FPGAs: Here we go

Chris Rossbach cs378 Fall 2018 10/29/2018

Today

- Questions?
- Administrivia
 - Exam Wednesday
 - Start thinking about projects!
- Agenda
 - FPGAs: ~45 minutes
 - Exam Review: ~30 minutes

CRU CRUSCE

Acknowledgements:

- <u>http://www.ee.unlv.edu/~yingtao/2012_Spring/ECE720/student%20presentations/Introduction_to_Field_Programmable_Gate_Arrays.pptx</u>
- <u>http://rtds.cse.tamu.edu/wp-content/uploads/2013/03/fpga_intro.pptx</u>
- <u>ftp://ftp.altera.com/up/pub/Courses/Korea_2016/t0_intro.pptx</u>
- <u>https://www.slideshare.net/mobile/TaylorRiggan/a-primer-on-fpgas-field-programmable-gate-arrays</u>

Faux Quiz Questions

- Why/when might one prefer an FPGA over an ASIC, CPU, or GPU?
- Define CLB, BRAM, and LUT. What role do these things play in FPGA programming?
- Describe the FPGA build process; which phases are relatively short vs. relatively long?

						641.121 m	s	
Name	Value	600 ns	610 ns	620 ns	630 ns	16-10 ns	650 ns	660 ns
Image description of the second se	00000011	00000010			000	00011		
le sda_flag_from_	1							
scl_flag_from_t	0							
le scl_flag_from_s	0							
🔓 sda_flag_from_	0							_
tlags_from_clk_	0011	XXXX	000	• X	0001	X 0011	X 0000	0001
tx_data_ctr(2:0	111	XXX						
lig rst_to_tmr	0		-		_		_	
lig start_done	1							
ug rx_data								
ug reset_to_cik_dit	0	1	-v		_	0		
start_start_izep	1	0	ŧγ			1		
tr. data[7:0]	10101010				10101010			
<pre>clk(0:01</pre>	1	0000000000000	ຄວາວຄວາວຄວາວ	ພວກວກວກວກ	ດຫວດຄອດອອ	ວດດອດອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອອ	ຄວາມວາດວາດວາດ	0000000000
		×1. (41.12)						
		A1: 641.121 ns						

FPGA Unit Overview

- The Hardware FPGAs
- The Software HDL + Verilog
- The Project Needleman-Wunsch
- The Research Cascade + FPGA Programmability

		G	С	с	С	т	А	G	с	G
		-24	4 ◄	6◄	84	-10 *	-12	- -14◄	-16	-18
G	-2		1 🔹	3¥	-54	74	9	-11-	13	-15
с	-4	-1	2	0	-2 🐳	4 🔫	6 ◄	8	-10*	12
G	-6	3	0	1 1	-1	-3	-5	-5~	7	-9
с	-8	-5	-2	1	2 -	- 0 -	-2 -	4	-4~	6
А	-10	-7	-4	-1	0	1	1.	-1-	3	-5
А	-12	-9	-6	-3	-2	-1	2	0	-2	-4
т	-14	1 -11	-8	-5	-4	-1	0	1	-1	-3
G	-16	-13	-10	-7	-6	-3	-2	1	0	

Why Study FPGAs in Concurrency?

(Shouldn't this be in architecture class?)

• Programmable hardware

- Can implement arbitrary accelerators
- Accelerators can be parallel/concurrent
- Host+Accelerator programming involves parallelism/concurrency
- Extreme Heterogeneity
- FPGAs are everywhere
 - Consumer electronics, networking, telecom
 - Cars, airplanes, trains
 - Medical equipment, and industrial control

• FPGAs are highly concurrent and parallel

History: PLA

- Programmable Logic Array
- First programmable device
- 2-level and-or structure
- One-time programmable

Pros

- Simple
- Captures arbitrary combinational logic
 Cons
- Low level
- stateless

SPLD - CPLD

- Simple Programmable logic device
 - Single AND Level
 - Flip-Flops and feedbacks
- Complex Programmable logic device
 - Several PLDs Stacked together

FPGA - Field Programmable Gate Array

Programmable logic blocks (Logic Element "LE") Implement combinatorial and sequential logic. Based on LUT and DFF.

Programmable I/O blocks

Configurable I/Os for external connections, various voltages, tri-states.

Programmable interconnect

Wires to connect inputs, outputs and logic blocks.

- clocks
- short distance local connections
- long distance connections across chip

Configuring a Lookup Table

• LUT: RAM with data width of 1bit.

Contents programmed at power up

Required Function

Truth Table

Programmed LUT

FPGA Architectures

- Early FPGAs
 - N x N array of unit cells (CLB + routing)
 - Special routing along center axis
- Next Generation FPGAs
 - M x N unit cells
 - Small block RAMs around edges
- More recent FPGAs
 - Added block RAM arrays
 - Added multiplier cores
 - Adders processor cores
- Special Functions
 - Internal SRAM
 - Embedded Multipliers, DSP blocks, logic analyzer, CPUs
 - High speed I/O (~10GHz)
 - DDR/DDRII/DDRIII SDRAM interfaces

Basic FPGAs vs DE1*-SoC

- ~\$100 USD
- Cyclone V SoC FPGA
- Dual-core ARM Cortex-A9
 - 1GB DDR 3 SDRAM, MicroSD
 - USB, Triple-speed Ethernet
 - ADC, Accelerometer, LED, Pushbutton
- FPGA
 - 85K Programmable Logic Elements
 - 64 MB SDRAM
 - DVD-quality audio in/out, Video in/VGA out
 - PS/2, IrDA
 - 4 de-bounced pushbuttons, 10 slider switches, 10 red LEDs, six
 7-segment displays
 - Expansion headers
- Built-in USB "Blaster" for FPGA programming

FPGA Operation

User writes configuration:

- defines the function of the system
- connectivity between the CLBs and the I/O
- logic to be implemented by CLBs
- I/O blocks.

Changing data in the configuration memory \rightarrow

- function of the system changes
- can happen at anytime during FPGA operation
- (run-time configuration).

Programmable Interconnect

- Horizontal and vertical mesh of wire segments
- Interconnected by programmable switches
 - programmable interconnect points (PIPs).
 - PIPs implemented with transmission gate & memory bits from configuration memory.
- Global routing: connect PLBs to I/O buffers, non-adjacent PLBs, etc
- Local routing: connects PLBs to adjacent PLBs and PLBs to global routing

- Types of PIPs
 - Cross-point = connects vertical or horizontal wire segments allowing turns
 - Breakpoint = connects or isolates 2 wire segments
 - Decoded MUX = group of 2ⁿ cross-points connected to a single output configure by n configuration bits
 - Non-decoded MUX = n wire segments each with a configuration bit (n segments)
 - Compound cross-point = 6 Break-point PIPS (can isolate two isolated signal nets)

Programming vs Configuring an FPGA

- SRAM cells holding configuration are Volatile Memory
- Lose configuration when board power is turned off.
- Keep Bit Pattern describes the Logic Functions in non-Volatile Memory e.g. ROM or Compact Flash card
- Reprogramming takes ~ secs
- Uses JTAG Boundary Scan

Design/Build Flows

- High level Description of Logic Design
 - Schematic
 - Hardware Description Language
- Compile to netlist
 - Low (Logic Gates) level description.
- Target Netlist to FPGA Fabric
 - Mapping and Packing
 - Placing and Routing
- Tools Generate the Bit File
- Simulation
- Timing Analysis

Hardware Description Languages

- Behavioural / Register Transfer Level Description
 - Program Statements. Loops. If Statements ... etc
- Describing mixed Combinatorial and Sequential Logic and Signals between.
- VHDL (VHSIC Hardware Description Language)
 - Very High Speed Integrated Circuit
- VERILOG (US)

Hardware Description Languages

- Logic → collection of Processes operating in Parallel
- Language Constructs for Multiplexers, FlipFlops ... etc
- Restrictive set of RTL for Synthesis
- Synthesis Tools recognise constructs, generate logic

Hardware Description Languages

- Synthesis (Compilation)
- Generate Netlist

Definition of Module

- Interface
 - port and parameter declaration
- Body: Internal part of module
- Add-ons (optional)

module module_name	(port_list)	;
port declarations parameter declaration	ons	interface
'include directives		add-ons
variable declarations assignments lower-level module in <i>initial</i> and <i>always</i> blo tasks and function	s nstantiation Icks	body
endmodule		module definition

Basic Structure

- The name of Module
- Comments in Verilog
 - One line comment (//)
 - Block Comment (/*.....*/)
- Description of Module (optional but suggested)

		ln1 lr ↓↓ ↓	12 (OpSel ↓	Mode 1				
COut ⊸	-		ALU	J		- Cin			
		Res	sult		Equal	1			
module	module ALU (Result, COut, Equal, In1, In2, OpSel, CIn, Mode);								
output	[3:0]	Result;	- 77	oper	ation r	esult			
output		COut;	- 77	carr	y out				
output		Equal;	- 77	when	1, In1	= In2			
input	[3:0]	In1;	- 77	firs	t opera	nd			
input	[3:0]	In2;	- 11	seco	nd oper	and			
input	[3:0]	Opsel;	- 11	oper	ation s	elect			
input		UIN; Mode:	- 77	mode	y in erithm	/logig:			
Input		noue,	-11	arit	hm when	O O			
endmodi	ile								

The Module Interface

- Port List
- Port Declaration

endmodule

Structural style: Verilog Code

module mux_4_to_1 (Out,In0,In1,In2,In3,Sel1,Sel0); output Out; input In0, In1, In2, In3, Sel0, Sel1; wire NotSel0, NotSel1; wire Y0, Y1, Y2, Y3; not (NotSel0, Sel0); not (NotSel1, Sel1); and (Y0, In0, NotSel1, NotSel0); and (Y1, In1, NotSel1, Sel0); and (Y2, In2, Sel1, NotSel0); and (Y3, In3, Sel1, Sel0); or (Out, Y0, Y1, Y2, Y3);

endmodule

Dataflow style: Verilog Code

endmodule

Behavioral style: Verilog Code

Genomics: Alignment

- Reveal structural, functional and evolutionary relationships biological sequences
- Similar sequences may have similar structure and function
- Similar sequences are likely to have common ancestral sequence
- Modelling of protein structures
- Design and analysis of gene expression experiments

Sequence alignment: Types

- Global alignment
 - Aligns each residue in each sequence by introducing gaps
 - Example: Needleman-Wunsch algorithm

FTFTALILLAVAV F--TAL-LLA-AV

LGP	S	S	K	Q	Т	G	K	G	S	-	S	R	Ι	W	D	N
L N -	I	Т	K	S	Α	G	K	G	Α	I	М	R	L	G	D	A

Sequence alignment: Types

- Local alignment
 - Finds regions with the highest density of matches locally
 - Example: Smith-Waterman algorithm

FTFTALILL-AVAV

--FTAL-LLAAV--

Sequence alignment: Scoring

Option 1	Option 2	Option 3
- A C - G G C - G	- A C G G - C - G	- A C G - G C - G
TACGGGCAG	T A C G G G C A G	T A C G G G C A G

- Scoring matrices are used to assign scores to each comparison of a pair of characters
- Identities and substitutions by similar amino acids are assigned positive scores
- Mismatches, or matches that are unlikely to have been a result of evolution, are given negative scores

А	С	D	Е	F	G	Η	I	К
А	С	Y	Е	F	G	R	Ι	К
+5	+5	-5	+5	+5	+5	-5	+5	+5

Pairwise alignment: the problem

Number of possible pairwise alignments explodes with sequence length 2 protein sequences of length 100 amino acids can be aligned in 10⁶⁰ ways

Time needed to test all possibilities is same order of magnitude as the entire lifetime of the universe.

Pairwise alignment: the solution

"Dynamic programming" (the Needleman-Wunsch algorithm)

Alignment depicted as path in matrix

Dynamic programming: example t[j] G 3 C₂ C A 5 0 -8 -2 -6 ____10 -4 0 $a[i,j] = \max \begin{cases} a[i,j-1] - 2 \\ a[i-1,j-1] + p(i,j) \\ a[i-1,j] - 2 \end{cases}$ -2 ' Τı s[i] C₂ Α G С -4 -1 -1 Α -1 -1 С Сз -6 G 1 -1 Т -1 -1 -1 1 Α4 -8 Gaps: -2

Т

Dynamic programming: example t[j] G 3 C 2 T 1 А 5 C 0 -2 -6 -8 -4 10 0 0 Τı -2 $a[i,j] = \max \begin{cases} a[i,j-1] - 2 \\ a[i-1,j-1] + p(i,j) \\ a[i-1,j] - 2 \end{cases}$ -4 s[i] C2 -4 Сз -6 A4 -8

Dynamic programming: example t[j] G 3 C 2 T 1 А 5 C 0 -6 -2 -8 10 -4 0 0 Τı -2 $a[i,j] = \max \begin{cases} a[i,j-1] - 2 \\ a[i-1,j-1] + p(i,j) \\ a[i-1,j] - 2 \end{cases}$ s[i] C2 -4 Сз -6 A4 -8

Dynamic programming: example t[j] G 3 C 2 T 1 А 5 C 4 0 -8 -2 -6 -4 -10 0 0 Τı -2 -3 -5 -7 -1 **∖**_2 -5 s[i] C2 2 0 -4 -1 0 $a[i,j] = \max \begin{cases} a[i,j-1] - 2 \\ a[i-1,j-1] + p(i,j) \\ a[i-1,j] - 2 \end{cases}$ Сз -6 A4 -8

Dynamic programming: example t[j] G C 2 А 5 C 4 T 1 3 0 -6 -8 -2 -4 -10 0 0 Τı -5 -2 -3 -7 _ s[i] C2 2 -2 -4 0 -1 -4 Сз -3 -6 0 1 _ 2 -3 A4 -5 -2 0 2 -8 -1

Thoughts On Cascade

Exam Review

FPGA Design Synchronous Logic

- Pipelined. Clocked Logic.
- Combinational and Sequential Logic.
- Register Transfer Level Logic.

Three levels of logic

Firmware Libraries

- Libraries of Firmware aka IP (Intellectual Property), Cores
 - Buy from FPGA Vendor
 - Buy from Third Parties
 - Open Source
- Libraries
 - VHDL code
 - Black Box NetList
 - Hardwired in Silicon
- Large User Community

Debugging Designs

- Logic Simulation Tools
 - Model of Logic
 - Input: Test Vector signals
 - Compare output with expected pattern
- Virtual Logic Analysers
 - Capture signals in real time while FPGA is running

FPGA Research Developments

- Reconfigurable Computing
- Virtual Hardware

Configuration

SRAM cells

Uninitialized

 \square

(a) Unconfigured

Primar

inputs

FPGAs

- Field Programmable Gate Array
 - "Field" \rightarrow architecture can be changed after deployment
- Gate Array
 - Gate Short for transistor logic gate (e.g. NAND)
 - Array Lots of them
- An integrated circuit ("chip")
- Programmable logic
 - Not just gates
 - Lookup tables, DSPs, other components

Look-up Tables (2:1 MUX Example)

- Configuration memory holds output of truth table entries
- Internal signals connect to control signals of MUXs
 - select values of the truth tables for any given input signals

Programmable Input/Output

- Bi-directional Buffers
 - Programmable for inputs or outputs
 - Tri-state controls bi-directional operation
 - Pull-up/down resistors
 - FFs/ Latches are used to improve timing issues
 - Set-up and hold times
 - Clock-to-out delay
- Routing Resources
 - Connections to core of array
- Programmable I/O voltage and current levels

Boundary Scan Access

Configurable Logic Blocks $(\cap D)$

CLBs consist of:

- Look-up Tables (LUTs) \rightarrow implement the e
 - Some FPGAs can use LUTs to implement F
- Carry and Control Logic
 - fast arithmetic operations (adders/ subtrational subtrational subtrational subtrational subtrations)
 - additional operations (Built-in-Self Test ite
- Memory Elements
 - Configurable Flip Flops (FFs)/ Latches(cloc
 - Memory elements usually can be configu

LUT

Programming an FPGA

- Field Programmable Gate Array
 - <u>Configurable</u> (Programmable) General Logic Blocks
 - Configurable Interconnects

• Bit File contains the Configuration Information

FPGA Configuration Interfaces

- Master (Serial or Parallel)
 - FPGA retrieves configuration from ROM at initial power-up
- Slave (Serial or Parallel)
 - FPGA configured by an external source (i.e microprocessor/ other FPGA)
 - Used for dynamic partial re-configuration
- Boundary Scan
 - 4-wire IEEE standard serial interface used for testing
 - Write and read access to configuration memory
 - Interfaces to FPGA core internal routing network

FPGA Configuration Techniques

- Full configuration and readback
 - Simple configuration interface
 - Automatic internal calculation of frame address
 - Larger FPGAs have a longer download time
- Compressed configuration
 - Requires multiple frame write capability
 - Identical frames of configuration data are written to multiple frame addresses
 - Extension of partial re-configuration interface capabilities
 - Frame address is much smaller than frame of configuration data
 - Reduces download time for initial configuration
 - depends on "regularity" of system function and array utilization
- Partial re-configuration and readback
 - Change portions of configuration memory
 - Reduces download time for re-configuration

Design Flows

- Schematic Capture of Logic Design.
- Create Netlist. Text file with signal connections.

Software Languages?

- Can Logic be expressed at a higher level of Abstraction?
- Familiar to Software Programmer?
- System C
 - C/C++ Representation of Algorithms
 - Class based
 - Faster simulation
 - Auto translation to HDL
 - Lacks support by Tools
- Augmented C++
 - Special Statements to support
 - Concurrency, clocks, pins ..etc
- Digital Signal Processing Functions

