiste B GGyt [O0bitregister [Z5SbEmaster o
e e L W b regerer b reqiste [Les-b repster [l bLeE register
T B s R Fros
ERs B ECE| [Fr orc [FP_DF][FP_F €5 55 | DS | GOTR IDTR [DRO | DRE | CR13
Fs | 55| TR oA | DAL | DR7 | CR14
oR2 | DRe | CRIS [uxcsh
nR3 | PRs

i |

ZMML

AL o |

YMM3_ XS

ST{0 MM ST{L) WML | b Rax| =Juud ne Feerfrz R1Z

FeoR1a

ST{2) M2]| 5T(3) MM3 T e Fo

TR

ZMMZ _YNMMZ_XEHE || ZMM3
ZMMA YNMA_ XU |ZMMS [YMME XWRE]| | STi4: MMa || sTis) Mms | EESterRex Shad e R1e TRkl | CR2 | CRE
ZMME YWME XUMs || ZMMT VMW7 XMWT | [STU61 WM& [|[ST(T) MMT | [RDE S} ooR1L b AeoR1S | RS CRT
TNME vWE waws (| ZMMS | YMMB s | JpuepesrRee] [edo colRD] @ o RIP | A3 | CRE
ZVMML0 Mo xwwiol|[zMmLL [ymmid xwanal| [cw [rr_p|FP_oplFe_cs] s ssips| [mlsreseRsE| M CRE
IMMLZ YNM1Z XUWLE| ZMM13 [YMML13 emig] | 5w CR1D
ZvML VAT L 2Mvs YEE T | Te e ot W Bevregster [l 2SBS0
_— - W obitregierer [sebit resister [12s-bit ronister [l b1t reqister
TR Bt e FPos
T B Frorcfrorrre] [<5 55| 0s] ooh o [GRo ORe
EE TR TR [DR1 | DRT
o wriacs | OR2 | ORe | cais fwcsa
o2 | DR%
CR4 | DR10 |[DR1Z [DR14
GRS | DR1L[DALS [DR1S

Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

* Looks like multiple cores to the OS

20
ZMMz

Fm0 e |

w2 |

ZMML
FE

AL o |

ST{o) MMO_[| 5T{1) ¥MmL | l|,|l-n,\xbv R -

M3 |

STE2) MM2]| 5T¢3) 1m3 | [EEoFar REX

Frenis 1
R4 | CR2 | CRE

ZMMA YNMA XPRA]| ZMMS YMME Zums] STY5) MM || [EIEOCx Rox TR ple|
ZWME_ YMME Kie ||| ZMMT _ YMMT gb7 | ST(7) WM7 | [efeiafoxROX SF ARl S doRls | CR3 | CRT
ZHME_ YMME xvms [[ZMNS _ YMMI s | JpriepeseRen] [edo eniRD] e ee RIP | CR3 CRE
ZMMLa_ vwMID Xm0 ZuMLL | vMML1 ianta] | cw | p P _OF|FP_cs| Jas ss|Rs) [slspeseR RS
ZMMLZ YNM1Z XPRLE| ZMM13 _YMML3 Zamig] CR1D
2uvi1 RO s T | pr e W @
7 e mreun zan s v ama] 2o | zaws] 2| [FeDs CR1Z
2zt 71| amze | v ar] zumis| 2uvaal zano 2w [rrorcFp_DFFPP] [cs s [Ds | GoTR _IDTR_ [DRo_ DRe | cRi3
s || o5 TR LOTR [DRI DR7 | CR14
o orriags | DR? | DRe | CRIE sk
DRI DRS
DR4_ DR10] DR12][DA14
DRy | DR1L|[DR13][DR1S
Thread 0
-
-
2MMo YMMa xweno [[TzMML [YMML e || [s1o) Mma || pudmoR1z CR4
ZVM2 YMZ RPN]| ZMM3 [YMM3_EMEG] [STiziFMZ | 15 | [EEEfevRex Sled o s LFofochla | CRI | CRS
ZVMa WA XA | zMms (YWWE RG] | STie) a]| sTis) s | [EERGFarRcx The a0 TR | CR2 | CRE
IVME YNMG XVMG || ZMMT [vam7 xwa7 | [STiel MMe [|[STi7) kT | [mibox D% Sh o1l S deoils | CR3 | CRT

ZVE veE x| ZMMS

Vs s |

JpriepeerRBe] [edm colRD] A RIP

zw

= mana) 7

ZMMLO YMM10 XMmLaf|ZMM1L
ZVMML2 YMM1z XU ZMML3
YWMLA XENL| ZMMLS | YMWLS Xwie]

Tk

YMMLL XML

EELPEREATTE |

™
[Fpps

cw [rP_ipFP_oe|F

[EEE IR

b regierer b reqiste [LB reg e

W Boitregizze W St reiste [BObIE rsgister [256 ragister
n LLebie g

Thread 0

Thiread 1

ERs B ECE| [Fr orc [FP_DF][FP_F 55 | bs | oCTR | IDIR_ [RO | DRe
Fs | s | TR oA [DAL DR
oR2 | DRE [paxcse
nR3 | PRs
—— e, —_—
4
LY
:- - -
’
%
—— ——
g _xawo [[ZMML_ v onan]| [ST0) ma [[ST00 MML] b Rax =Jud e Faserazc 12
Mz NG][2hts [1amM3 R[Stz Mz]| T e TJedepaa [Rl
YNMA_XUWE]| ZMMS [YMME ZWIE]| | STi4: MMa || sTis) MMe | [EEOteRex Shad 1o TE Aokl | CR2 | CRE
VNMG _XWWE || ZMM7 | ¥MM7_ R || | STiE) MMa || ST(7) MMT | [feisbs RO S oA S odeeoRIS| | GRS CRT
“NME xume | 7Me | Va9 omas | JpuepesrRee] [edo colRD] @ o RIP | A3 | CRE
VML XMMLO][ZMMLL | MLl e [cv [T esilrs | Fegseese) I CRE
T T s [wmia e | = e
(s ST s SO v s @ @ e oo o
TR Bt e FPos TRz
T B Fr-orc F_oF PP 55 [0s | ooR ot [GRo | ORe | cRis
EE TR | LCTR [DR1 | DR7 | CR14
o wriacs | OR2 | ORe | cais fwcsa
o2 | DR%
Cha_ DR10| DRL2[[DATS
GRS | DR1L[DALS [DR1S

Hardware multi-threading

Thread 0

* Address memory bottleneck

i Share exec unit across
Instruction streams
e Switch on stalls

ks like multiple cores to the OS

20 Vg x| ZMML_ (ML x| [S140) 0 | ST{L L | [k e T v ma - edeeniz | Cho | Cha
[Zwmz WMz Xws]| zams YMME ms] | sTez) kmiz || S10) s ez =ERED
ZMMA YMMA P | ZMMs [YMME RuRE] M5 || [EEDFc Ry T kle| ZF R4 | CR2 | CRE.
ZMME YMME Xbie || ZMMT_[YMMT XM | ST(7) WM7 | [efeiafoxROX SF ARl S doRls | CR3 | CRT
ZMME YMME xema [[ZMMS | YMMO xamg | JriopespRRR [odp EniRD P EP RIP | CRI | CRE
ZMMLa_ vwMID Xm0 ZuMLL | vMML1 ianta] | cw | p P _OF|FP_cs| Jas ss|Rs) [slspeseR RS
ZMMLZ YNM1Z XPRLE| ZMM13 _YMML3 Zamig] | s CR1D
211 TS avns_ TG | el btrouil-ivtesonliC
e rean][7w g > o[7mee) [Fp DS CR1Z
T s e s s il e <5 |[0s | ook b [DRo | ore | cRis
s || o5 TR LOTR [DRI DR7 | CR14
DRZ DRE | CRIE[MxCSR
DRI DRS
DR4_ DR10] DR12][DA14
DRy | DR1L|[DR13][DR1S

v

2MMo YMMa xweno [[TzMML [YMML e || [s1o) Mma || {] o pufrecR1z
ZVM2 TPMZ JOR: J[ZMes (TS Ewma] (ST FRZ [ot ST o E R o 3
ZVMa WA XA | zMms (YWWE RG] | STie) a]| sTis) s | [EERGFarRcx The a0 TR | CR2 | CRE
VM6 MM e [|[zmMm7 a7 xmmr | [STi6) MM || ST(7) kM7 | [ERfocRDx Shodoeril Shodeonls | CR3CRT
TNME VWME xma [[ZMMS | YMM3 x| JpriepesrRee] [edo ko ae i
ZuMLe veio sl MM | vamis g | Gw [7Pp|FPorrecs] s smlRs| leesrRs
ECE R ey | BT E R ST T E e |
|oowss v s (o] | e @ B R
T BT
ERs B [Fr orc [FP_DF][FP_F €5 55 | DS | GOTR IDTR [RO | DRE

s |os| ™ o |om | o

— o2 | oRe frxcs
nR3 | nRa

o T

ree variants:
oarse
ine-grain
imultaneous

Thread 0

Thiread 1 ’

ZMMO__ Mg xwmo [[ZMML__ [oamL s || [S1i0) ma [|[sTe1) MM | ek pa Jud FirreeR1Z
2VMz M2 X [zmm3 (¥MM3 R[Stz ez] st s | TJedepaa [Rl
IMMA YNMA XPRA]||ZMMS [YMM5 RWMME] |STi4) MMA MM | [EESFerRCx Shodeor1o TEeek1d | CR2Z | CRE
ZMME YWME XUMs || ZMMT VMW7 XMWT | [STU61 WM& [|[ST(T) MMT | [RDE S} ooR1L b AeoR1S | RS CRT
TNME WM xma [|ZMee | vame s | JpuepesrRee] [edo colRD] @ o RIP | A3 | CRE
ZMMie M0 xemtof[zmmil [yMmLloanans] [cw [rrip[reoefre_cs) Jas msips| [aiseese) [CRE
IMMLZ YNM1Z XUMLS)| ZMpM13 [YMML13 a5 CR1D
(s ST s SO v s @ @ e oo o
TR Bt e Fros iz
T B Frorcfrorrrr] [55 | 0s | ooR 10T [GRO | ORe | cRis
EE TR | LCTR [DR1 | DR7 | CR14
o wriacs | OR2 | ORe | cais fwcsa
o2 | DR%
CR4 | DR10 |[DR1Z [DR14
GRS | DR1L[DALS [DR1S

Running example

Thread A Thread B Thread C Thread D
= 11 HE N
[] 1 * Colors = pipeline full
= =B [] . White = stall
=]
= [[[]

L

1 HE N

1

HE N

Coarse- grained multithreading

Coarse- grained multithreading

* Single thread runs until a costly stall
* E.g.2nd level cache miss

Coarse- grained multithreading

* Single thread runs until a costly stall
* E.g.2nd level cache miss

* Another thread starts during stall
* Pipeline fill time requires several cycles!

Coarse- grained multithreading

* Single thread runs until a costly stall =.
* E.g.2nd level cache miss i []
« Another thread starts during stall HE = ==
* Pipeline fill time requires several cycles! HEEE
1 1
11
]

Coarse- grained multithreading

 Single thread runs until a costly stall =.
* E.g. 2nd level cache miss il []
* Another thread starts during stall o = [=
* Pipeline fill time requires several cycles! ENEEE EEE
e Does not cover short stalls BEE
]

Coarse- grained multithreading

* Single thread runs until a costly stall =.
e E.g. 2nd level cache miss R []
* Another thread starts during stall = EEE
* Pipeline fill time requires several cycles! amEE EEE
e Does not cover short stalls HEe
* Hardware support required L

* PC and register file for each thread =
* little other hardware]
* Looks like another physical CPU to
[]
[]
[]

OS/software

Coarse- grained multithreading

* Single thread runs until a costly stall =.
* E.g.2nd level cache miss i []
« Another thread starts during stall HE = ==
* Pipeline fill time requires several cycles! HEEE
BEN
e Does not cover short stalls HEE
 Hardware support required =.
* PC and register file for each thread
| []
* little other hardware]
* Looks like another physical CPU to
OS/software
HEN
]
]

OEE

a &

[
] = =

OO0 N EEEN

[]

ODO0O00CO0 AEEEENE ||/ A NN N
[]
L]

I

Fine-grained multithreading

Fine-grained multithreading

 Threads interleave instructions
e Round-robin
» Skip stalled threads

Fine-grained multithreading

 Threads interleave instructions
* Round-robin
* Skip stalled threads

Fine-grained multithreading

* Threads interleave instructions e]
* Round-robin HEN
* Skip stalled threads HEN = = ==

 Hardware support required
* Separate PC and register file per thread
* Hardware to control alternating pattern

Fine-grained multithreading

 Threads interleave instructions
* Round-robin
* Skip stalled threads

 Hardware support required
* Separate PC and register file per thread
* Hardware to control alternating pattern

* Naturally hides delays
* Data hazards, Cache misses
* Pipeline runs with rare stalls

Fine-grained multithreading

Threads interleave instructions
* Round-robin
* Skip stalled threads

Hardware support required
* Separate PC and register file per thread
* Hardware to control alternating pattern

Naturally hides delays
* Data hazards, Cache misses
* Pipeline runs with rare stalls

Doesn’t make full use of multi-issue

Fine-grained multithreading

Threads interleave instructions
* Round-robin
* Skip stalled threads

Hardware support required
* Separate PC and register file per thread
* Hardware to control alternating pattern

Naturally hides delays
* Data hazards, Cache misses
* Pipeline runs with rare stalls

Doesn’t make full use of multi-issue

L AEEERREECCOO00
] I
[]

OoOooooOdf AaeEmEE L
O

OooonO
O
]

o]
Bl

[1) |

IIDIIDIIIDII:%IIIDIIIDIII
|

B (/EECE B0

[[|
EECE
H =

Simultaneous Multithreading (SMT)

Simultaneous Multithreading (SMT)

* Instructions from multiple threads
issued on same cycle
* Uses register renaming

* dynamic scheduling facility of multi-
issue architecture

Simultaneous Multithreading (SMT)

* Instructions from multiple threads OONN

issued on same cycle EEEN

_ , EEm
* Uses register renaming nimial |

* dynamic scheduling facility of multi- [P— Skip C
issue architecture B

Simultaneous Multithreading (SMT)

* Instructions from multiple threads
issued on same cycle
* Uses register renaming

* dynamic scheduling facility of multi-
issue architecture

* Hardware support:
* Register files, PCs per thread
* Temporary result registers pre commit

e Support to sort out which threads get
results from which instructions

Simultaneous Multithreading (SMT)

* Instructions from multiple threads
issued on same cycle
* Uses register renaming

* dynamic scheduling facility of multi-
issue architecture

* Hardware support:
* Register files, PCs per thread

* Temporary result registers pre commit

e Support to sort out which threads get
results from which instructions

e Maximal util. of execution units

Simultaneous Multithreading (SMT)

5 = EEm mmEm
* Instructions from multiple threads OONN m2-_ o ="" mmmm
issued on same cycle EEEE ° = == OoEs
1 0 EEE 0CO0 EEEE
1 1 L] BEEN EEE M
* Uses register renaming EEEE C mm ® EmEm
|
 dynamic scheduling facility of multi- | p— Skip C B R & == '
. . [] |
issue architecture NN = i:-- = mmm
e [1 goes
* Hardware support: IEEE mmen "% Emm
[]|
* Register files, PCs per thread [] | -
, , SR . Skip A ~ Emm "
» Temporary result registers pre commit M < - gmm EE
BEEN = o
* Support to sort out which threads get B w E“ Hon Eos
results from which instructions EEE O
. . . . S
» Maximal util. of execution units oLl L
BEEN oo
= [= @@DD

Why Vector and Multithreading Background?

GPU:

* A very wide vector machine

* Massively multi-threaded to hide memory latency
* Originally designed for graphics pipelines...

Graphics ~= Rendering

Graphics ~= Rendering

Inputs

Graphics ~= Rendering

Inputs

* 3D world model(objects, materials)
* Geometry modeled w triangle meshes, surface normals
e GPUs subdivide triangles into “fragments” (rasterization)
* Materials modeled with “textures”

* Texture coordinates, sampling “map” textures -
geometry

Graphics ~= Rendering

Inputs

* 3D world model(objects, materials)
* Geometry modeled w triangle meshes, surface normals
e GPUs subdivide triangles into “fragments” (rasterization)
* Materials modeled with “textures”
* Texture coordinates, sampling “map” textures -

geometry
 Light locations and properties

» Attempt to model surtface/light interactions with
modeled objects/materials

Graphics ~= Rendering

Inputs

* 3D world model(objects, materials)
* Geometry modeled w triangle meshes, surface normals
e GPUs subdivide triangles into “fragments” (rasterization)
* Materials modeled with “textures”

* Texture coordinates, sampling “map” textures -
geometry

 Light locations and properties

» Attempt to model surtface/light interactions with
modeled objects/materials

* View point

Graphics ~= Rendering

Inputs

* 3D world model(objects, materials)
* Geometry modeled w triangle meshes, surface normals
e GPUs subdivide triangles into “fragments” (rasterization)
* Materials modeled with “textures”

* Texture coordinates, sampling “map” textures -
geometry

 Light locations and properties

» Attempt to model surtface/light interactions with
modeled objects/materials

* View point

Output

Graphics ~= Rendering

Inputs

* 3D world model(objects, materials)
* Geometry modeled w triangle meshes, surface normals
e GPUs subdivide triangles into “fragments” (rasterization)
* Materials modeled with “textures”

* Texture coordinates, sampling “map” textures -
geometry

 Light locations and properties

» Attempt to model surtface/light interactions with
modeled objects/materials

* View point

Output

e 2D projection seen from the view-point

Graphics ~= Rendering

Inputs

* 3D world model(objects, materials)

Geometry modeled w triangle meshes, surface normals
GPUs subdivide triangles into “fragments” (rasterizat
Materials modeled with “textures”

Texture coordinates, sampling “map” textures -

geometry
 Light locations and properties

» Attempt to model surtface/light interactions with
modeled objects/materials

* View point

Output

e 2D projection seen from the view-point

viewing
frustrum

10/30/2018

Grossly over-simplified rendering algorithm

Grossly over-simplified rendering algorithm

foreach(vertex vin model)

Grossly over-simplified rendering algorithm

foreach(vertex vin model)

map v 2>V

model view

foreach(vertex vin model)

map v 2>V

model view

10/30/2018

Dandelion

36

Grossly over-simplified rendering algorithm

foreach(vertex vin model)

map Vmodel 9 Vview
fragment(] frags = {};

10/30/2018 Dandelion 36

Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)

Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));

Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));
foreach fragment f in frags

Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));

foreach fragment f in frags
choose_color(f);

Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));

foreach fragment f in frags
choose_color(f);

display(visible fragments(frags));

Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));

foreach fragment f in frags
choose_color(f);

display(visible_fragments(frags));

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg
http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg

Algorithm =2 Graphics Pipeline

fO reaCh(Ve rteX V |n mOdel) Application Primitives and image data
>v -
fragment(] frags = {};

m a p Vmod el view Vertex Transform and lighting

Primitive assembly

Geometry

foreach triangle t (v, v, V,) ——
frags.add(rasterize(t)); e ——
I Fog
foreach fragment f in frags
C h 00S e_CO I (0) I‘(f) , Femnebutier operaiiona Alpha, stencil, and depth tests

Framebuffer blending

display(visible fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018 Dandelion

Algorithm =2 Graphics Pipeline

foreach(vertex vin model) Application | _Prmitves and image dsta
Vertex Transform énd lighting >
/—'T’/

fragment|] frags =

Primitive assembly

Geometry

foreach triangle t (v, v, v,) Gippig
frags.add(rasterize(t)); - =
" Fog
foreach fragment f in frags
C h O0S e_co | 9 r(f) ’ SR Alpha, stencil, and depth tests

Framebuffer blending

display(visible fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018 Dandelion

Algorithm =2 Graphics Pipeline

fO reaCh(Ve rteX V |n mOdel) Application Primitives and image data
map Vmodel 9 VViEW Vertex Tr:ansform;ndlighting
fragment[] fragS — {}, < Primitiv;aassamhlv \>
Geometry
foreach triangle t (v, v, v,) Cipping]

) — 1

frags.add(rasterize(t)); - —
" Fog
foreach fragment f in frags
C h O0S e_co I 9 r(f) ’ SR Alpha, stencil, and depth tests

Framebuffer blending

display(visible fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018 Dandelion

Algorithm =2 Graphics Pipeline

fO reaCh(Ve rteX V |n mOdel) Application Primitives and image data
>v
fragment(] frags = {};

m a p Vmod el view Vertex Transform and lighting

Primitive assembly

Geometry

foreach triangle t (v, v, v,) Shenn
frags.add(rasterize(t)); (e g1,
= /

foreach fragment f in frags

Alpha, stencil, and depth tests

choose color(f);

Framebuffer operations
Framebuffer blending

display(visible fragments(frags));

OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018 Dandelion

Algorithm =2 Graphics Pipeline

foreach(vertex vin model) Application | _Prmitves and image dsta
>V :
fragment(] frags = {};

m a p Vmod el view Vertex Transform and lighting

Primitive assembly

Geometry

foreach triangle t (v, v, v,) e
frags.add(rasterize(t)); - —
i Fog
foreach fragment f in frags — i
choose_color(f); (| Framattr aportons)
Framebuffer blending y

isplay(visible_fragm@ e =
OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018 Dandelion

Graphics pipeline = GPU architecture

] Y Y Y Y Y
Application Primitives and image data Verbex Frocessing
]
I yrd
Vertex Transform and lighting Cull / Clip / Setup
J7 { Z-Cull H Rasterfzation I
Primitive assembly
Gﬂmﬂtw Texture and —
Gipping Fragment Processing _‘r_ [:
Sl
Texturing : ¥ — :
Fragment ' Fragment Crossbar
Fog Wiiiii*fjiiiiiﬁ*ﬁ
{ Z-Compare
\J = and Blend
Alpha, stencil, and depth tests 7 T
LT gporeons Framebuffer blending Memory Memory Memory Memory
Partition Partition Partltlon Partition
Limited “programmability” of shaders: GeForce 6 series
Minimal/no control flow
10/30/2018 Maximum instruction count bandelion

Graphics pipeline = GPU architecture

\]
Application Primitives and image data Vifhax Fineassing
———
< Vertex Transform and lighting)
K)17; { Z-Cull H Rasterization
Primitive assembly
G&ﬂmﬂtw Texture and —
Gipping Fragment Processing — D
Sl
Texturi L I » T

Fragment 0 [Fragment Crossbar
Fog *V*Viiii]**ii***i
! Z-Compare
\J rd and Blend

Alpha, stencil, and depth tests 7 T
ET opertane Framebuffer blending Memory Memory Memory Memory
Partition Partition Partltlon Partition
Limited “programmability” of shaders: .
o prog y GeForce 6 series
Minimal/no control flow
1030201 Maximum instruction count bandelion

Graphics pipeline = GPU architecture

] Y Y Y Y Y
Application Primitives and image data Verbex Frocessing
1E
Vertex Transform and lighting
I
=k
Primitive assembly]
< Gﬁlﬂmﬂﬂ‘? Texture and —
Cipping = Fragment Processing T [:
= A
Texturi L I » T
Fragment = ‘ Fragment Crossbar
Fog *i**iiiW]V*iin*t
! Z-Compare
\J rd and Blend
Alpha, stencil, and depth tests 7 7
ET opertane Framebuffer blending Memory Memory Memory Memory
Partition Partition Partltlon Partition
Limited “programmability” of shaders: .
o prog y GeForce 6 series
Minimal/no control flow
1030201 Maximum instruction count bandelion

Graphics pipeline = GPU architecture

Application Primitives and image data
1E
Vertex Transform and lighting
]
3L
Primitive assembly
Geometry
Clipping
AL
Texturing
Fragment
Fog
— — %__, —
Alpha, stencil, and depth tests
Framebuffer operations
Framebuffer blending

Limited “programmability” of shaders:

Minimal/no control flow

10/30/2018

Maximum instruction count

Vertex Processing

\]]

¥

Y L]

Cull / Clip / Setup

Texture and
Fragment Processing

Z-Compare
and Blend

Dandelion

{Z—Cull H Rasterization I

i
—{ D Texture Cache

‘ Fragment Crossbar |

a)

Y Y Y Y Y Y ¥ Y ¥ ¥ ¥ Y ¥

Y Y
Memory Memory Memory | Memory
Partition Partition Partition |~ Partition

-

GeForce 6 series

Graphics pipeline = GPU architecture

10/30/2018

Application Primitives and image data
1E
Vertex Transform and lighting
]
3L
Primitive assembly
Geometry
Clipping
AL
Texturing
Fragment
Fog
I
—J
Alpha, stencil, and depth tests
Framebuffer operations

[~ annabuﬁﬂrbhndm§ —

D

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

Vertex Processing

\]]

¥

¥

¥

Cull / Clip / Setup

Texture and
Fragment Processing

. A A
-Compare
Blend

Dandelion

{Z—Cull H Rasterization I

1 [
L 1
! Fragment Crossbar |
1
Y Y Y Y Y ¥ ¥ ¥ v Y
) L T T T T T T Ly A A
Y Y
Memory Memory Memory | Memory
Partition Partition Partltlon Partition

o

GeForce 6 series

Late Modernity: unified shaders

()1 A B
Host
Input Assembler Setup ! Rstr/ ZCull
Vix Thread Issue Geom Thread Issue Fixel Thread Issue
o

=OECON=C=EOE =D E O EOECE =0 =0 =0 = O E O E O D
0 | (o | o | | O (|
I T T T 0 0 0] A I o 1 T 1 e I I R
| (o (oo | _’DD CICNgICIc
LT (EEETE (EEEE EEEE [EEEE R EEEE)
L1 L1 L1 L1 L1 L1 L1 L

| [

FB FB FB FB FB

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count

[

Thread Processor

Pascal

Mostly Modern

°
&
£
=
2
°
=
o
-
@
@&
<
£
&
=
w
o
a

High Bandwidth Memory 2

I

ory Controller

jjonued Aowepw 1oponuo) Lowew

i i

Z Kowsyy yipimpueg Yy

High Bandwidth Memory 2

I I

Memory Controller Memory Controller

wonuod Lowew Jagonuod Lowow

I i

Z Lowew yipimpueg ybiy

Memory Controller Memory Controller Memory Controller Memory Controller

TPC

RT CORE

RT CORE

LB B(LR
i

!

215
o
i
it
]

Raster Engine

1
|

Raster Engine

RT CORE

Raster Engine

High Speed Hub

]
]

NVLink - One x8 Link

B

f
|

L NE

Raster Engine

B
i

Raster Engine

i
1

o

(R W
B] i B

;
T
o

PCI Express 3.0 Host Interface
GigaThread Engine
‘ Raster Engine ‘
i |8 & |8 |[§ R
g8 |8 8|8 % (88
§ |88 (R0 (8
B NIER (R BER
L2 Cache
espc______________________Jopc__________ Jopc_ |

ing

Jajoajuo) Alowap Jajosjuo) Alowap Jay1043u0) Alowap J8)j043u0) Alowap

TURING TU104
i (I8

[]
Native HDR
8K DisplayPort
VirtualLink
{ NVLINK
100 GB/sec
GPU-GPU Memory Access
HEVC 8K Real Time Encode
25% Improved Bitrate

384-bit G6 @ 14Gbps

6MB L2 Cache
672 GB/sec

5:3; AR TN

RT Core
10 Giga Rays/sec

Turing SM
Ray Triangle Intersection

16 TFLOPS + 16 TIPS

Concurrent FP & INT Execution

Definitely Modern

Tensor Core ——

Unified L1 Cache
BVH Traversal
250 TOPS INT8
500 TOPS INT4

Variable Rate Shading
125 TFLOPS FP16

Modern Enough: Pascal SM

1struction Buffer | Instruction Buffer
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
A £ £ =

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)

Core Core Core Core Core SFU

Core SFU

O
o
=
L]

Core Core Core

Core SFU

o
-]
-1
o

Core Core Core

Core SFU

O
©
-
o

Core Core Core

Core Core Core Core SFU

Core SFU

(2
]
=
o

Core Core

Core Core Core LD/ST SFU

Core Core Core Core ST SFU

Texture / L1 Cache ‘

Core

Core

O
<]
=
L]

© 64KB Shared Memory

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:
* Data

* Per-vertex
* Per-fragment
* Per-pixel

e Task

* Vertex processing

* Fragment processing

* Rasterization

* Hidden-surface elimination

* MLP

 HW multi-threading for hiding memory latency

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

* Data
* Per-vertex
* Per-fragment Even as GPU architectures become more
* Per-pixel general, certain assumptions persist:
1. Data parallelism is trivially exposed
* Task

2. All problems look like painting a box

* Vertex processing with colored dots
* Fragment processing

e Rasterization
 Hidden-surface elimination

* MLP

 HW multi-threading for hiding memory latency

10/30/2018 Dandelion

43

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

* Data
* Per-vertex
* Per-fragment Even as GPU architectures become more
* Per-pixel general, certain assumptions persist:
1. Data parallelism is trivially exposed
* Task

2. All problems look like painting a box

* Vertex processing with colored dots
* Fragment processing

e Rasterization

* Hidden-surface elimination But what if my problem isn’t
 VILP painting a box?!!?!

