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Outline for Today
• Questions?

• Administrivia

• Agenda
• Go

• Parallel Architectures (GPU background)

• Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it: 
https://talks.golang.org/2012/concurrency.slide



Faux Quiz questions

• How are promises and futures different or the same as goroutines

• What is the difference between a goroutine and a thread?

• What is the difference between a channel and a lock?

• How is a channel different from a concurrent FIFO?

• What is the CSP model?

• What are the tradeoffs between explicit vs implicit naming in message passing?

• What are the tradeoffs between blocking vs. non-blocking send/receive in a shared memory environment? In a distributed one?

• What is hardware multi-threading; what problem does it solve?

• What is the difference between a vector processor and a scalar?

• Implement a parallel scan or reduction

• How are GPU workloads different from GPGPU workloads?

• How does SIMD differ from SIMT?

• List and describe some pros and cons of vector/SIMD architectures.

• GPUs historically have elided cache coherence.Why?  What impact does it have on the the programmer?

• List some ways that GPUs use concurrency but not necessarily parallelism.



Google Search

• Workload: 

• Accept query

• Return page of results (with ugh, ads)

• Get search results by sending query to 
• Web Search
• Image Search
• YouTube
• Maps
• News, etc

• How to implement this?



Search 1.0

• Google function takes query and returns a slice of results (strings)

• Invokes Web, Image, Video search serially



Search 2.0

• Run Web, Image, Video searches concurrently, wait for results

• No locks, conditions, callbacks



Search 2.1

• Don’t wait for slow servers: No locks, conditions, callbacks!



Search 3.0

• Reduce tail latency with replication. No locks, conditions, callbacks!



Go: magic? …or threadpools and concurrent Qs?

• We’ve seen several abstractions for 
• Control flow/exection

• Communication

• Lots of discussion of pros and cons

• Ultimately still CPUs + instructions

• Go: just sweeping issues under the language interface?
• Why is it OK to have 100,000s of goroutines?

• Why isn’t composition an issue?



Go implementation details
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func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines?
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go func(id int) {
aval, amore := <- ch
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Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

Transputers did this in hardware in the 90s btw.

https://golang.org/src/runtime/chan.go


Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights:
• Race detection built in

• Fast path just write to receiver stack

• Often has no capacity  scheduler hint!

• Buffered channel implementation fairly standard

https://golang.org/src/runtime/chan.go
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A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

How do you program a machine 
like this? pthread_create()?



GPUs: Outline

• Background from many areas
• Architecture

• Vector processors
• Hardware multi-threading

• Graphics
• Graphics pipeline
• Graphics programming models

• Algorithms
• parallel architectures  parallel algorithms

• Programming GPUs
• CUDA
• Basics: getting something working
• Advanced: making it perform
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Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_instructions());

}

}
do_instructions() {

while(true) {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}}
Other techniques extract 

parallelism here, try to let the 
machine find parallelism

• Pros: Simple
• Cons: programmer has to find the parallelism!
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Superscalar processors
Remove extra 

instruction streams
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for(i=0; i<CORES; i++)

pthread_create(decode_exec);
while(true) {

instruction = fetch();
enqueue(instruction);

}
}

decode_exec() {
instruction = dequeue();
ops, regs = decode(instruction);
execute_calc_addrs(ops, regs);
access_memory(ops, regs);
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}

Doesn’t look that different does it? Why do it?

independent

Enables independent instruction parallelism.
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Vector/SIMD processors
Why decode same instruction 

sequence over and over?
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Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue();

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Single instruction stream, multiple computations

But now all my instructions need multiple operands!
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Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or, 
• SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972  64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data 
Programming model has to change



Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel



Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel



Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel



Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

GPUs: same basic idea
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When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput? 

Only helps if memory can keep the pipeline busy!
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Hardware multi-threading

• Address memory bottleneck

• Share exec unit across 
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

• Three variants:
• Coarse

• Fine-grain

• Simultaneous



Running example

Thread A Thread B Thread C Thread D

• Colors  pipeline full
• White  stall
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• Single thread runs until a costly stall
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Why Vector and Multithreading Background?

GPU: 

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…
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Algorithm  Graphics Pipeline
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Graphics pipeline  GPU architecture
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Late Modernity: unified shaders

Dandelion 39

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count10/30/2018



Mostly Modern: Pascal



Definitely Modern: Turing



Modern Enough: Pascal SM



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 4310/30/2018



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 43

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots

10/30/2018



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
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• MLP
• HW multi-threading for hiding memory latency

Dandelion 43

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots

But what if my problem isn’t 
painting a box?!!?!
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The big ideas still present in GPUs

• Simple cores

• Single instruction stream
• Vector instructions (SIMD) OR

• Implicit HW-managed sharing (SIMT)

• Hide memory latency with HW multi-threading

Dandelion 4410/30/2018



Programming Model

• GPUs are I/O devices, managed by user-code

• “kernels” == “shader programs”

• 1000s of HW-scheduled threads per kernel

• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)

• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel 
• a group of blocks (or warps)
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Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm 
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort
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Map

• Inputs
• Array A

• Function f(x)

• map(A, f)  apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);

}

map(points, findNearestCenter)
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• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations



Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?



Scan (prefix sum)

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Identity I

• scan(op, s) = [I, a, (a op b), (a op b op c) …]

• Scan is the workhorse of parallel algorithms:
• Sort, histograms, sparse matrix, string compare, … 



Summary

• Re-expressing apparently sequential algorithms as combinations of 
parallel patterns is a common technique when targeting GPUs


