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Outline for Today

e Questions?
e Administrivia

* Agenda
* Go
 Parallel Architectures (GPU background)

* Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide



Faux Quiz questions

* How are promises and futures different or the same as goroutines

* What is the difference between a goroutine and a thread?

* What is the difference between a channel and a lock?

* How is a channel different from a concurrent FIFO?

* What is the CSP model?

* What are the tradeoffs between explicit vs implicit naming in message passing?

* What are the tradeoffs between blocking vs. non-blocking send/receive in a shared memory environment? In a distributed one?
* What is hardware multi-threading; what problem does it solve?

* What is the difference between a vector processor and a scalar?

* Implement a parallel scan or reduction

* How are GPU workloads different from GPGPU workloads?

* How does SIMD differ from SIMT?

* List and describe some pros and cons of vector/SIMD architectures.

* GPUs historically have elided cache coherence.Why? What impact does it have on the the programmer?
* List some ways that GPUs use concurrency but not necessarily parallelism.



Google Search

* Workload:
* Accept query
e Return page of results (with ugh, ads)

e Get search results by sending query to
* Web Search
* Image Search
* YouTube
* Maps
* News, etc
* How to implement this?



Search 1.0

* Google function takes query and returns a slice of results (strings)
* Invokes Web, Image, Video search serially

func Google(query string) (results []Result) {
results = append(results, Web(query))
results = append(results, Image(query))
results = append(results, Video(query))
return



Search 2.0

 Run Web, Image, Video searches concurrently, wait for results
* No locks, conditions, callbacks

func Google(query string) (results []Result) {
c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

for 1 := 0; 1 < 3; i++ {

result := <-c

results = append(results, result)
}
return



Search 2.1

* Don’t wait for slow servers: No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

timeout := time.After(80 * time.Millisecond)
for 1 := 0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return

¥
}

return



Search 3.0

* Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)

go func() { c <- First(query, Web1, Web2) } ()

go func() { c <- First(query, Imagel, Image2) } ()
go func() { c <- First(query, Videol, Video2) } ()

timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {

select {

case result := <-c:

results = append(results, result)
case <-timeout:

fmt.Println("timed out")

return

¥
}

return

func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { c <- replicas[i](query) }
for 1 := range replicas {

go searchReplica(i)

}

return <-c



(GO: magic? ...or threadpools and concurrent Qs?

 We’ve seen several abstractions for
* Control flow/exection
e Communication

* Lots of discussion of pros and cons
* Ultimately still CPUs + instructions

* Go: just sweeping issues under the language interface?
 Why is it OK to have 100,000s of goroutines? VON NEUMANN ARCHITECTURE
 Why isn’t composition an issue? MEMORY

CPU
INPUT > * OUTPUT

CONTROL ||ARITHMETIC/
UNIT LOGIC UNIT
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Go implementation details

* M = “machine” > OS thread
| e P = (processing) context
i e * G = goroutines
| * Each ‘M’ has a queue of goroutines

e Goroutine scheduling is cooperative
* Switch out on complete or block
* Very light weight (fibers!)
* Scheduler does work-stealing



Go implementation details

* M = “machine” > OS thread
* P = (processing) context
* G = goroutines

stackguard; // stack guard information

P L— G} P G
| ‘ . ‘ | struct G
c ) (B () @&
: *F bytex
, l | | bytex stackbase;
(5 2 bytex stackO;
S bytex entry;
void*x param;
intl6 status;
int32 goid;
M lockedm;

// base of stack

// current stack pointer

// initial function

// passed parameter on wakeup
// status

// unique id

// used for locking M’s and G’s



Go implementation details
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Go implementation details

* M = “machine” = OS thread

M M
[ ’ | | e P= (processmg) context
- F G P —E * G = goroutines
| ‘ | struct M o i
G (e G G | {
-« G curg; // current running goroutine
| int32 id ; // unique id
i " int32  locks; // locks held by this M
- ) MCache *mcache; // cache for this thread
G lockedg; // used for locking M’s and G’s
uintptr createstack [32]; // Stack that created this thread
M nextwaitm; // next M waiting for lock



Go implementation details
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struct Sched {

* M = “machine” = OS thread

I \

Lock; // global sched lock.

// must be held to edit G or M queues
G xgfree; // available g’s (status == Gdead)
G *ghead; // g’s waiting to run queue
G xgtail ; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive

int32 grunning; // number of g’s running on cpu
// or in syscall

M xmhead; // m’s waiting for work 3

int32 mwait;  // number of m’s waiting for work

int32 mcount; // number of m’s that have been created
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1000s of go routines?

testQ(consumers int) {
startTimes["testQ"] = time.Now()
wg sync.WaitGroup
wg.Add(consumers)
ch := make( int)
for i:=0; i<consumers; i++ {
go (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()
H(1)

}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()




1000s of go routines?

* Creates a channel
vy int) { e Creates “consumers” goroutines
es consumers 1n .
e PETAT eS| T eE ] — . e Each of them tries to read from the channel
wg sync.WaitGroup * Main either:
wg.Add(consumers) » Sleeps for 1 second, closes the channel

ch := make( int) * sends “consumers” values
for 1:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)

}
time.Sleep(1000 * time.Millisecond)

close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()



1000s of go routines?

* C(Creates a channel
— int) { * Creates “consumers” goroutines
es consumers 1n .
e PETAT eS| T eE ] — . e * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) » Sleeps for 1 second, closes the channel

ch := make( int) * sends “consumers” values
for 1:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else { PS C:\Users\chris\go\src\cs378\lab3> .\lab3.exe 10
info("channel readd¢estQ: 1.0016706s
} PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100
wg.Done() testQ: 1.0011655s
(1) PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000
} testQ: 1.0084796s
time.Sleep (1000 * time.Millise®S C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 10000
close(ch) testQ: 1.0547925s
wg.Wait() PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100000
stopTimes["testQ"] = time.Now( testQ: 1.39@87835s
PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000000
testQ: 4.2485814s
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//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
. O if ¢ =nil {
L] if Iblock {
o You Can Just read Ito return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4
1 if blockprofilerate > @ {
1@ = cputicks()

1
lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. e pass the value we want fo send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%



https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !'block {
return false

¥

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
() S throw( "unreachable™)

if debugChan {

print("chansend: chan=", c, "\n")

if raceenabled {

racereadpc{unsafe.Pointer(c), callerpc, funcPC(chansend))
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{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
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}
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1

lock(&e.lock)
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/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%


https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !'block {
return false

¥

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
() S throw( "unreachable™)

if debugChan {
print("chansend: chan=", c, "\n")

} Race detection! Cool!

I
L

racereadpc{unsafe.Pointer(c), c

if raceenabled

lerpc, funcPC{chansend))

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

=

/%
* generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
3 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ == nil {
if Iblock {

return false
1
gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. e pass the value we want fo send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%


https://golang.org/src/runtime/chan.go

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

//goinosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
. O if ¢ =nil {
L] if Iblock {
o You Can Just read Ito return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
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/{ 'not ready for sending', even if the channel is closed between the two observations,
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I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
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// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
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123 //gotnosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.
*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ == nil {

* You can just read it:
* https://golang.org/src/runtime/chan.go

144 }
145 gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
146 throw("unreachable")

1
:—'3 if debugcChan {
. . print("chansend: chan=", ¢, "\n")
°® Some h Ighllg if sg := c.recvq.dequeue(); sg !'= nil { }
// Found a waiting receiver. We pass the wvalue we want to send i rﬂfiﬁ::?éiga;pc(unmmmr({\ oo, Ac(craeen)

JJ directly to the receiver, bypassing the channel buffer (if any). !

S ﬂd( c, sg, ep, func { } { unlock { &c. ].DCk.:I' } s 3 ) Jf‘j Fast path: check for failed non-blocking operation without acquiring the lock.

return true :",f After observing that the channel is not closed, we observe that the channel is

/f not ready for sending. Each of these observations is a single word-sized read

} {{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).

{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%
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o You Can Just read Ito return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

* https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugcChan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
il
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
{/ Because a closed channel cannot transition frem 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two observations,
{/ they imply a moment between the two when the channel was both not yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
I
/f It is okay if the reads are reordered here: if we observe that the chamnel is not
{{ ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first cbservation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.datagsiz » @ && c.goount == c.datagsiz)) {
refurn false

}

var 1@ inte4
1 if blockprofilerate > @ {
1@ = cputicks()

1
lock(&e.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. e pass the value we want fo send

/! directly to the receiver, bypassing the channel buffer (if any).
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TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe

123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
123 * generic single channel send/recy
* If block is net nil,

. . 1
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.
13 ¥
* sleep can wake up with g.param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.
133 ¥/
142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You can just read it: ...

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297  ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for

8@ ff violating that assumption, but the write barrier has to work. )

201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes

282 /f are not in the heap, so that will not help. We arrange to call ﬂmmﬂmm%

383 f/ memmove and typeBitsBulkBarrier instead. :ﬁngfﬁs

304 et

385 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { ﬂgjﬁﬁimmL

386 // src is on our stack, dst is a slot on another stack. e

387 It the chamel is not
it implies that the

388 // Once we read sg.elem out of sg, it will no longer S

389 // be updated if the destination’'s stack gets copied (shrunk}.

31e // 50 make sure that no preemption points can happen between read & use.

311 dst := sg.elem

312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)

313 memmove({dst, src, t.size)

314 }

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%
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123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

/%
123 * generic single channel send/recy
* If block is net nil,

. . 1
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.
13 ¥
* sleep can wake up with g.param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.
133 ¥/
142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You can just read it: ...

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297  ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for

8@ ff violating that assumption, but the write barrier has to work. )

201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes

282 /f are not in the heap, so that will not help. We arrange to call ﬂmmﬂmm%

383 f/ memmove and typeBitsBulkBarrier instead. :ﬁngfﬁs

304 et

385 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { ﬂgjﬁﬁimmL

386 // src is on our stack, dst is a slot on another stack. e

387 It the chamel is not
it implies that the

388 // Once we read sg.elem out of sg, it will no longer S

389 // be updated if the destination’'s stack gets copied (shrunk}.

31e // 50 make sure that no preemption points can happen between read & use.

311 dst := sg.elem

312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)

313 memmove({dst, src, t.size)

314 }

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
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TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe
123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
125 chansend(c, elem, true, getcallerpe())

1% }

/%
123 * generic single channel send/recy
120 * If block is not nil,

° °
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.
13 ¥
135 * sleep can wake up with g.param == nil
* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run
132 * the operation; we'll see that it"s now closed.

139 */
142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You canjustreadit: .. ,

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297  ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
8@ ff violating that assumption, but the write barrier has to work. )
201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes
282 /f are not in the heap, so that will not help. We arrange to call :qmngthmd_c'
383 f/ memmove and typeBitsBulkBarrier instead. IHM:E:;::EF%? ;
: : 304 e
‘‘‘‘‘‘‘‘ G 15taCk ﬁ,t.@.‘,:.k. 385 Func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { i"ﬂﬁii-?{‘iiiiZE"“““‘
386 /f src is on our stack, dst is a slot on another stack. e s =
' 387  the chamel 15 rot
G2 stacké """"""" T """" 388 // Once we read sg.elem out of sg, it will no longer ft]m%]mhatthe
: heap 389 /{ be updated if the destination's stack gets copied (shrunk). s
per-goroutine stacks 31e // 50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
G1 writes to G2's stack! 31 ) R, Sis B,

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%
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TII 7 BUCY POINT TOF € <- X Trom COMpIIED COOe
123 f/goinosplit

124 func chansendi{c *hchan, elem unsafe.Pointer) {
1 chansend(c, elem, true, getcallerpe())
}

/%
* generic single channel send/recy
* If block is net nil,

° ° 1
131 * then the protocol will mot
132 * sleep but return if it could
133 # not complete.

CEEEBEBER

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to leop and re-run

% the operation; we'll see that it's now closed.

133 ¥/

142 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
141 if ¢ =nil {

* You can just read it: .. ,

Sends and receives on unbuffered or empty-buffered channels are the

° httpS'//gOIang Org/s 296 // only operations where one running goroutine writes to the stack of &
: : 297  ff another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
8@ ff violating that assumption, but the write barrier has to work. )
201/ typedmemmove will call bulkBarrierPreWrite, but the target bytes
282 /f are not in the heap, so that will not help. We arrange to call :qmngthmd_c'
rTTETrmmRsma s ; 383 f/ memmove and typeBitsBulkBarrier instead. IHM:E:;::EF%? ;
: 304 e
‘‘‘‘‘‘‘‘ G 15taCk ﬁ,t.@.‘,:.k. 385 Func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { i"ﬂﬁii-?{‘iiiiZE"“““‘
386 /f src is on our stack, dst is a slot on another stack. e s =
. 387 it the chamel 15 not
G2 stacké """"""" T """" 388 // Once we read sg.elem out of sg, it will no longer ft]m%]mhatthe
heap 389 /{ be updated if the destination's stack gets copied (shrunk). s
per-goroutine stacks 31e // 50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
G1 writes to G2's stack! 31 ) R, Sis B,

134 unlock(&e. lock)
panic(plainError("send on closed channel"))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%
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Channel implementation

* You can just read it:
* https://golang.org/src/runtime/chan.go

* Some highlights:

Race detection built in

Fast path just write to receiver stack

Often has no capacity = scheduler hint!
Buffered channel implementation fairly standard

FF EITCY POINT TOF € <- X Trom COMpIIED CO0e

{/gotnosplit

func chansendl{c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

generic single channel send/recy
If block is net nil,

then the protecol will not
sleep but return if it could
not complete,

sleep can wake up wi
* when a channel i ed in the sleep has

* been closed. it is easiest to leop and re-run
% the operation; we'll see that it's now closed.

ap
/

th g.param == nil

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

if ¢ == nil {
if Iblock {
return false
1

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

if debugcChan {
print("chansend: chan=", ¢, "\n")

if raceenabled {
racereadpc (unsafe.pointer(c), callerpc, funcPC{chansend))

Fast path: check for failed non-blocking operation witheut acquiring the lock.

not ready for sending. Each of these observations is a single word-sized read
(first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
Because a closed channel cannot transition from 'ready for sending' to

‘not ready for sending', even if the channel is closed between the two cbservations,
they imply a moment between the two when the channel was both not yet closed

and nct ready for sending. We behave as if we observed the channel at that mement,
and report that the send cannot proceed.

."Ii
."..J
/[ After observing that the channel is not closed, we observe that the channel is
/]
1

It is okay if the reads are reordered here: if we observe that the channel is not
ready for sending and then observe that it is not closed, that implies that the
channel wasn't closed during the first observation.

if Iblock & c.closed == B & ((c.datagsiz == @ & c.recvq.first == nil) |

(c.datagsiz » @ & c.qoount == c.datagsiz)) {
refurn false

var 1@ inte4
if blockprofilerate > @ {
te = cputicks()

lock(&c.lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel"))

if sg i= c.recvg.dequeue(); sg != nil {

Found 3 waiting receiver. We pass the value we want to send

/! directly to the receiver, bypassing the channel buffer (if any).
candfr o an Euneiy ©ounlecbiBe Tarky 1 3%
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* No cache coherence!
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FP64 INT FP32 FP32 INT INT FP32 FP32

Memory Controller
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FP32 FP32 INT FP32 FP32
e 15.7 TFLOPS
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L1 Instruction Cache

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) ° 8 O S M S

FP32 FP32 INT FP32 FP32

FP32 FP32 INT FP32 FP32

Streaming Multiprocessor
i o o s R TooR 64 cores/SM

FP32 FP32 INT FP32 FP32
e 5210 threads!
FP32 FP32 INT FP32 FP32 )
FP32 FP32 INT FP32 FP32
- e 15.7 TFLOPS
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ .
8T ST ST ST ST ST ST ST ST ST
PCI Express 3.0 Host Interface LO Instruction Cache LO Instruction Cache
- e v——— S * 640 Tensor cores

Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT FP32 FP32 INT INT FP32 FP32 I I B M 2 I I I e I I l O ry
FP64 INT FP32 FP32 INT INT FP32 FP32 .
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* No cache coherence!

FP64 INT FP32 FP32 INT INT FP32 FP32

= 0 * 16 GB memory
 PCle-attached

Memory Controller

LD/ LDl LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
3 ] SFU

ST ST ST ST ST ST ST ST ST ST ST ST
128KB L1 Data Cache / Shared Memory
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How do you program a machine
like this? pthread_create()?



GPUs: Outline

e Background from many areas

* Architecture
* Vector processors
* Hardware multi-threading
* Graphics
* Graphics pipeline
* Graphics programming models

e Algorithms
* parallel architectures - parallel algorithms

* Programming GPUs
* CUDA

* Basics: getting something working
e Advanced: making it perform
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Processor algorithm:

main() {

while(true)
do_next_instruction();

}



Architecture Review: Pipelines

Processor algorithm:

main() §

while(true)
do_next_instruction();

}

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);



Architecture Review: Pipelines

Processor algorithm:

main() §
v main(){
pthread create(do_instructions);
} pthread create(do_decode);
pthread create(do_execute);

do n
inst
ops
exel }
access_memory(ops, regs);
write back(regs);

pthread join(...);



Architecture Review: Pipelines

Processor algorithm: do_instructions){
while(true) {
main() { instruction = fetch();
enqueue(DECODE, instruction);
v main(){ 3
pthread create(do_instructions);
. do_decode() {
} pthread create(do_decode); while(true) {
pthread_create(do_execute); instruction = dequeue();
— — ops, regs = decode(instruction);
vee enqueue(EX, instruction);
do_n pthread join(...); 3
INst
ops. ot do_execute() {
exe } while(true) {
) instruction = dequeue();
accj_ess_memory(OpS, regs), execute calc_addrs(ops, regs);
Wnte_back(regs); enqueue(MEM, instruction);

¥ B



Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

}



Architecture Review: Pipelines

Processor algorithm: do next_instruction() {
main() { instruction = fetch();
while(true) { ops, regs = decode(instruction);
do_next_instruction(); execute calc_addrs(ops, regs);
] access_memory(ops, regs);

write back(regs);



Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

}

Instruction Elnstr. Decode Execute : Memory Write
Fetch ' Aeq. Fetch ' Addr. Calg ; Access . Back

Next PC 7] nedaseapc ) Nestsearc [T ]
RS1
= 2 —
| - :'_Irn.'.u
= ? i g
—
—- -
-é‘m
(=]
menl 2
oy

arrdi

FER]]

BB B

do_next_instruction() {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

}



Architecture Review: Pipelines

Processor algorithm: do_next_instruction() {

main() { instruction = fetch();
while(true) { ops, regs = decode(instruction);
do_next_instruction(); execute calc_addrs(ops, regs);
] access_memory(ops, regs);
v v oooce | Eote | womoy | ot write back(regs);

Fetch ' Aeq. Fetch ' Addr. Calg ; Access . Back

Next PC 7]  neaseapc 7]  NextseQPC [T ] }
RS1
A F Instr No. Pipeline Stage
i - .
— 2 - [ ]"' 1 IF | ID | EX IMEM| WB

8 2 IF | ID | EX |MEM wB
= ‘ 3 IF | ID | EX |[MEM| WB
5 ™ / | 4 IF | ID | EX |[MEM
E 3 g%“ 5 IF | ID | EX
A ‘ - & g';:._‘i'é 1|2|3|a|5|6]|7
A |2 |2 2




Architecture Review: Pipelines

Processor algorithm: do next_instruction() {
main() { instruction = fetch();
while(true) { ops, regs = decode(instruction);
do_next_instruction(); execute calc_addrs(ops, regs);
} access_memory(ops, regs);
Instruction Elrrs-tr. Decode Execute Memory Write Write_baCk(regS);
Fetch Reg. Fetch *  Addr. Galc ; Access Back }
F:as!‘ ,J Instr No. Pipeline Stage
— 'g i 1 IF | ID | EX [MEM| wB
—.__. 2 IF [ ID | EX [MEM| WB
= ‘ 3 IF | ID | EX [MEM| WB
; 4 IF | ID | EX [MEM]|
| i"f 5 IF | ID | EX
A A

What is the name of this kind of parallelism?




Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

Instruction Elrrstr. Decode Execute Memory Write
Fetch * Aeg. Fetch *  Addr. Galc !

Next PC ] wessearc  []  MextSEQPC

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

RS1

L =

3
#

—)

Instr No.

Plpeline Stage

1

EX [MEM| WB

ID | EX |MEM

MEM| WB

2
3
4

EX |MEM|

|

BB 2

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

What is the name of this kind of parallelism?



Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

Instruction Elrrstr. Decode Execute Memory Write
Fetch * Aeg. Fetch *  Addr. Galc ; Access *  Back

Next PC ) weasearc  [0]  MextsEorC [T k, [
RS1
A

BB 2

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Instr No. Pipeline Stage
1 IF | ID | EX |MEM| WB

2

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

What is the name of this kind of parallelism?
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Architecture Review: Pipelines

Processor algorithm:

main() {

while(true) {
do_next_instruction();

Instruction Elrrstr. Decode Execute Memory Write
Fetch * Aeg. Fetch *  Addr. Galc ; Access *  Back

Next PC ) weasearc  [0]  MextsEorC [T k, [
RS1
A

BB 2

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Instr No. Pipeline Stage
1 IF | ID | EX |MEM| WB

2

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

What is the name of this kind of parallelism?



Multi-core/SMPs



Multi-core/SMPs

Instruction Elrw.tr_ Decode
Fetch ' Reg. Fetch

Mext PC ] wesseorc |7

RS1T
A

o4 Bay

ER B



Multi-core/SMPs






Multi-core/SMPs

Elm«r. Decode ' Execute Memory Write
Fetch : Reg. Fetch H Addr, Calc 4 ACCOSS Back
Next PC Q PC Noxt SEQ PC
Asy
w
£ e
2

-
T

— — —
Elmtt. D ' Execute ' Memory
Fetch : Reg. Fetch H Addr. Calc 2 ACCOsS
Next PC Q PC Noxt SEQ PC
Asy

— — —
flmlr. Decode ' Execute ' Memory '
Fetch : Reg. Fetch H Addr, Calc 2 ACCOsS -
Next PC Q PC Noxt SE£Q PC
As
w
£ it
2

e
—_— — —
Instruction  : Instr. Decode : Execute : Memory : Write
Fetch : Reg. Fetch i Adgdr. Calc 2 Access - Back
Next PC lext SEQ PC Noxt SEQ PC
AsS
=
z —




Multi-core/SMPs

Instruction  : Instr. Decode :
Fot

Execut Memory

: =
Fetch : Reg. ch H Addr, Calc Accoss

e ) —cmcsoce g _se—eorc —j—l @ main() {
‘ % | for(i=0; i<CORES; i++) {
: pthread create(

do_instructions());

}
}

do_instructions() {
while(true) {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

1

——




* Pros: Simple

* Cons: programmer has to find the parallelism!

Instruction Instr. Execute

Multi-core/SMPs

main() {
for(i=o; i<CORES; i++) {
pthread create(
do_instructions());

}
}

do_instructions() {
while(true) {
instruction = fetch();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

1

COREA COREA




* Pros: Simple

* Cons: programmer has to find the parallelism!

Multi-core/SMPs

instr. De

Instr. H 1 e
Fetch : Reg. Fetch i Agdr. Calc

= e e m main() {
- ' S ] . ]
0 for(i=0; i<CORES; i++) {
i
- G ) : pthread create(
Rl o = - do_instructions());
— = : === TITTTTITITTTITTrTIveT )
' }
’ & ' do_instructions() {
Ly v v while(true) {
R = | " instruction = fetch();
£ -
3 ops, regs = decode(instruction);
- i s . execute calc_addrs(ops, regs);
— access_memory(ops, regs);
T e _ write_back(regs);
Ll : - !
= Other techniques extract
: - = parallelism here, try to let the

find parallelism
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Superscalar processors

Remove extra
instruction streams




Superscalar processors



Superscalar processors

INstruction L inatr. Decode H Exacute H Pl s ey H W rite
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Superscalar processors i)

for(i=0; i<CORES; i++)
| pthread create(decode_exec);
. while(true) {
instruction = fetch();
enqueue(instruction);
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instruction = dequeue();

ops, regs = decode(instruction);

execute calc_addrs(ops, regs);

—® access_memory(ops, regs);
_3

write_back(regs);

e . = decode exec(){
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Superscalar processors i)

for(i=0; i<CORES; i++)
pthread create(decode_exec);
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instruction = fetch();
3]§ enqueue(instruction);
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instruction = dequeue();

ops, regs = decode(instruction);

_ execute calc_addrs(ops, regs);

el o : —® access_memory(ops, regs);
1

write back(regs);
= Ll ' }

Doesn’t look that different does it? Why do it?
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Superscalar processors i)

for(i=0; i<CORES; i++)
pthread create(decode_exec);
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instruction = fetch();
3]§ enqueue(instruction);
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instruction = dequeue();
ops, regs = decode(instruction);
_ :.] execute calc_addrs(ops, regs);
== ; —» access_memory(ops, regs);
1

write back(regs);

e — > | decode_exec() {
1
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Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.



Superscalar processors
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main() {
for(i=0; i<CORES; i++)
pthread_create(decode_exec);
while(true) {
instruction = fetch();
enqueue(instruction);

}
}

decode exec(){
instruction = dequeue();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.



Superscalar processors
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main() {
for(i=0; i<CORES; i++)
pthread_create(decode_exec);
while(true) {
instruction = fetch();
enqueue(instruction);

}
}

decode exec(){
instruction = dequeue();
ops, regs = decode(instruction);
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write back(regs);

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.



Vector/SIMD processors

# C code
for (1i=0; i<64; i++)
C[i] = A[i] + B[i]:

# Scalar Code
LI R4, 64

loop:
L.D FO, O(R1l)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0 (R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, 1




Vector/SIMD processors

INstruction L inatr. Decode H Exacute H Pl s ey H W rite
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E|lfor (1=0; i<64; i++)
C[i) = A[i) + B[i]):
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# Scalar Code

L
4J LI R4, 64
loop:

L.D FO, O(R1l)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8

___]’Hl DADDIU R2, 8
DADDIU R3, 8
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Vector/SIMD processors
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for (i=0; i<64; i++)
= C[i] = A[i] + B[i]:

e T # Scalar Code

o LI R4, 64
= = 1 3
L.D \FO, O(R1l
L.D , 0(R2
m@— ADD.D ¥4, F2, FO
S.D 4, 0(R3)
DADDIU|R1,
DADDIUJR2,
DADDIUJR3,

DSUBIY R4,
BNEZ R4, loop
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Vector/SIMD processors




Vector/SIMD processors main)

for(i=0; i<CORES; i++)
- pthread_create(exec);
while(true) {
ops, regs = fetch_decode();
enqueue(ops, regs);
}
}

.

-9

exec(){
ops, regs = dequeue();
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

-9
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Vector/SIMD processors

main() {
for(i=0; i<CORES; i++)
o EET R Lggwe Lowmmw fows pthread create(exec);
S 4 » .
=2 = = while(true) {
- . ops, regs = fetch_decode();

uix

— > enqueue(ops, regs);
}
}
exec(){
ops, regs = dequeue();

execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Single instruction stream, multiple computations




Vector/SIMD processors main)

for(i=0; i<CORES; i++)
pthread create(exec);
while(true) {
ops, regs = fetch_decode();
enqueue(ops, regs);
}
}

exec(){
ops, regs = dequeue();
execute calc_addrs(ops, regs);
access_memory(ops, regs);
write_back(regs);

}

Single instruction stream, multiple computations
But now all my instructions need multiple operands!



Vector Processors

* Process multiple data elements simultaneously.
e Common in supercomputers of the 1970’s 80’s and 90’s.

* Modern CPUs support some vector processing instructions
e Usually called SIMD

e Can operate on a few vectors elements per clock cycle in a pipeline or,
* SIMD operate on all per clock cycle
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* Process multiple data elements simultaneously.

e Common in supercomputers of the 1970’s 80’s and 90’s.

* Modern CPUs support some vector processing instructions
e Usually called SIMD

e Can operate on a few vectors elements per clock cycle in a pipeline or,
e SIMD operate on all per clock cycle

* 1962 University of lllinois llliac IV - completed 1972 - 64 ALUs 100-150 MFlops
e (1973) TI's Advance Scientific Computer (ASC) 20-80 MFlops

* (1975) Cray-1 first to have vector registers instead of keeping data in memory
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Vector Processors

* Process multiple data elements simultaneously.

e Common in supercomputers of the 1970’s 80’s and 90’s.

* Modern CPUs support some vector processing instructions
e Usually called SIMD

e Can operate on a few vectors elements per clock cycle in a pipeline or,
e SIMD operate on all per clock cycle

* 1962 University of lllinois Illiac IV - completed 1972 - 64 ALUs 100-150 MFlops
e (1973) TI's Advance Scientific Computer (ASC) 20-80 MFlops

* (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data 2>
Programming model has to change



Vector Processors

2 Implementation:
fo) . .
3 * Instruction fetch control logic shared

i pon AP SMF * Same instruction stream executed on
" * Multiple pipelines

A 16Bx2

» =¥RE..
“ -*.a_ =1  Multiple different operands in parallel
PERM LSU
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Vector Processors

a= Implementation:
3 * Instruction fetch control logic shared
. LocaIStom§ . .
o pon MR S e Same instruction stream executed on
N = * Multiple pipelines
A 16Bx2 ,I’1SBx3x2 . . -
m — g B * Multiple different operands in parallel
P:.II{J‘JI L;U
Scalar Registers Vector Registers
ro o 0] M [2] [VLRMAX-1]

[63], [127], [258], ...
Vector Length Register | \/LR

Vector Arithmetic 3;
Instructions A ERAERAEAEEA
ADDV v3, v1, v2 v3r ‘ : '
[01 [1] [VLR-1]
Vector Load and Vector Register
Store Instructions Me—e—————=
LVvi, r1, r2 ' '
] Memory

Base, r1 | Stride, r2b



Vector Processors

)

m Local Stona%
Single Port ‘ P SMF
Branch SRAM | |
A — |
> =fBE
A 16B x 2 ,I’HSBxBx?
* h
PERM LSy
] ]
Scalar Registers Vector Registers
r15 v15;
v Y 2 [VLRMAX-1]
[63], [127], [255], ...
Vector Length Register | \/LR
Vector Arithmetic 3;
Instructions A ERAERAEAEEA
ADDV v3, v1, v2 v3c———— = = —
01 Ml [VLR-1]
Vector Load and Vector Register
Store Instructions Me——————= . —
LVv1, r1, r2
A ol M
Base, r1 | Stride, r2 emory

Implementation:
Instruction fetch control logic shared
e Same instruction stream executed on

* Multiple pipelines
* Multiple different operands in parallel
# C code
for (i=0; i<64; i++) H Vector Code
C[i] = A[i] + BI[i]; LI VLR, 64
# Scalar Code LV Vi, R1
LI R4, 64 LV V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3
L.D F2, 0 (R2)
ADD.D F4, F2, FO
S.D F4, 0 (R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop




Vector Processors

Local Store
Single Port
SRAM
* *’
JZZIZ:!?LSA'H: ........
|
/" Scalar Registers Vector Registers
ro vo
(01 M1 [2] [VL
(63], [127], [255], ...
Vector Length Register VLR
~ Vector Arithmetic z; = ——
. v «v «v «v «v
Instructions OO Rt
ADDVv3,v1,v2  v3c—————————
[01 [l [VLR-1]
Vector Load and Vector Register
Store Instructions Ve =
wvt,rt,r2 /////
f Memory

. Base, r1 Stride, r2

GPUs: same basic idea

Implementation:

* Instruction fetch control logic shared
e Same instruction stream executed on
* Multiple pipelines

* Multiple different operands in parallel
# C code

for (i=0; i<64; i++)

C[i] = A[i] + B[i];

ADD.D F4,

DADDIU R1, 8
DADDIU R2,
DADDIU R3,
DSUBIU R4,

# Scalar Code

64

0 (R1)
0 (R2)
F2, FO
0 (R3)

8
8
1
loop

# Vector Code

LI VLR, 64
LV V1,
LV V2,
ADDV.D V3,
SV V3,

CSRR
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When does vector processing help?

Instruction Elnstr. Decode , Execute
Fetch * Reg. Fetch * Addr. Calc

Next PC

What are the potential bottlenecks here?
When can it improve throughput?

Only helps if memory can keep the pipeline busy!
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* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

* Looks like multiple cores to the OS
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Hardware multi-threading

Thread 0

* Address memory bottleneck

i Share exec unit across
Instruction streams
e Switch on stalls

ks like multiple cores to the OS
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Coarse- grained multithreading

* Single thread runs until a costly stall =.
* E.g.2nd level cache miss i []
« Another thread starts during stall HE = ==
* Pipeline fill time requires several cycles! HEEE
BEN
e Does not cover short stalls HEE
 Hardware support required =.
* PC and register file for each thread
| []
* little other hardware ]
* Looks like another physical CPU to
OS/software
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Fine-grained multithreading

Threads interleave instructions
* Round-robin
* Skip stalled threads

Hardware support required
* Separate PC and register file per thread
* Hardware to control alternating pattern

Naturally hides delays
* Data hazards, Cache misses
* Pipeline runs with rare stalls

Doesn’t make full use of multi-issue
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Simultaneous Multithreading (SMT)

5 =  EEm mmEm
* Instructions from multiple threads OONN m2-_ o ="" mmmm
issued on same cycle EEEE ° = == OoEs
1 0 EEE 0CO0 EEEE
1 1 L] BEEN EEE M
* Uses register renaming EEEE C  mm ® EmEm
|
 dynamic scheduling facility of multi- | p— Skip C B R & == '
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issue architecture NN = i:-- = mmm
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* Hardware support: IEEE mmen "% Emm
[ ]|
* Register files, PCs per thread [] | -
, , SR . Skip A ~ Emm "
» Temporary result registers pre commit M < - gmm EE
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* Support to sort out which threads get B w E“ Hon Eos
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Why Vector and Multithreading Background?

