
Go Wrap up
Parallel Architectures

Chris Rossbach

cs378 Fall 2018

10/15/2018

Outline for Today
• Questions?

• Administrivia

• Agenda
• Go

• Parallel Architectures (GPU background)

• Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz questions

• How are promises and futures different or the same as goroutines

• What is the difference between a goroutine and a thread?

• What is the difference between a channel and a lock?

• How is a channel different from a concurrent FIFO?

• What is the CSP model?

• What are the tradeoffs between explicit vs implicit naming in message passing?

• What are the tradeoffs between blocking vs. non-blocking send/receive in a shared memory environment? In a distributed one?

• What is hardware multi-threading; what problem does it solve?

• What is the difference between a vector processor and a scalar?

• Implement a parallel scan or reduction

• How are GPU workloads different from GPGPU workloads?

• How does SIMD differ from SIMT?

• List and describe some pros and cons of vector/SIMD architectures.

• GPUs historically have elided cache coherence.Why? What impact does it have on the the programmer?

• List some ways that GPUs use concurrency but not necessarily parallelism.

Google Search

• Workload:

• Accept query

• Return page of results (with ugh, ads)

• Get search results by sending query to
• Web Search
• Image Search
• YouTube
• Maps
• News, etc

• How to implement this?

Search 1.0

• Google function takes query and returns a slice of results (strings)

• Invokes Web, Image, Video search serially

Search 2.0

• Run Web, Image, Video searches concurrently, wait for results

• No locks, conditions, callbacks

Search 2.1

• Don’t wait for slow servers: No locks, conditions, callbacks!

Search 3.0

• Reduce tail latency with replication. No locks, conditions, callbacks!

Go: magic? …or threadpools and concurrent Qs?

• We’ve seen several abstractions for
• Control flow/exection

• Communication

• Lots of discussion of pros and cons

• Ultimately still CPUs + instructions

• Go: just sweeping issues under the language interface?
• Why is it OK to have 100,000s of goroutines?

• Why isn’t composition an issue?

Go implementation details

Go implementation details

• M = “machine”  OS thread

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

Go implementation details

• M = “machine”  OS thread

• P = (processing) context

• G = goroutines

• Each ‘M’ has a queue of goroutines

• Goroutine scheduling is cooperative
• Switch out on complete or block

• Very light weight (fibers!)

• Scheduler does work-stealing

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines?

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines? • Creates a channel
• Creates “consumers” goroutines
• Each of them tries to read from the channel
• Main either:

• Sleeps for 1 second, closes the channel
• sends “consumers” values

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines? • Creates a channel
• Creates “consumers” goroutines
• Each of them tries to read from the channel
• Main either:

• Sleeps for 1 second, closes the channel
• sends “consumers” values

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

Race detection! Cool!

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

Transputers did this in hardware in the 90s btw.

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights:
• Race detection built in

• Fast path just write to receiver stack

• Often has no capacity  scheduler hint!

• Buffered channel implementation fairly standard

https://golang.org/src/runtime/chan.go

A modern GPU: Volta V100

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor

Also:
CU or ACE

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

Roughly: all
of k-means

1,000s X/sec

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

How do you program a machine
like this? pthread_create()?

GPUs: Outline

• Background from many areas
• Architecture

• Vector processors
• Hardware multi-threading

• Graphics
• Graphics pipeline
• Graphics programming models

• Algorithms
• parallel architectures  parallel algorithms

• Programming GPUs
• CUDA
• Basics: getting something working
• Advanced: making it perform

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true)

do_next_instruction();

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true)

do_next_instruction();

}

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true)

do_next_instruction();

}

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

main() {
pthread_create(do_instructions);
pthread_create(do_decode);
pthread_create(do_execute);
…
pthread_join(…);
…

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true)

do_next_instruction();

}

do_instructions() {
while(true) {

instruction = fetch();
enqueue(DECODE, instruction);

}}

do_decode() {
while(true) {

instruction = dequeue();
ops, regs = decode(instruction);
enqueue(EX, instruction);

}}

do_execute() {
while(true) {

instruction = dequeue();
execute_calc_addrs(ops, regs);
enqueue(MEM, instruction);

}}

….

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

main() {
pthread_create(do_instructions);
pthread_create(do_decode);
pthread_create(do_execute);
…
pthread_join(…);
…

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

What is the name of this kind of parallelism?

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

What is the name of this kind of parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

What is the name of this kind of parallelism?

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

What is the name of this kind of parallelism?

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Architecture Review: Pipelines
Processor algorithm:

main() {

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

What is the name of this kind of parallelism?

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_instructions());

}

}
do_instructions() {

while(true) {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}}

Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_instructions());

}

}
do_instructions() {

while(true) {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}}

• Pros: Simple
• Cons: programmer has to find the parallelism!

Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_instructions());

}

}
do_instructions() {

while(true) {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}}
Other techniques extract

parallelism here, try to let the
machine find parallelism

• Pros: Simple
• Cons: programmer has to find the parallelism!

Superscalar processors

Superscalar processors
Remove extra

instruction streams

Superscalar processors

Superscalar processors

Superscalar processors main() {
for(i=0; i<CORES; i++)

pthread_create(decode_exec);
while(true) {

instruction = fetch();
enqueue(instruction);

}
}

decode_exec() {
instruction = dequeue();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Superscalar processors main() {
for(i=0; i<CORES; i++)

pthread_create(decode_exec);
while(true) {

instruction = fetch();
enqueue(instruction);

}
}

decode_exec() {
instruction = dequeue();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Doesn’t look that different does it? Why do it?