 HW multi-threading for hiding memory latency

10/30/2018 Dandelion

The big ideas still present in GPUs

e Simple cores

 Single instruction stream
* Vector instructions (SIMD) OR
* Implicit HW-managed sharing (SIMT)

* Hide memory latency with HW multi-threading

Programming Model

* GPUs are I/0 devices, managed by user-code
e “kernels” == “shader programs”

* 1000s of HW-scheduled threads per kernel

* Threads grouped into independent blocks.
* Threads in a block can synchronize (barrier)
* This is the *only* synchronization

e “Grid” == “launch” == “invocation” of a kernel
* a group of blocks (or warps)

Parallel Algorithms

* Sequential algorithms often do not permit easy parallelization
* Does not mean there work has no parallelism
» A different approach can yield parallelism
* but often changes the algorithm
e Parallelizing != just adding locks to a sequential algorithm

e Parallel Patterns
* Map

Scatter, Gather

Reduction

* Scan

Search, Sort

Parallel Algorithms

* Sequential algorithms often do not permit easy parallelization
* Does not mean there work has no parallelism
» A different approach can yield parallelism
* but often changes the algorithm
e Parallelizing != just adding locks to a sequential algorithm

e Parallel Patterns

* Map

e Scatter, Gather

* Reduction If you can express your

e Scan algorithm using these patterns,

an apparently fundamentally
* Search, Sort sequential algorithm can be
made parallel

Map

* Inputs
* Array A
* Function f(x)

* map(A, f) =2 apply f(x) on all elements in A

 Parallelism trivially exposed
* f(x) can be applied in parallel to all elements, in principle

Map

* Inputs
* Array A
* Function f(x)

* map(A, f) 2 apply f(x) on all elements in A

 Parallelism trivially exposed
* f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]); map(points, findNearestCenter)

¥

Scatter and Gather

e Gather:
* Read multiple items to single location

* Scatter:
* Write single data item to multiple locations

O+

rO

DD

Scatter

Ox

O

DD

Gather

Scatter and Gather

e Gather:
* Read multiple items to single location

* Scatter:
* Write single data item to multiple locations

for (i=0; i<N; ++i) _
Al = bl ‘ gather(x, y, idx)

for (i=0; i<N; ++i)

Tidxil] = x(il: scatter(x, vy, idx)

O+

rO

DD

Scatter

Ox

O

DD

Gather

Reduce

* Input
* Associative operator op
* Orderedsets=1a, b, c, ... Z]

e Reduce(op, s) returnsaopbopc..opz

Reduce

* Input
* Associative operator op
* Orderedsets=1a, b, c, ... Z]

e Reduce(op, s) returnsaopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point[i]) »accum = reduce(*, point)
}

Reduce

* Input
* Associative operator op
* Orderedsets=1a, b,c, ... z]

* Reduce(op, s) returnsaopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point[i]) ‘accum = reduce(*, point)

Why must op be associative?

Reduce

* Input
* Associative operator op
* Orderedsets=1a, b,c, ... z]

* Reduce(op, s) returnsaopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point[i]) ‘accum = reduce(*, point)

}

Why must op be associative?

¥+ > .‘+ >
f v N/4... 1
N/2

O(log,N) steps, O(N) work

N

5'+ +.‘+ >t > (111
a v MxN/4.. Mx1

MxN/2 '

MN—T0(log,N) steps, O(MN) work |

Scan (prefix sum)

* Input
* Associative operator op begin [T BT ¢ - A
* Ordered sets=[a, b, c, ... Z]
° |dent|tY| a a*b b+c ¢+d a+e | e f |
Time
* scan(op, s) =[l,a, (aopb), (aopbopc)..] T ot [b [ebed|bede] cdt]
end a a+b A T | P a+b+c | a+b+c

+d+e | +d+e+f

* Scan is the workhorse of parallel algorithms:
e Sort, histograms, sparse matrix, string compare, ...

Ssummary

* Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs

