
FPGAs:
Here we go

Chris Rossbach

cs378 Fall 2018

10/29/2018

1

Today
• Questions?

• Administrivia
• Exam Wednesday

• Start thinking about projects!

• Agenda
• FPGAs: ~45 minutes

• Exam Review: ~30 minutes

Acknowledgements:

• http://www.ee.unlv.edu/~yingtao/2012_Spring/ECE720/student%20presentations/Introduction_to_Field_Programmable_Gate_Arrays.pptx

• http://rtds.cse.tamu.edu/wp-content/uploads/2013/03/fpga_intro.pptx

• ftp://ftp.altera.com/up/pub/Courses/Korea_2016/t0_intro.pptx

• https://www.slideshare.net/mobile/TaylorRiggan/a-primer-on-fpgas-field-programmable-gate-arrays

2

http://www.ee.unlv.edu/~yingtao/2012_Spring/ECE720/student presentations/Introduction_to_Field_Programmable_Gate_Arrays.pptx
http://rtds.cse.tamu.edu/wp-content/uploads/2013/03/fpga_intro.pptx
ftp://ftp.altera.com/up/pub/Courses/Korea_2016/t0_intro.pptx
https://www.slideshare.net/mobile/TaylorRiggan/a-primer-on-fpgas-field-programmable-gate-arrays

Faux Quiz Questions

• Why/when might one prefer an FPGA over an ASIC, CPU, or GPU?

• Define CLB, BRAM, and LUT. What role do these things play in FPGA
programming?

• Describe the FPGA build process; which phases are relatively short vs.
relatively long?

3

FPGA Unit Overview

• The Hardware – FPGAs

• The Software – HDL + Verilog

• The Project – Needleman-Wunsch

• The Research – Cascade + FPGA
Programmability

4

FPGAs: programmable logic

• Field Programmable Gate Array
• “Field” → architecture can be changed after deployment

• Gate Array
• Gate – Short for transistor logic gate (e.g. NAND)

• Array – Lots of them

• Current FPGAs are resource rich:
• E.g. can synthesize ~100s of simple CPU cores

Pros:

• Short Development time

• Reconfigurable/Flexible to changes

• No need for ASIC expensive design and production

• Fast time to market

• Bugs can be fixed easily

• Off the shelf solutions are available

5

F
le

xi
b

ili
ty

Speed , Power Efficiency

Processors
Instruction Flexibility

90% Area Overhead

(Cache , Predictions)

ASIC
No Flexibility

20% Area Overhead

(Testing)

FPGA
Device-wide flexibility

99% Area Overhead

(Configuration)

Why Study FPGAs in Concurrency?
(Shouldn’t this be in architecture class?)

6

• Programmable hardware
• Can implement arbitrary accelerators

• Accelerators can be parallel/concurrent

• Host+Accelerator programming involves parallelism/concurrency

• Extreme Heterogeneity

• FPGAs are everywhere
• Consumer electronics, networking, telecom

• Cars, airplanes, trains

• Medical equipment, and industrial control

• FPGAs are highly concurrent and parallel

Pros

Cons

History: PLA

A B C

CBACBAf ••+••=1

CBABAf ••+•=2

AND plane

Programmable switch or fuse

OR plane

• Programmable Logic Array

• First programmable device

• 2-level and-or structure

• One-time programmable

7

Pros
• Simple
• Captures arbitrary

combinational logic
Cons
• Low level
• stateless

SPLD - CPLD
• Simple Programmable logic device

• Single AND Level

• Flip-Flops and feedbacks

• Complex Programmable logic device
• Several PLDs Stacked together

A B C

Flip-flop

Select
Enable

D Q

Clock

AND plane

MUX

1f

PLD
Block

PLD
Block

Interconnection Matrix

I/O
 B

lo
ck

I/O
 B

lo
ck

PLD
Block

PLD
Block

I/O
 B

lo
ck

I/O
 B

lo
ck

•
•
•

Interconnection Matrix

•
•
•

•
•
•

•
•
•

8

FPGA - Field Programmable Gate Array
Programmable logic blocks (Logic Element “LE”)
Implement combinatorial and sequential logic. Based on LUT and DFF.

Programmable I/O blocks
Configurable I/Os for external connections, various voltages, tri-states.

Programmable interconnect
Wires to connect inputs , outputs and logic blocks.
◼ clocks
◼ short distance local connections
◼ long distance connections across chip

I/O

I/O

Logic
block

Interconnection switches

I/O

I/O

N Input

LUT

Q

Q
SET

CLR

DMUX

d

a

clk

rst

y

q

b

c

9

Configuring a Lookup Table

a

b

c

y

y a b c= • +

a b c y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Required Function

Truth Table

Programmed LUT

1

0

1

1

1

0

1

1

MUX y

a,b,c

LUT

LUT: RAM with data width of 1bit.

Contents programmed at power up

10

FPGA Architectures
• Early FPGAs

• N x N array of unit cells (CLB + routing)
• Special routing along center axis

• Next Generation FPGAs
• M x N unit cells
• Small block RAMs around edges

• More recent FPGAs
• Added block RAM arrays
• Added multiplier cores
• Adders processor cores

• Special Functions
• Internal SRAM
• Embedded Multipliers, DSP blocks, logic analyzer, CPUs
• High speed I/O (~10GHz)
• DDR/DDRII/DDRIII SDRAM interfaces

11

Basic FPGAs vs DE1*-SoC

12

• ~$100 USD

• Cyclone V SoC FPGA

• Dual-core ARM Cortex-A9

• 1GB DDR 3 SDRAM, MicroSD

• USB, Triple-speed Ethernet

• ADC, Accelerometer, LED, Pushbutton

• FPGA

• 85K Programmable Logic Elements

• 64 MB SDRAM

• DVD-quality audio in/out, Video in/VGA out

• PS/2, IrDA

• 4 de-bounced pushbuttons, 10 slider switches, 10 red LEDs, six

7-segment displays

• Expansion headers

• Built-in USB “Blaster” for FPGA programming

FPGA Operation

User writes configuration:
• defines the function of the system
• connectivity between the CLBs and the I/O
• logic to be implemented by CLBs
• I/O blocks.

Changing data in the configuration memory →
• function of the system changes
• can happen at anytime during FPGA operation
• (run-time configuration).

13

Programmable Interconnect
• Horizontal and vertical mesh of wire segments

• Interconnected by programmable switches
• programmable interconnect points (PIPs).

• PIPs implemented with transmission gate & memory bits from configuration memory.

• Global routing: connect PLBs to I/O buffers, non-adjacent PLBs, etc

• Local routing: connects PLBs to adjacent PLBs and PLBs to global routing

• Types of PIPs
• Cross-point = connects vertical or horizontal wire segments allowing turns

• Breakpoint = connects or isolates 2 wire segments

• Decoded MUX = group of 2^n cross-points connected to a single output configure by n configuration bits

• Non-decoded MUX = n wire segments each with a configuration bit (n segments)

• Compound cross-point = 6 Break-point PIPS (can isolate two isolated signal nets)

14

Programming vs Configuring an FPGA

• SRAM cells holding configuration are Volatile Memory

• Lose configuration when board power is turned off.

• Keep Bit Pattern describes the Logic Functions in non-Volatile Memory
e.g. ROM or Compact Flash card

• Reprogramming takes ~ secs

• Uses JTAG Boundary Scan

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell

SRAM

15

Design/Build Flows

• High level Description of Logic Design
• Schematic
• Hardware Description Language

• Compile to netlist
• Low (Logic Gates) level description.

• Target Netlist to FPGA Fabric
• Mapping and Packing
• Placing and Routing

• Tools Generate the Bit File

• Simulation

• Timing Analysis

Gate-level

netlist
BEGIN CIRCUIT=TEST

 INPUT SET_A, SET-B,

 DATA, CLOCK,

 CLEAR_A, CLEAR_B;

 OUTPUT Q, N_Q;

 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A,

 IN2=SET_B,

 OUT1=SET);

 GATE G2=NOT (IN1=DATA,

 OUT1=N_DATA);

 GATE G3=OR (IN1=CLEAR_A,

 IN2=CLEAR_B,

 OUT1=CLEAR);

 GATE G4=DFF (IN1=SET, IN2=N_DATA,

 IN3=CLOCK, IN4=CLEAR,

 OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

Fully-routed physical

(CLB-level) netlist

Schematic

capture

Mapping

Packing

Place-and-

Route Timing analysis

and timing report

Gate-level netlist

for simulation

SDF (timing info)

for simulation
16

Hardware Description Languages

• Behavioural / Register Transfer Level Description
• Program Statements. Loops. If Statements …etc

• Describing mixed Combinatorial and Sequential
Logic and Signals between.

• VHDL (VHSIC Hardware Description Language)
• Very High Speed Integrated Circuit

• VERILOG (US)

RTL

Boolean

Loops

Processes

Structural

Functional

Behavioral

(Algorithmic)

Gate

Switch

17

Hardware Description Languages

• Logic → collection of Processes operating in Parallel

• Language Constructs for Multiplexers, FlipFlops …etc

• Restrictive set of RTL for Synthesis

• Synthesis Tools recognise constructs, generate logic

if SEL == “00“ then Y = A;

elseif SEL == “01“ then Y = B;

elseif SEL == “10“ then Y = C;

else Y = D;

end if;

A

B

C

D
2:1 MUX

2:1 MUX

2:1 MUX

SEL == 00

SEL == 01

SEL == 10

Y

case SEL of;

 “00“: Y = A;

 “01“: Y = B;

 “10“: Y = C;

otherwise: Y = D;

end case;

B

A

4:1 MUX

SEL

C

D

Y

00

01

10

11

18

Hardware Description Languages

• Synthesis (Compilation)

• Generate Netlist Register

transfer level

RTL

Logic

Simulator

RTL functional

verification

Logic

Synthesis

Gate-level

netlist

Logic

Simulator

Mapping

Packing

Place-and-

Route

Gate-level functional

verification

19

Definition of Module

• Interface
• port and parameter declaration

• Body: Internal part of module

• Add-ons (optional)

Basic Structure

• The name of Module

• Comments in Verilog
• One line comment (// ………….)

• Block Comment (/*…………….*/)

• Description of Module (optional but suggested)

The Module Interface

• Port List

• Port Declaration

Structural style: Verilog Code

Dataflow style: Verilog Code

Behavioral style: Verilog Code

Genomics: Alignment

Reference genome

Aligned reads

• Reveal structural, functional and evolutionary relationships biological sequences

• Similar sequences may have similar structure and function

• Similar sequences are likely to have common ancestral sequence

• Modelling of protein structures

• Design and analysis of gene expression experiments

Sequence alignment: Types

• Global alignment

• Aligns each residue in each sequence by introducing gaps

• Example: Needleman-Wunsch algorithm

2015-12-09 27

L G P S S K Q T G K G S - S R I W D N

L N - I T K S A G K G A I M R L G D A

Sequence alignment: Types

• Local alignment

• Finds regions with the highest density of matches locally

• Example: Smith-Waterman algorithm

2015-12-09 28

- - - - - - - T G K G - - - - - - - -

- - - - - - - A G K G - - - - - - - -

Sequence alignment: Scoring

• Scoring matrices are used to assign scores to each comparison of a pair of characters

• Identities and substitutions by similar amino acids are assigned positive scores

• Mismatches, or matches that are unlikely to have been a result of evolution, are given negative scores

A C D E F G H I K

A C Y E F G R I K

+5 +5 -5 +5 +5 +5 -5 +5 +5

292015-12-09

T A C G G G C A G

- A C - G G C - G

Option 1

T A C G G G C A G

- A C G G - C - G

Option 2

T A C G G G C A G

- A C G - G C - G

Option 3

Pairwise alignment: the problem
Number of possible pairwise alignments explodes with sequence length
2 protein sequences of length 100 amino acids can be aligned in 1060 ways

Time needed to test all possibilities is same order of magnitude as the entire
lifetime of the universe.

Pairwise alignment: the solution
”Dynamic programming”

(the Needleman-Wunsch algorithm)

Alignment depicted as path in matrix
T C G C A

T

C

C

A

T C G C A

T

C

C

A

TCGCA

TC-CA

TCGCA

T-CCA

Dynamic programming: example

A C G T

A 1 -1 -1 -1

C -1 1 -1 -1

G -1 -1 1 -1

T -1 -1 -1 1

Gaps: -2

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

T C G C A

: : : :

T C - C A

1+1-2+1+1 = 2

Thoughts On Cascade

39

Exam Review

40

FPGA Design Synchronous Logic

• Pipelined. Clocked Logic.

• Combinational and Sequential Logic.

• Register Transfer Level Logic.

Data In

Combinational

Logic

Combinational

Logic

Combinational

Logic

etc.

Clock

Data In

Registers Registers RegistersCombinational

Logic

Combinational

Logic

etc.

&

|

AND

OR

|

NOR
From previous

bank of registers

To next bank

of registers

Three levels of logic

Programmable

interconnect

Programmable

logic blocks

16-bit SR

flip-flop

clock

mux

y

q
e

a

b

c

d

16x1 RAM

4-input

LUT

clock enable

set/reset

41

Firmware Libraries

• Libraries of Firmware aka IP (Intellectual Property), Cores
• Buy from FPGA Vendor
• Buy from Third Parties
• Open Source

• Libraries
• VHDL code
• Black Box NetList
• Hardwired in Silicon

• Large User Community

42

Debugging Designs

• Logic Simulation Tools
• Model of Logic

• Input: Test Vector signals

• Compare output with expected pattern

• Virtual Logic Analysers
• Capture signals in real time while FPGA is running

Virtual Logic

Analyzer

Control

Logic

Signals we wish

to monitor

Start/Stop

conditions to

trigger on

Embedded

RAM Block

JTAG (from external virtual logic

analyzer program or another

internal logic analyzer block)

JTAG (to external virtual logic

analyzer program or another

internal logic analyzer block)

Columns of embedded

RAM blocks

Arrays of

programmable

logic blocks

43

FPGA Research Developments

• Reconfigurable Computing

• Virtual Hardware

X X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X

X X

 X
 X

 X
 X

 X
 X

 X
 X

 X

 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X

Primary

inputs

Primary

outputs

Uninitialized

SRAM cells

(a) Unconfigured

Configuration

data stream

Primary

inputs

Primary

outputs

SRAM cells

loaded with 0s and 1s

(b) Configured

0 0 1 1 0 1 1 0 1 0 0 1

 1
 0 1 1 0 1 0 0 1 0 1 1

1 1 0 1 0 0 1 0 0 0 0 1

 0

 1 1 0 0 1 1 0 1 0 0 0

 0 0 0 1 1 0 1 1 0 0 1 1

 1
 0 1 1 0 0 1 1 1 1 0 1

Active tasks

Inactive tasks

Unused resources

Function A

Function B

Configuration data

stored in memory device

Function A

Function B

Function C

Overwrite function B

with new function C

44

FPGAs

• Field Programmable Gate Array
• “Field” → architecture can be changed after deployment

• Gate Array
• Gate – Short for transistor logic gate (e.g. NAND)
• Array – Lots of them

• An integrated circuit (“chip”)

• Programmable logic
• Not just gates
• Lookup tables, DSPs, other components

45

Look-up Tables (2:1 MUX Example)

• Configuration memory holds output of truth table entries

• Internal signals connect to control signals of MUXs
• select values of the truth tables for any given input signals

46

Programmable Input/Output

• Bi-directional Buffers
• Programmable for inputs or outputs

• Tri-state controls bi-directional operation

• Pull-up/down resistors

• FFs/ Latches are used to improve timing issues
• Set-up and hold times

• Clock-to-out delay

• Routing Resources
• Connections to core of array

• Programmable I/O voltage and current levels

Boundary Scan Access

48

Configurable Logic Blocks (CLBs)

CLBs consist of:

• Look-up Tables (LUTs) → implement the entries of a truth table
• Some FPGAs can use LUTs to implement Random Access Memory (RAM)

• Carry and Control Logic
• fast arithmetic operations (adders/ subtractors)

• additional operations (Built-in-Self Test iterative-OR chain)

• Memory Elements
• Configurable Flip Flops (FFs)/ Latches(clock edges, set/reset, and clock enable)

• Memory elements usually can be configured as shift-registers

49

Programming an FPGA

• Field Programmable Gate Array
• Configurable (Programmable) General Logic Blocks

• Configurable Interconnects

• Bit File contains the Configuration Information

Programmable

interconnect

Programmable

logic blocks

50

FPGA Configuration Interfaces

• Master (Serial or Parallel)
• FPGA retrieves configuration from ROM at initial power-up

• Slave (Serial or Parallel)
• FPGA configured by an external source (i.e microprocessor/

other FPGA)

• Used for dynamic partial re-configuration

• Boundary Scan
• 4-wire IEEE standard serial interface used for testing

• Write and read access to configuration memory

• Interfaces to FPGA core internal routing network

51

FPGA Configuration Techniques
• Full configuration and readback

• Simple configuration interface
• Automatic internal calculation of frame address

• Larger FPGAs have a longer download time

• Compressed configuration
• Requires multiple frame write capability

• Identical frames of configuration data are written to multiple frame addresses

• Extension of partial re-configuration interface capabilities
• Frame address is much smaller than frame of configuration data

• Reduces download time for initial configuration
• depends on “regularity” of system function and array utilization

• Partial re-configuration and readback
• Change portions of configuration memory

• Reduces download time for re-configuration

52

Design Flows

• Schematic Capture of Logic Design.

• Create Netlist. Text file with signal connections.

G1 = NAND

G2 = NOT

G3 = OR

SET_A

SET_B

DATA

CLOCK

CLEAR_A

CLEAR_B

CLEAR

SET

N_DATA
Q

N-Q

G4 = DFF

BEGIN CIRCUIT=TEST

 INPUT SET_A, SET-B, DATA, CLOCK, CLEAR_A, CLEAR_B;

 OUTPUT Q, N_Q;

 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A, IN2=SET_B, OUT1=SET);

 GATE G2=NOT (IN1=DATA, OUT1=N_DATA);

 GATE G3=OR (IN1=CLEAR_A, IN2=CLEAR_B, OUT1=CLEAR);

 GATE G4=DFF (IN1=SET, IN2=N_DATA, IN3=CLOCK,

 IN4=CLEAR, OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

Gate-level

netlist
BEGIN CIRCUIT=TEST

 INPUT SET_A, SET-B,

 DATA, CLOCK,

 CLEAR_A, CLEAR_B;

 OUTPUT Q, N_Q;

 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A,

 IN2=SET_B,

 OUT1=SET);

 GATE G2=NOT (IN1=DATA,

 OUT1=N_DATA);

 GATE G3=OR (IN1=CLEAR_A,

 IN2=CLEAR_B,

 OUT1=CLEAR);

 GATE G4=DFF (IN1=SET, IN2=N_DATA,

 IN3=CLOCK, IN4=CLEAR,

 OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

Logic

Simulator

Place-and-

Route

Functional

verification

Extraction and

timing analysis

Detect and fix problems

Detect and fix problems

Schematic

capture

53

Software Languages?

• Can Logic be expressed at a higher level of Abstraction?

• Familiar to Software Programmer?

• System C
• C/C++ Representation of Algorithms

• Class based

• Faster simulation

• Auto translation to HDL

• Lacks support by Tools

• Augmented C++
• Special Statements to support

• Concurrency, clocks, pins ..etc

• Digital Signal Processing Functions

RTL

Boolean

Loops

Processes

Structural

Functional

Behavioral

(Algorithmic)

Gate

Switch

54