Superscalar processors main() {
for(i=0; i<CORES; i++)

pthread_create(decode_exec);
while(true) {

instruction = fetch();
enqueue(instruction);

}
}

decode_exec() {
instruction = dequeue();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.

Superscalar processors main() {
for(i=0; i<CORES; i++)

pthread_create(decode_exec);
while(true) {

instruction = fetch();
enqueue(instruction);

}
}

decode_exec() {
instruction = dequeue();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.

Superscalar processors main() {
for(i=0; i<CORES; i++)

pthread_create(decode_exec);
while(true) {

instruction = fetch();
enqueue(instruction);

}
}

decode_exec() {
instruction = dequeue();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Doesn’t look that different does it? Why do it?

independent

Enables independent instruction parallelism.

Vector/SIMD processors

Vector/SIMD processors

Vector/SIMD processors
Why decode same instruction

sequence over and over?

Vector/SIMD processors

Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue();

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue();

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Single instruction stream, multiple computations

Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue();

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Single instruction stream, multiple computations

But now all my instructions need multiple operands!

22

Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or,
• SIMD operate on all per clock cycle

22

Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or,
• SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972  64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

22

Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or,
• SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972  64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data 
Programming model has to change

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

GPUs: same basic idea

When does vector processing help?

When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput?

When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput?

Only helps if memory can keep the pipeline busy!

Hardware multi-threading

Hardware multi-threading

• Address memory bottleneck

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

• Three variants:
• Coarse

• Fine-grain

• Simultaneous

Running example

Thread A Thread B Thread C Thread D

• Colors  pipeline full
• White  stall

Coarse- grained multithreading

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Does not cover short stalls

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Does not cover short stalls

• Hardware support required
• PC and register file for each thread

• little other hardware

• Looks like another physical CPU to
OS/software

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Does not cover short stalls

• Hardware support required
• PC and register file for each thread

• little other hardware

• Looks like another physical CPU to
OS/software

Fine-grained multithreading

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

• Doesn’t make full use of multi-issue

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

• Doesn’t make full use of multi-issue

Simultaneous Multithreading (SMT)

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

• Maximal util. of execution units

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

• Maximal util. of execution units

Skip A

Skip C

Why Vector and Multithreading Background?

GPU:

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…

Graphics ~= Rendering

3510/30/2018

Graphics ~= Rendering

Inputs

3510/30/2018

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures 

geometry

3510/30/2018

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures 

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

3510/30/2018

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures 

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

3510/30/2018

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures 

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output

3510/30/2018

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures 

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output
• 2D projection seen from the view-point

3510/30/2018

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures 

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output
• 2D projection seen from the view-point

3510/30/2018

Grossly over-simplified rendering algorithm

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 3610/30/2018

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 3610/30/2018

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg
http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg

Algorithm  Graphics Pipeline
foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 37

OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018

Algorithm  Graphics Pipeline
foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 37

OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018

Algorithm  Graphics Pipeline
foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 37

OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018

Algorithm  Graphics Pipeline
foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 37

OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018

Algorithm  Graphics Pipeline
foreach(vertex v in model)

map vmodel vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 37

OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018

Graphics pipeline  GPU architecture

Dandelion 38

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

10/30/2018

Graphics pipeline  GPU architecture

Dandelion 38

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

10/30/2018

Graphics pipeline  GPU architecture

Dandelion 38

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

10/30/2018

Graphics pipeline  GPU architecture

Dandelion 38

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

10/30/2018

Graphics pipeline  GPU architecture

Dandelion 38

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

10/30/2018

Late Modernity: unified shaders

Dandelion 39

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count10/30/2018

Mostly Modern: Pascal

Definitely Modern: Turing

Modern Enough: Pascal SM

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 4310/30/2018

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 43

Even as GPU architectures become more
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box

with colored dots

10/30/2018

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 43

Even as GPU architectures become more
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box

with colored dots

But what if my problem isn’t
painting a box?!!?!

10/30/2018

The big ideas still present in GPUs

• Simple cores

• Single instruction stream
• Vector instructions (SIMD) OR

• Implicit HW-managed sharing (SIMT)

• Hide memory latency with HW multi-threading

Dandelion 4410/30/2018

Programming Model

• GPUs are I/O devices, managed by user-code

• “kernels” == “shader programs”

• 1000s of HW-scheduled threads per kernel

• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)

• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel
• a group of blocks (or warps)

Dandelion 5110/30/2018

Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

If you can express your
algorithm using these patterns,

an apparently fundamentally
sequential algorithm can be

made parallel

Map

• Inputs
• Array A

• Function f(x)

• map(A, f)  apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

Map

• Inputs
• Array A

• Function f(x)

• map(A, f)  apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);

}

map(points, findNearestCenter)

Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations

Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?

Scan (prefix sum)

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Identity I

• scan(op, s) = [I, a, (a op b), (a op b op c) …]

• Scan is the workhorse of parallel algorithms:
• Sort, histograms, sparse matrix, string compare, …

Summary

• Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs

