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Portions of the lectures slides were adopted from:
Argonne National Laboratory, MPI tutorials.
Lawrence Livermore National Laboratory, MPI tutorials

See online tutorial links in course webpage
W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the EOU 2
Message Passing Interface, MIT Press, ISBN 0-262-57133-1, 1999.

W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message Passing
Interface, MIT Press, ISBN 0-262-57132-3, 1999.
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http://www-unix.mcs.anl.gov/mpi/usingmpi/
http://www-unix.mcs.anl.gov/mpi/usingmpi2/
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Make more boxes

Vertical Scaling Horizontal Scaling

Higher Capital Investment

Utilization concerns

Relatively Quicker and works with the
current design

Limiting Scale

On Demand Investment
Utilization can be optimized

Relatively more time consuming and
needs redesigning

Internet Scale
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User Browses Potential Pets
Clicks “Purchase Pooch”
Web Server, CGI/EJB + Database complete request

Pooch delivered (not shown)
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Why is this a good arrangement? bigger problem size



Horizontal Scale: Goal

J g ;i J | J | J |
1 |-; 111l 1 fye 111l 1 1) 113 1 |
| .illll_lll| 4 | X .illl‘l‘lll‘lll|l

i I
'.il|I!I‘III‘III|I
e ORI ORI ORI Ll

R o e B ey e e

)

AN i AN

ilistnj‘ll.l'_ | iliitli‘l‘l|lll' | ilistnjnll-

| 1




I Design Space

A
Internet
Shared
nothing
_______ /7
/7
L /7
Shared /
Private ksomethin , 7
data /7
center , /
v /7
< >

Latency Throughput



I Design Space

A
Internet
Shared
nothing
_______ /7
/7
L /7
Share /
Private somet 7 7
data /7
center Transaction P /
v /7
< >

Latency Throughput



I Design Space

A
Internet
Shared
nothing
_______ /7
/7
L /7
Share /
Private somet 7 7
data /7
center Transaction P /
v /7
< >

Latency Throughput



I Design Space

A
Internet
Shared
_____ /7
/7
L /7
Shareg /
Private somet 7 7
data /7
center Transaction P /
v /7
< >
Latency Throughput



I Design Space

A
Internet
LShare
Private somet
data
center Transaction P
v 7/
< >

Latency Throughput



I Design Space

A
Internet
LShare
Private somet
data
center Transaction P
v
< >

Latency Throughput



I Parallel Architectures and MPI



I Parallel Architectures and MPI




I Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

memory memory

interconnection network

memory memory




I Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

memory memory

interconnection network

memory memory

Massively Parallel Processor (MPP)
Many, many processors



I Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

memory memory

interconnection network

memory memory

Massively Parallel Processor (MPP)
Many, many processors



I Parallel Architectures and MPI

Distributed Memory Cluster of SMPs
Multiprocessor * Shared memory in SMP
Messaging between nodes node

* Messaging €<—> SMP nodes

memory memory
5 =
\ /
interconnection network network
interface

_ — ieteomneeton nefwer

memory memory

M M

Massively Parallel Processor (MPP)

Many, many processors « also regarded as MPP if

processor # is large



I Parallel Architectures and MPI

Distributed Memory Cluster of SMPs Multicore SMP+GPU Cluster
Multiprocessor * Shared memory in SMP e Shared mem in SMP node
Messaging between nodes node « Messaging between nodes

* Messaging €<—> SMP nodes

memory memory

= = - o

> . =] E
interconnection network network
interface

— interconnection network e e e e ey,

mer|nory merLory ﬁ E =] I I =
M M

Massively Parallel Processor (MPP)
Many, many processors

* also regarded as MPP if

processor # is large * GPU accelerators attached



I Parallel Architectures and MPI

Distributed Memory Cluster of SMPs Multicore SMP+GPU Cluster
Multiprocessor * Shared memory in SMP e Shared mem in SMP node
Messaging between nodes node « Messaging between nodes

memory memory

* Messaging €<—> SMP nodes
i v
interconnection network network

M M
interfaceE E I == I
_ — interconnection network interconnection network

memory memory

l What have we left out?

Massively Parallel Processor (MPP)

Many, many processors also regarded

processor #is



I Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

memory

memory

interconnection network

memory

memory

Massively Parallel Processor (MPP)
Many, many processors

Cluste

network
interface

r of SMPs

* Shared memory in SMP

node

* Messaging €<—> SMP nodes

interconnection network

* also regarded
processor #is

Non-GPU Accelerators

Multicore SMP+GPU Cluster

* Shared mem in SMP node

* Messaging between nodes

M

M

] [ -

interconnection network




IWhat requires extreme scale?



IWhat requires extreme scale?

Simulations—why?



IWhat requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments



IWhat requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more

memory, etc, lead for faster
and/or more accurate simulations
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Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more

memory, etc, lead for faster
and/or more accurate simulations

Climate Change

Astrophysics
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1 GigaFLOP =1 billion FLOPs
1 TeraFLOP = 1000 GigaFLOPs
1 PetaFLOP = 1000 TeraFLOPs

? Performance of over 10 Peta
> £ floating point number operations per second
Most current super computers - (10 Peta=10,000,000,000,000,000)
1 ExaFLOP = 1000 PetaFLOPs i
Arriving in 2018 (supposedly)
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Measured in FLOPs

Rank System

1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz,
Sunway , NRCPC
National Supercomputing Center in Wuxi
China

2 Tianhe-2 (MilkyWay-2] - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C
2.200GHz, TH Express-2, Intel Xeon Phi 3151P, NUDT
National Super Computer Center in Guangzhou
China

3 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect,
NVIDIA Tesla P100, Cray Inc.
Swiss National Supercomputing Centre [CSCS]
Switzerland

4 Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz,
Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler
Japan Agency for Marine-Earth Science and Technology
Japan

P lals]

5 Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect,

NVIDIA K20x , Cray Inc.
DOE/SC/0ak Ridge National Laboratory
United States

6 Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM
DOE/NNSA/LLNL

Cores

10,649,600

3,120,000

361,760

19,860,000

560,640

1,572,864

(TFlop/s)

93,014.6

33,862.7

19,590.0

19,135.8

17,590.0

17,173.2

Rpeak
(TFlop/s)

125,435.9

54,902.4

25,326.3

28,192.0

27,112.5

20,132.7

- LLNL Sequoia <
3 #3 on Top500.0rg, 20 PFLOPs

Power
(kW)

15,371

Performance of over 10 Peta
17808 | Y floating point number operations per second

(10 Peta=10,000,000,000,000,000)

“ JIKEN K / Kei computer
4 on Top500.org, 10PFLOPs
1,350
8,209
7.890
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- LLNL Sequoia <
3 #3 on Top500.0rg, 20 PFLOPs

Measured in FLOPs

Rpeak Power
Rank System Cores (TFlop/s] (TFlop/s] (kW]

1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, OD‘IL&: 125,435.9 15,371
Sunway , NRCPC

National Supercomputing Center in Wuxi
China

Performance of over 10 Peta
2 Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 3,120,000 338627 549024 17808 | ¢AY floating point number operations per second
2.200GHz, TH Express-2, Intel Xeon Phi 31S1P , NUDT (10 Peta=10,000,000,000,000,000)

National Super Computer Center in Guangzhou
China
3 Piz Daint - Cray XC50, Xeon E5-26%0v3 12C 2.6GHz, Aries interconnect, 361,760 19,590.0 25,326.3 2,272

NVIDIA Tesla P100, Cray Inc. :IKEN K / Kel CompUtel'
Swiss National Supercomputing Centre ([CSCS) 4 on T0p500.0rg, 10PFLOPs

Switzerland

4 Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, 19,860,000 19,135.8 28,192.0 1,350
Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler
Japan Agency for Marine-Earth Science and Technology
Japan

P lals]

5 Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, 560,640 17,590.0 27,112.5 8,209
NVIDIA K20x , Cray Inc.
DOE/SC/0ak Ridge National Laboratory
United States

6 Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM 1,572,864 17,173.2 20,132.7 7,890
DOE/NNSA/LI NI
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I Distributed Memory Multiprocessors

Each processor has a local memory

Physically separated address space Network

Processors communicate to access

non-local data
Message communication # # #

Message passing architecture M $ M $ M $

Processor interconnection network

Parallel applications partitioned across P P P
Processors: execution units
Memory: data partitioning mmm= Network interface

Scalable architecture

Incremental cost to add hardware
(cost of node)

* Nodes: complete computer
* Including I/O

* Nodes communicate via network
e Standard networks (IP)
» Specialized networks (RDMA, fiber)
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Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Is this different from metrics we’ve

cared about so far?
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Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand

Explicit communication 2
focus attention on costly aspect of parallel computation

Synchronization 2

naturally associated with sending messages

reduces possibility for errors from incorrect synchronization
Easier to use sender-initiated communication =2

some advantages in performance

Can you think of any disadvantages?
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I Running on Supercomputers

* Programmer plans a job; job == Sometimes 1 job takes whole machine

e parallel binary program These are called “hero runs”...
Sometimes many smaller jobs

o Supercomputers used continuously
* Submit job to a queue Processors: “scarce resource”

jobs are “plentiful”

* “input deck” (specifies input data)

* Scheduler allocates resources when
* resources are available,
e (or) the job is deemed “high priority”

e Scheduler runs scripts that initialize the environment
* Typically done with environment variables
» At the end of initialization, it is possible to infer:
* What the desired job configuration is (i.e., how many tasks per node)
e What other nodes are involved
* How your node’s tasks relates to the overall program

* MPI library interprets this information, hides the details
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IThe Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

.— thread

address
space
MPI is for communication among processes (memory)

Not threads

Inter-process communication consists of
Synchronization

Data movement How does this compare with

CSP?
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Process: a program counter and address space

O e MPI == Message-Passing Interface specification

* Extended message-passing model

* Not a language or compiler specification

* Not a specific implementation or product
* Specified in C, C++, Fortran 77, F90

.* Message Passing Interface (MPI) Forum
* http://www.mpi-forum.org/
e http://www.mpi-forum.org/docs/docs.html

MP

Inte
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IThe Message-Passing Model

 MPI == Message-Passing Interface specification
* Extended message-passing model
* Not a language or compiler specification
* Not a specific implementation or product
 Specified in C, C++, Fortran 77, F90

* Message Passing Interface (MPI) Forum
* http://www.mpi-forum.org/
e http://www.mpi-forum.org/docs/docs.html

* Two flavors for communication
* Cooperative operations
* One-sided operations


http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html
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I Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another

Advantage of local control of memory

Change in the receiving process’s memory made with receiver’s explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)\\\\\\\\‘

Receive (data)

time

Familiar argument?
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One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
Communication and synchronization are decoupled

Process 0 Process 1

Put (data) \
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\/ Get (data)
time
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Are 1-sided

. . operations better
I One-Sided Operations for performance?

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
Communication and synchronization are decoupled

Process 0 Process 1

Put (data) \
(memory) \

\/ Get (data)
time

(memory)




IA Simple MPI Program

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv|[] )
{
MPI Init( &argc, &argv );
printf( "Hello, world!'\n" );
MPI Finalize();
return O;
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Executive Summary

e Undo all of init

I MPI Finalize . Beableto do it on

success or failure
exit

Why do we need to finalize MPI?

What is necessary for a “graceful” MPI exit?
Can bad things happen otherwise?
Suppose one process exits...

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

* By default, an error causes all processes to abort

* The user can cause routines to return (with an error code)
* |n C++, exceptions are thrown (MPI-2)

* A user can also write and install custom error handlers
* Libraries may handle errors differently from applications
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| Running MPI Programs

MPI-1 does not specify how to run an MPI program
Starting an MPI program is dependent on implementation
Scripts, program arguments, and/or environment variables
% mpirun -np <procs> a.out
For MPICH under Linux
mpiexec <args>
Recommended part of MPI-2, as a recommendation

mpiexec for MPICH (distribution from ANL)
mpirun for SGI’ s MPI
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I Finding Out About the Environment

Two important questions that arise in message passing

How many processes are being use in computation?
Which one am I?

MPI provides functions to answer these questions
MPI_Comm_size reports the number of processes

MPI_Comm_rank reports the rank
number between 0 and size-1
identifies the calling process
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I Hello World Revisited

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )

{
int rank, size;
MPI Init( &argc, &argv );
MPI Comm rank( MPI COMM WORLD, é&rank );
MPI Comm size( MPI COMM WORLD, &size );
printf( "I am %d of %d\n", rank, size );
MPI Finalize();
return O;

}

Comm?

0 What does this program do? [Bele st tlalle1ie) 4




IBasic Concepts

Processes can be collected into groups

Each message is sent in a context
Must be received in the same context!

A group and context together form a communicator

A process is identified by its rank
With respect to the group associated with a communicator

There is a default communicator MPI_COMM_WORLD

Contains all initial processes
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An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MP| datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes

Array of (int, float) pairs
Row of a matrix stored columnwise
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I MPI Datatypes

Message data (sent or received) is described by a triple

address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MP| datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatvpes
* Enables heterogeneous communication
* Support communication between processes on machines with different
memory representations and lengths of elementary datatypes
* MPI provides the representation translation if necessary
» Allows application-oriented layout of data in memory

* Reduces memory-to-memory copies in implementation
* Allows use of special hardware (scatter/gather)
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| MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types’”
MPI calls them “tags” to avoid confusion with datatypes



IMPI Basic (Blocking) Send

MPI SEND (start, count, datatype, dest, tag, comm)

The message buffer 1s described by:
start, count, datatype

The target process 1s specified by dest

Rank of the target process in the communicator
specified by comm

Process blocks until:

Data has been delivered to the system
Buffer can then be reused

Message may not have been received by target process!
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| MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()
MPI_FINALIZE()
MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()
MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’ t always the most efficient...
Add more support for communication



I Excerpt: Barnes-Hut

int ctr=nLocalOriginal;
int offset=nLocalOriginal-nLocal;
for (i=0;i<worldSize;i++) {
if (i==rank) {
MPI_BcaSﬂ(s_particles,N_POS_ELEMS*nLocalMaX+ ,MPI DOUBLE,i,MPI COMM WORLD) ;
} else {
MPI Bcast (1l particles,N POS ELEMS*nLocalMax+!,MPI DOUBLE,i,MPI COMM WORLD) ;
for (k=0;k<1 particles[0];k++, ctr++){
if(l_particles[MASS(k}]< ) {
offset++;
_nparticles--;
} else {
s particles[PX(ctr)]=1 particles[PX(k)];
s particles[PY(ctr)]=1 particles[PY(k)];
s particles[PZ(ctr)]=1 particles[PZ(k)];
s particles[MASS(ctr)]=1 particles[MASS(k)];
indexes|[ctr-offset]=ctr;
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int ctr=nLocalOriginal;
int offset=nLocalOriginal-nLocal;
for (i=0;i<worldSize;i++) {
if (i==rank) { il
MPI_BcaSﬂ(s_particles,N_POS_ELEMS*nLocalMaX+ ,MPI_DOUBLE,iﬁ
} else {
MPI Bcast(l particles,N POS ELEMS*nLocalMax+!,MPI DOUBLE, |as
for (k=0;k<1 particles[0];k++, ctr++){
if(l_particles[MASS(k}]< ) {
offset++;
_nparticles--;
} else {
s particles[PX(ctr)]=1 particles[PX(k)];
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To use or not use MP|?

* USE

* You need a portable parallel program

* You are writing a parallel library

* You have irregular or dynamic data relationships
* You care about performance

* NOT USE

* You don’t need parallelism at all
* You can use libraries (which may be written in MPI) or other tools

* You can use multi-threading in a concurrent environment
* You don’t need extreme scale