GPU:

* A very wide vector machine

* Massively multi-threaded to hide memory latency
* Originally designed for graphics pipelines...
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Graphics ~= Rendering

Inputs

* 3D world model(objects, materials)

Geometry modeled w triangle meshes, surface normals
GPUs subdivide triangles into “fragments” (rasterizat
Materials modeled with “textures”

Texture coordinates, sampling “map” textures -

geometry
 Light locations and properties

» Attempt to model surtface/light interactions with
modeled objects/materials

* View point

Output

e 2D projection seen from the view-point

viewing
frustrum
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foreach(vertex vin model)

map v 2>V

model view
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Grossly over-simplified rendering algorithm

foreach(vertex vin model)

map Vmodel 9 Vview
fragment(] frags = {};
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Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));

foreach fragment f in frags
choose_color(f);



Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));

foreach fragment f in frags
choose_color(f);

display(visible fragments(frags));



Grossly over-simplified rendering algorithm

foreach(vertex vin model)
2V

fragment(] frags = {};

map Vmodel view

foreach triangle t (v, v, v,)
frags.add(rasterize(t));

foreach fragment f in frags
choose_color(f);

display(visible_fragments(frags));



http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg
http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg

Algorithm =2 Graphics Pipeline

fO reaCh(Ve rteX V |n mOdel) Application Primitives and image data
>v -
fragment(] frags = {};

m a p Vmod el view Vertex Transform and lighting

Primitive assembly

Geometry

foreach triangle t (v, v, V,) ——
frags.add(rasterize(t)); e ——
I Fog
foreach fragment f in frags
C h 00S e_CO I (0) I‘(f) , Femnebutier operaiiona Alpha, stencil, and depth tests

Framebuffer blending

display(visible fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!
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Algorithm =2 Graphics Pipeline

foreach(vertex vin model) Application | _Prmitves and image dsta
Vertex Transform énd lighting >
/—'T’/

fragment|] frags =

Primitive assembly

Geometry

foreach triangle t (v, v, v,) Gippig
frags.add(rasterize(t)); - =
" Fog
foreach fragment f in frags
C h O0S e_co | 9 r(f ) ’ SR Alpha, stencil, and depth tests

Framebuffer blending

display(visible fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!

10/30/2018 Dandelion



Algorithm =2 Graphics Pipeline

fO reaCh(Ve rteX V |n mOdel) Application Primitives and image data
map Vmodel 9 VViEW Vertex Tr:ansform;ndlighting
fragment[] fragS — {}, < Primitiv;aassamhlv \>
Geometry
foreach triangle t (v, v, v,) Cipping ]

) — 1

frags.add(rasterize(t)); - —
" Fog
foreach fragment f in frags
C h O0S e_co I 9 r(f ) ’ SR Alpha, stencil, and depth tests

Framebuffer blending

display(visible fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!
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Algorithm =2 Graphics Pipeline

fO reaCh(Ve rteX V |n mOdel) Application Primitives and image data
>v
fragment(] frags = {};

m a p Vmod el view Vertex Transform and lighting

Primitive assembly

Geometry

foreach triangle t (v, v, v,) Shenn
frags.add(rasterize(t)); (e g1,
= /

foreach fragment f in frags

Alpha, stencil, and depth tests

choose color(f);

Framebuffer operations
Framebuffer blending

display(visible fragments(frags));

OpenGL pipeline

To first order, DirectX looks the same!
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Algorithm =2 Graphics Pipeline

foreach(vertex vin model) Application | _Prmitves and image dsta
>V :
fragment(] frags = {};

m a p Vmod el view Vertex Transform and lighting

Primitive assembly

Geometry

foreach triangle t (v, v, v,) e
frags.add(rasterize(t)); - —
i Fog
foreach fragment f in frags — i
choose_color(f); (| Framattr aportons )
Framebuffer blending y

isplay(visible_fragm@ e =
OpenGL pipeline

To first order, DirectX looks the same!
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Graphics pipeline = GPU architecture

] Y Y Y Y Y
Application Primitives and image data Verbex Frocessing
]
I yrd
Vertex Transform and lighting Cull / Clip / Setup
J7 { Z-Cull H Rasterfzation I
Primitive assembly
Gﬂmﬂtw Texture and —
Gipping Fragment Processing _‘r_ [:
Sl
Texturing : ¥ — :
Fragment ' Fragment Crossbar
Fog Wiiiii*fjiiiiiﬁ*ﬁ
{ Z-Compare
\J = and Blend
Alpha, stencil, and depth tests 7 T
LT gporeons Framebuffer blending Memory Memory Memory Memory
Partition Partition Partltlon Partition
Limited “programmability” of shaders: GeForce 6 series
Minimal/no control flow
10/30/2018 Maximum instruction count bandelion
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Graphics pipeline = GPU architecture

] Y Y Y Y Y
Application Primitives and image data Verbex Frocessing
1E
Vertex Transform and lighting
I
=k
Primitive assembly ]
< Gﬁlﬂmﬂﬂ‘? Texture and —
Cipping = Fragment Processing T [:
= A
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ET opertane Framebuffer blending Memory Memory Memory Memory
Partition Partition Partltlon Partition
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o prog y GeForce 6 series
Minimal/no control flow
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Graphics pipeline = GPU architecture

Application Primitives and image data
1E
Vertex Transform and lighting
]
3L
Primitive assembly
Geometry
Clipping
AL
Texturing
Fragment
Fog
— — %__, —
Alpha, stencil, and depth tests
Framebuffer operations
Framebuffer blending

Limited “programmability” of shaders:

Minimal/no control flow

10/30/2018

Maximum instruction count
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Graphics pipeline = GPU architecture

10/30/2018

Application Primitives and image data
1E
Vertex Transform and lighting
]
3L
Primitive assembly
Geometry
Clipping
AL
Texturing
Fragment
Fog
I
—J
Alpha, stencil, and depth tests
Framebuffer operations

[~ annabuﬁﬂrbhndm§ —

D

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

Vertex Processing

\] ]

¥

¥

¥

Cull / Clip / Setup

Texture and
Fragment Processing

. A A
-Compare
Blend

Dandelion

{Z—Cull H Rasterization I
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L 1
! Fragment Crossbar |
1
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Y Y
Memory Memory Memory | Memory
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Late Modernity: unified shaders

()1 A B
Host
Input Assembler Setup ! Rstr/ ZCull
Vix Thread Issue Geom Thread Issue Fixel Thread Issue
o

=OECON=C=EOE =D E O EOECE =0 =0 =0 = O E O E O D
0 | (o | o | | O (|
I T T T 0 0 0 ] A I o 1 T 1 e I I R
| (o (oo | _’DD CICNgICIc
LT (EEETE (EEEE EEEE [EEEE R EEEE)
L1 L1 L1 L1 L1 L1 L1 L

| [

FB FB FB FB FB

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count

[

Thread Processor



Pascal

Mostly Modern
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Memory Controller Memory Controller Memory Controller Memory Controller
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Modern Enough: Pascal SM
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Cross-generational observations

GPUs designed for parallelism in graphics pipeline:
* Data

* Per-vertex
* Per-fragment
* Per-pixel

e Task

* Vertex processing

* Fragment processing

* Rasterization

* Hidden-surface elimination

* MLP

 HW multi-threading for hiding memory latency



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

* Data
* Per-vertex
* Per-fragment Even as GPU architectures become more
* Per-pixel general, certain assumptions persist:
1. Data parallelism is trivially exposed
* Task

2. All problems look like painting a box

* Vertex processing with colored dots
* Fragment processing

e Rasterization
 Hidden-surface elimination

* MLP

 HW multi-threading for hiding memory latency
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Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

* Data
* Per-vertex
* Per-fragment Even as GPU architectures become more
* Per-pixel general, certain assumptions persist:
1. Data parallelism is trivially exposed
* Task

2. All problems look like painting a box

* Vertex processing with colored dots
* Fragment processing

e Rasterization

* Hidden-surface elimination But what if my problem isn’t
 VILP painting a box?!!?!

 HW multi-threading for hiding memory latency

10/30/2018 Dandelion



The big ideas still present in GPUs

e Simple cores

 Single instruction stream
* Vector instructions (SIMD) OR
* Implicit HW-managed sharing (SIMT)

* Hide memory latency with HW multi-threading



Programming Model

* GPUs are I/0 devices, managed by user-code
e “kernels” == “shader programs”

* 1000s of HW-scheduled threads per kernel

* Threads grouped into independent blocks.
* Threads in a block can synchronize (barrier)
* This is the *only* synchronization

e “Grid” == “launch” == “invocation” of a kernel
* a group of blocks (or warps)



Parallel Algorithms

* Sequential algorithms often do not permit easy parallelization
* Does not mean there work has no parallelism
» A different approach can yield parallelism
* but often changes the algorithm
e Parallelizing != just adding locks to a sequential algorithm

e Parallel Patterns
* Map

Scatter, Gather

Reduction

* Scan

Search, Sort



Parallel Algorithms

* Sequential algorithms often do not permit easy parallelization
* Does not mean there work has no parallelism
» A different approach can yield parallelism
* but often changes the algorithm
e Parallelizing != just adding locks to a sequential algorithm

e Parallel Patterns

* Map

e Scatter, Gather

* Reduction If you can express your

e Scan algorithm using these patterns,

an apparently fundamentally
* Search, Sort sequential algorithm can be
made parallel




Map

* Inputs
* Array A
* Function f(x)

* map(A, f) =2 apply f(x) on all elements in A

 Parallelism trivially exposed
* f(x) can be applied in parallel to all elements, in principle



Map

* Inputs
* Array A
* Function f(x)

* map(A, f) 2 apply f(x) on all elements in A

 Parallelism trivially exposed
* f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]); map(points, findNearestCenter)

¥



Scatter and Gather

e Gather:
* Read multiple items to single location

* Scatter:
* Write single data item to multiple locations

O+
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DD

Scatter
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Gather




Scatter and Gather

e Gather:
* Read multiple items to single location

* Scatter:
* Write single data item to multiple locations

for (i=0; i<N; ++i) _
Al = bl ‘ gather(x, y, idx)

for (i=0; i<N; ++i)

Tidxil] = x(il: scatter(x, vy, idx)

O+

rO

DD

Scatter

Ox

O

DD

Gather




Reduce

* Input
* Associative operator op
* Orderedsets=1a, b, c, ... Z]

e Reduce(op, s) returnsaopbopc..opz
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for(i=0; i<N; ++i) {
accum += (point[i]*point[i]) »accum = reduce(*, point)
}
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Reduce

* Input
* Associative operator op
* Orderedsets=1a, b,c, ... z]

* Reduce(op, s) returnsaopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point[i]) ‘accum = reduce(*, point)

}

Why must op be associative?

¥+ > .‘+ >
f v N/4... 1
N/2

O(log,N) steps, O(N) work

N

5'+ +.‘+ >t > (111
a v MxN/4.. Mx1

MxN/2 '

MN—T0(log,N) steps, O(MN) work |




Scan (prefix sum)

* Input
* Associative operator op begin [T BT ¢ - A
* Ordered sets=[a, b, c, ... Z]
° |dent|tY| a a*b b+c ¢+d a+e | e f |
Time
* scan(op, s) =[l,a, (aopb), (aopbopc)..] T ot [ b [ebed|bede] cdt]
end a a+b A T | P a+b+c | a+b+c

+d+e | +d+e+f

* Scan is the workhorse of parallel algorithms:
e Sort, histograms, sparse matrix, string compare, ...



Ssummary

* Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs



